Outline	Introduction	The Improbable Differential Attack	CLEFIA	Conclusion

The Improbable Differential Attack: Cryptanalysis of Reduced Round CLEFIA

Cihangir TEZCAN

École Polytechnique Fédérale de Lausanne, Switzerland

(This work was done at) Institute of Applied Mathematics Middle East Technical University, Ankara, Turkey

INDOCRYPT 2010 December 14, 2010, Hyderabad, India

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
Outline				

1 Introduction

2 The Improbable Differential Attack

- Introduction
- Two Techniques to Obtain Improbable Differentials
- 3 CLEFIA
 - Specifications
 - 13-round Improbable Differential Attack
- 4 Conclusion

Outline	Introduction ●○	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
A (Ver	rv) Short Int	roduction to Differe	ntial Cryptan	alvsis

Differential Cryptanalysis

Discovered by E. Biham and A. Shamir, early 1980s

A () (••		00000000	1 1
A (Ver	v) Short Inti	roduction to Differen	itial Cryptan	alvsis

Differential Cryptanalysis

- Discovered by E. Biham and A. Shamir, early 1980s
- Find a path (characteristic) so that when the input difference is α, output difference is β with high probability

Outline	Introduction ●0	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
A (Very) Short Int	roduction to Differentia	al Cryptan	alysis

Differential Cryptanalysis

- Discovered by E. Biham and A. Shamir, early 1980s
- Find a path (characteristic) so that when the input difference is α , output difference is β with high probability
- Truncated Differential Cryptanalysis
 - Discovered by L. Knudsen, 1994

Outline	Introduction ●0	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
A (Very) Short Inti	roduction to Differentia	al Cryptan	alysis

- Differential Cryptanalysis
 - Discovered by E. Biham and A. Shamir, early 1980s
 - Find a path (characteristic) so that when the input difference is α, output difference is β with high probability
- Truncated Differential Cryptanalysis
 - Discovered by L. Knudsen, 1994
 - Find a path (differential) so that when the input difference is α , output difference is β with high probability

Outline	Introduction ●○	The Improbable Differential Attack	CLEFIA Conclusion

- Differential Cryptanalysis
 - Discovered by E. Biham and A. Shamir, early 1980s
 - Find a path (characteristic) so that when the input difference is α, output difference is β with high probability
- Truncated Differential Cryptanalysis
 - Discovered by L. Knudsen, 1994
 - Find a path (differential) so that when the input difference is α , output difference is β with high probability
 - \blacksquare Only parts of the differences α and β are specified

Outline	Introduction ●0	The Improbable Differential Attack	CLEFIA 000000000	Conclusion

- Differential Cryptanalysis
 - Discovered by E. Biham and A. Shamir, early 1980s
 - Find a path (characteristic) so that when the input difference is α, output difference is β with high probability
- Truncated Differential Cryptanalysis
 - Discovered by L. Knudsen, 1994
 - Find a path (differential) so that when the input difference is α , output difference is β with high probability
 - \blacksquare Only parts of the differences α and β are specified
- Impossible Differential Cryptanalysis
 - Discovered by E. Biham, A. Biryukov, A. Shamir, 1998

Outline	Introduction ●0	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
A () (

- Differential Cryptanalysis
 - Discovered by E. Biham and A. Shamir, early 1980s
 - Find a path (characteristic) so that when the input difference is α, output difference is β with high probability
- Truncated Differential Cryptanalysis
 - Discovered by L. Knudsen, 1994
 - Find a path (differential) so that when the input difference is α , output difference is β with high probability
 - \blacksquare Only parts of the differences α and β are specified
- Impossible Differential Cryptanalysis
 - Discovered by E. Biham, A. Biryukov, A. Shamir, 1998
 - Find a path (impossible differential) so that when the input difference is α, the output difference is never β

Outline	Introduction ●0	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
A () (

- Differential Cryptanalysis
 - Discovered by E. Biham and A. Shamir, early 1980s
 - Find a path (characteristic) so that when the input difference is α, output difference is β with high probability
- Truncated Differential Cryptanalysis
 - Discovered by L. Knudsen, 1994
 - Find a path (differential) so that when the input difference is α , output difference is β with high probability
 - \blacksquare Only parts of the differences α and β are specified
- Impossible Differential Cryptanalysis
 - Discovered by E. Biham, A. Biryukov, A. Shamir, 1998
 - Find a path (impossible differential) so that when the input difference is α , the output difference is never β
- And others (Higher-order Differential, Boomerang,...)

Attack Type	Probability of the incident for a wrong key	probability of the incident for the correct key	Note
Statistical Attacks (Differential, Truncated,)	р	p_0	$p_0 > p$

Attack Type	Probability of the incident for a wrong key	probability of the incident for the correct key	Note
Statistical Attacks	р	p_0	$p_0 > p$
(Differential, Truncated,)			
Impossible Differential	р	0	$p_0 = 0$

Attack Type	Probability of the incident for a wrong key	probability of the incident for the correct key	Note
Statistical Attacks	р	<i>p</i> 0	$p_0 > p$
(Differential, Truncated,)			
Impossible Differential	р	0	$p_0 = 0$
Improbable Differential	р	p_0	$p_0 < p$

Outline Introduction		The Improbable Differential Attack	CLEFIA	Conclusion
00		●000000000	000000000	
Improb	able Differe	ntials		

Assume that α and β differences are observed with probability p for a random key.

Outline Introduction		The Improbable Differential Attack •••••••	CLEFIA 000000000	Conclusion
Improf	bable Differe	ntials		

- Assume that α and β differences are observed with probability p for a random key.
- Obtain a nontrivial differential so that a pair having α input difference have β' output difference with probability p' where β' is different than β.

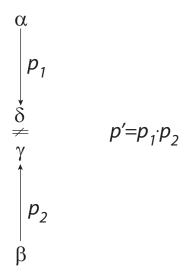
Outline Introduction		The Improbable Differential Attack	CLEFIA	Conclusion
00		•••••••	000000000	
Improf	hable Differe	ntials		

- Assume that α and β differences are observed with probability p for a random key.
- Obtain a nontrivial differential so that a pair having α input difference have β' output difference with probability p' where β' is different than β.
- Hence for the correct key, probability of observing these differences becomes $p_0 = p \cdot (1 p')$.

Outline Introduction		The Improbable Differential Attack	CLEFIA 000000000	Conclusion
Improf	bable Differe	ntials		

- Assume that α and β differences are observed with probability p for a random key.
- Obtain a nontrivial differential so that a pair having α input difference have β' output difference with probability p' where β' is different than β.
- Hence for the correct key, probability of observing these differences becomes $p_0 = p \cdot (1 p')$.

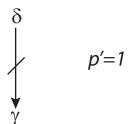
Caution


If there are nontrivial differentials from α to β , p_0 becomes bigger than $p \cdot (1 - p')$.

Two methods to obtain improbable differentials:

- Use two differentials that miss in the middle with high probability (almost miss in the middle technique)
- Expand impossible differentials to improbable diffrentials by adding a differential to the top and/or below the impossible differential (expansion technique)

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
Almost	t Miss-in-the	e-Middle Technique		


<ロ> <部> < 部> < き> < き> < き</p>

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
Impro	able Differe	ntiale		

Two methods to obtain improbable differentials:

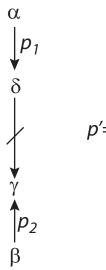
- Use two differentials that miss in the middle with high probability (almost miss in the middle technique)
- Expand impossible differentials to improbable differentials by adding a differential to the top and/or below the impossible differential (expansion technique)

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 000000000	Conclusion	
Improf	able Differe	ntials from Impossible	Differential	s	

・ロト・「聞・ 《聞・ 《聞・ 《日・

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
		and the former law an estimate		_

Improbable Differentials from Impossible Differentials


$$\begin{array}{c} \alpha \\ \downarrow p_1 \\ \delta \\ \downarrow \\ \gamma \end{array} \qquad p' = p_1$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
I was so as a		and a farmer land a setter		

Improbable Differentials from Impossible Differentials

p′=*p*₁.*p*₂

<ロ> <部> < 部> < き> < き> < き</p>

Outline	Introduction 00		The Improbable Differential Attack			CLEFIA 000000000	Conclusion
D		C . I	-		N / 1		

Pros and Cons of the Expansion Method

Pros:

- Longer differentials
- Attack on more rounds

Cons:

- Data complexity increases (because *p*₀ increases)
- Time complexity increases (since we use more data)
- Memory complexity increases (we need to keep counters for the guessed keys)

Outline	Introduction 00		The Improbable Differential Attack			CLEFIA 000000000	Conclusion
D		C . I	-		N / 1		

Pros and Cons of the Expansion Method

Pros:

- Longer differentials
- Attack on more rounds

Cons:

- Data complexity increases (because p₀ increases)
- Time complexity increases (since we use more data)
- Memory complexity increases (we need to keep counters for the guessed keys)

Outline	Introduction 00	The Improbable Differential Attack 0000000000	CLEFIA 000000000	Conclusion
Data Co	mplexity and	d Success Probability		

Blondeau et al. proposed acurate estimates of the data complexity and success probability for many statistical attacks including differential and truncated differential attacks.

Making appropriate changes, these estimates can be used for improbable differential attacks, too.

Outline	Introduction 00	The Improbable Differential Attack 00000000●0	CLEFIA 000000000	Conclusion
Data C	omplexity ar	nd Success Probability		

Blondeau et al. proposed acurate estimates of the data complexity and success probability for many statistical attacks including differential and truncated differential attacks.

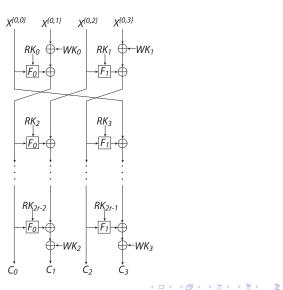
Making appropriate changes, these estimates can be used for improbable differential attacks, too.

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 000000000	Conclusion
Previo	us attacks w	here n < n		

Early examples of improbable differential attack:

- J. Borst, L. Knudsen, V. Rijmen: "Two Attacks on Reduced IDEA"
- L. Knudsen, V. Rijmen: "On the Decorrelated Fast Cipher (DFC) and Its Theory"

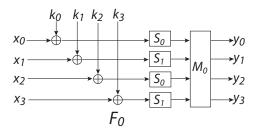
Outline	Introduction 00	The Improbable Differential Attack	CLEFIA •00000000	Conclusion
CLEFIA				

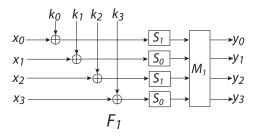

- Developed by Sony in 2007
- Clef means key in French.
- Block length: 128 bits
- Key lengths: 128, 192, and 256 bits
- Number of rounds: 18, 22, or 26
- Previous best attacks: Impossible differential attacks on 12, 13, 14 rounds for 128, 196, 256-bit key lengths by Tsunoo et al.
- We converted these attacks to improbable differential attacks using the expansion technique
- Current best attacks: Improbable differential attacks on 13, 14, 15 rounds for 128, 196, 256-bit key lengths

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA •00000000	Conclusion
CLEFIA				

- Developed by Sony in 2007
- Clef means key in French.
- Block length: 128 bits
- Key lengths: 128, 192, and 256 bits
- Number of rounds: 18, 22, or 26
- Previous best attacks: Impossible differential attacks on 12, 13, 14 rounds for 128, 196, 256-bit key lengths by Tsunoo et al.
- We converted these attacks to improbable differential attacks using the expansion technique
- Current best attacks: Improbable differential attacks on 13, 14, 15 rounds for 128, 196, 256-bit key lengths

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA Conclusion
		E di	


CLEFIA: Encryption Function



 Outline
 Introduction
 The Improbable Differential Attack
 CLEFIA
 Conclusion

 Outline
 Introduction
 0000000000
 000000000
 000000000

CLEFIA: F_0 and F_1 Functions

- 4 同 6 4 日 6 4 日 6

æ

10		le Differential	
Outline	Introduction	The Improbable Differential Attack	Conclusion

We will use the following two 9-round impossible differentials that are introduced by Tsunoo et al.,

 $\begin{bmatrix} 0_{(32)}, 0_{(32)}, 0_{(32)}, [X, 0, 0, 0]_{(32)} \end{bmatrix} \not\rightarrow_{9r} \begin{bmatrix} 0_{(32)}, 0_{(32)}, 0_{(32)}, [0, Y, 0, 0]_{(32)} \end{bmatrix} \\ \begin{bmatrix} 0_{(32)}, 0_{(32)}, 0_{(32)}, [0, 0, X, 0]_{(32)} \end{bmatrix} \not\rightarrow_{9r} \begin{bmatrix} 0_{(32)}, 0_{(32)}, 0_{(32)}, [0, Y, 0, 0]_{(32)} \end{bmatrix}$

where $X_{(8)}$ and $Y_{(8)}$ are non-zero differences.

	00	00000000	00000000	
10_rou	nd Improbat	le Differential		

We obtain 10-round improbable differentials by adding the following one-round differentials to the top of these 9-round impossible differentials,

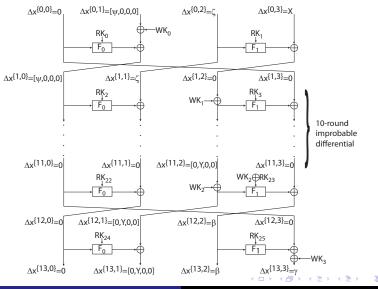
 $\begin{bmatrix} [\psi, 0, 0, 0]_{(32)}, \zeta_{(32)}, 0_{(32)}, 0_{(32)} \end{bmatrix} \to_{1r} \begin{bmatrix} 0_{(32)}, 0_{(32)}, 0_{(32)}, [\psi, 0, 0, 0]_{(32)} \end{bmatrix} \\ \begin{bmatrix} [0, 0, \psi, 0]_{(32)}, \zeta'_{(32)}, 0_{(32)}, 0_{(32)} \end{bmatrix} \to_{1r} \begin{bmatrix} 0_{(32)}, 0_{(32)}, 0_{(32)}, [0, 0, \psi, 0]_{(32)} \end{bmatrix}$

which hold when the output difference of the F_0 function is ζ (resp. ζ') when the input difference is $[\psi, 0, 0, 0]$ (resp. $[0, 0, \psi, 0]$).

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 00000●000	Conclusion
13-round	Improbable	Differential Attack		

We choose ψ and corresponding ζ and ζ' depending on the difference distribution table (DDT) of S_0 in order to increase the probability of the differential. In this way we get $p' \approx 2^{-5.87}$.

We put one additional round on the plaintext side and two additional rounds on the ciphertext side of the 10-round improbable differentials to attack first 13 rounds of CLEFIA that captures RK_1 , $RK_{23,1} \oplus WK_{2,1}$, RK_{24} , and RK_{25} .


Outline	Introduction 00	The Improbable Differential Attack 0000000000	CLEFIA 000000000	Conclusion
12-roun	d Improbable	Differential Attack		

We choose ψ and corresponding ζ and ζ' depending on the difference distribution table (DDT) of S_0 in order to increase the probability of the differential. In this way we get $p' \approx 2^{-5.87}$.

We put one additional round on the plaintext side and two additional rounds on the ciphertext side of the 10-round improbable differentials to attack first 13 rounds of CLEFIA that captures RK_1 , $RK_{23,1} \oplus WK_{2,1}$, RK_{24} , and RK_{25} .

13-round Improbable Differential Attack

Cihangir TEZCAN The Improbable Differential Attack

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 0000000●0	Conclusion
13-round	Improbable	Differential Attack		

Table: Comparison of Tsunoo et al.'s impossible attack with the expanded improbable attack

Rounds	Attack	Key	Data	Time	Memory	Success
	Туре	Length	Complexity	Complexity	(blocks)	Probability
12	Impossible	128	2 ^{118.9}	2 ¹¹⁹	2 ⁷³	-
13	Improbable	128	2 ^{126.83}	2 ^{126.83}	2 ^{101.32}	%99

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 00000000	Conclusion		
14 and 15-round Improbable Differential Attacks						

By using the similar expansion technique, we can apply improbable differential attack on

- 14-round CLEFIA when the key length is 192 bits
- 15-round CLEFIA when the key length is 256 bits

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 000000000	Conclusion	
Conclusion					

We provided

- a new cryptanalytic technique called *improbable differential attack* where a differential holds with less probability when tried with the correct key
- 2 two techniques to obtain improbable differentials
- 3 data complexity estimates for improbable differential attacks
- 4 state of art attacks on the block cipher CLEFIA

Outline	Introduction 00	The Improbable Differential Attack	CLEFIA 000000000	Conclusion		
Conclusion						

THANK YOU FOR YOUR ATTENTION

Cihangir TEZCAN The Improbable Differential Attack

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A