
The Improved 96th-Order Differential Attack on

11 Rounds of the Block Cipher CLEFIA

Yasutaka Igarashi, Seiji Fukushima, and Tomohiro Hachino
Kagoshima University, Kagoshima, Japan

Email: {igarashi, fukushima, hachino}@eee.kagoshima-u.ac.jp

Toshinobu Kaneko
Tokyo University of Science, Chiba, Japan

Email: kaneko@ee.noda.tus.ac.jp

Abstract—CLEFIA is a 128-bit block cipher proposed by

Shirai of SONY et al. in 2007. Its key size is 128, 192, or 256

bits. The number of the round of data processing part

depends on a key size, viz. it is 18, 22, or 26 rounds for 128,

192, or 256 bits of a key size, respectively. Such a

characteristic of CLEFIA have been known that the 96th-

order differential of 64 bits out of 128 bits of the 8th-round's

output is zero. With this characteristic, we reported the

96th-order differential attack on 11 rounds of CLEFIA that

requires 298.3 blocks of plain text and 2159 times of data

encryption. In this paper, we reduce this number of the

times of the encryption, (viz. computational complexity) by

applying a partial sum technique proposed by Ferguson et

al. With the technique, we sequentially derive a modulo 2

occurrence distribution of intermediate data of

cryptanalysis. We also reduce the complexity by introducing

a nested structure of iterative computations to the attack

algorithm. As a result we reduce the complexity to 2106.6,

which is 1/252.4 of the conventional complexity.

Index Terms—cryptanalysis, higher-order differential

attack, block cipher, CLEFIA

I. INTRODUCTION

CLEFIA is a 128-bit block cipher proposed by Shirai

of SONY et al. in 2007 [1], [2]. A data processing part of

CLEFIA consists of some rounds of 4-branch type-2

generalized Feistel structure, where two similar nonlinear

functions are placed in parallel. CLEFIA supports 128,

192, and 256 bits of secret keys. The number of round of

data processing part depends on a key size, viz. it is 18,

22, or 26 rounds for 128, 192, or 256 bits of secret key,

respectively. CLEFIA has been applied and evaluated for

cryptographic techniques towards the revision of the e-

Government Recommended Ciphers List in FY 2013 in

Japan [3].

It has been known that the synchronous 8th-order

differential of 24 bits out of 128 bits becomes zero at the

6th-round output of the data processing part [4]. It has

been also known that the 96th-order differential of 64 bits

out of 128 bits becomes zero at the 8th-round output [5].

Exploiting this property we reported the 96th-order

Manuscript received April 28, 2013; revised July 17, 2013

differential attack [6] on 11 rounds of CLEFIA with 2
98.3

blocks of plain text and 2
159

 times of data processing [7].

In the article we reduce the number of times of data

processing for the 96th-order differential attack by using

a modulo 2 occurrence distribution (MOD) of the

intermediate data of data processing part. MOD is derived

by using a partial sum technique proposed by Ferguson et

al. [8]. Moreover we reduce the number of the times by

applying a nested structure of iterative computation to the

attack algorithm and optimizing the order of the nest.

As a result we show that the 96th-order differential

attack can be performed with 2
99.8

 blocks of plain text and

2
106.6

 times of data processing, which is 1/2
52.4

 of

computational complexity compared to the conventional

attack. Note that the best known higher-order differential

attack on CLEFA is the 105th-order differential attack on

14 rounds of CLEFIA with 2
108.5

 blocks of plain text and

2
223.0

 times of data processing so far [9].

II. DATA PROCESSING PART OF CLEFIA

In this section we describe the data processing part of

CLEFIA. We omit the detail specification of CLEFIA [2]

being not required for the article.

Fig. 1 shows an 11-round data processing part of

CLEFIA where input plain text and output cipher text are

128 bits represented by Xi and Ci(11) (i = 0, 1, 2, 3),

respectively. A bit size of Xi and Ci(11) is 32. Ci(j) (j = 1, 2,

, 11) represents 32-bit output of the jth round given by

Tj

i

j

i

j

i

j

i

j

i CCCCC),,,()(

3

)(

2

)(

1

)(

0

)( (1)

where C
(j)

ik (k= 0, 1, 2, 3) is an 8-bit data. The superscript

T represents transposition of a vector or a matrix. The

symbol  represents an XOR operation. WKi (i = 0, 1) is

a 32-bit whitening key, and RK (i = 0, 1, 2, , 21) is a

32-bit round key used in Fi (i = 0, 1). Fi is a bijective

nonlinear function with 32-bit input/output (I/O) adopting

SP structure. 4-branch 32-bit data Xi is mixed by XOR

and substituted by a nonlinear function. Such a structure

is called 4-branch generalized Feistel.

147©2013 Engineering and Technology Publishing

doi: 10.12720/ijoee.1.3.147-151

International Journal of Electrical Energy, Vol. 1, No. 3, September 2013

Figure 1. 11-round data processing part of CLEFIA.

Figure 2. (a) F0 and (b) F1.

Fig. 2 shows (a) F0 and (b) F1 where its input and

output data are represented by an 8-bit xi and an 8-bit yi (i

= 0, 1, 2, 3), respectively. RK,i (i = 0, 1, 2, 3) is an 8-bit

key satisfying the following equation: RK = (RK,0, RK,1,

RK,2, RK,3)T
. S0 and S1 are bijective nonlinear functions

with 8-bit I/O. Their output is represented by x'i. M0 and

M1 are 44 nonsingular matrices given by

 
 ),1,0(3210

3210

 ix'x'x'x'M

yyyy

T

i

T

 (2)

00

01

0

02

03

1 2 4 6

2 1 6 4

4 6 1 2

6 4 2 1

M

M
M

M

M

   
   
    
   
   

  

 (3)









































182

812

218

281

13

12

11

10

1

a

a

a

a

M

M

M

M

M
 (4)

where “a” is a hexadecimal number. The multiplications

of a vector and a matrix are performed in GF(2
8
) defined

by the primitive polynomial z
8
 + z

4
 + z

3
 + z

2
 + 1.

III. THE 96TH-ORDER DIFFERENTIAL CHARACTERISTICS

OF CLEFIA AND ITS ATTACK EQUATION

In this section we show the 96th-order differential

characteristics of CLEFIA and its attack equation.

First we focus on an input plain text (see Fig. 1). We

set X0 or X2 to take arbitrary constant, and input the 96th-

order differential to the three remaining Xi. Namely, all

the 2
96

 kinds of data from 0 to 2
96

 -1 are put into the three

Xi. At this time the 96th-order differentials of C10
(9)

 and

S0(C00
(9) RK16,0) becomes the same value [7] (see Fig. 3

that shows the equivalently modified data processing part

from the 9th round to the 11th round). M0
-1

 is the inverse

matrix of M0 that is given by M0
-1

 = M0. There is the

product of the matrices M0
-1

 and M1 at the right side of

the 11th round that is given by

1

0 1

25 2 22 28

2 25 28 22

22 28 25 2

28 22 2 25

e

e
M M

e

e



 
 
  
 
 
 

 (5)

By using the 96th-order differential characteristics the

following attack equations can be derived:

(96) (96)

(9) (9)

0 00 16,0 10()
X V X V

S C RK C
 

   

   (6)

(9) (10) (11) (11)

10 00 20 0 23 21,328 ()C C W S C RK    (7)

(11) (11) (11)

20 10 1 22 21,222 ()W W S C RK   (8)

(11) (11) (11)

10 00 0 21 21,12 ()W W eS C RK   (9)

(11) (11) (11)

00 30 1 20 21,025 ()W C' S C RK   (10)

(11) (11) (11) (11) (11)

30 30 31 32 332 4 6C' C C C C    (11)

(9) (10) (10)

00 20 0 23 19,3()C W a S C RK   (12)

(10) (10) (10)

20 10 1 22 19,22 ()W W S C RK   (13)

(10) (10) (10)

10 00 0 21 19,18 ()W W S C RK   (14)

(10) (10) (10) (10) (11)

00 30 1 20 19,0 30 20(),W C S C RK C C    (15)

148©2013 Engineering and Technology Publishing

International Journal of Electrical Energy, Vol. 1, No. 3, September 2013

(10) (11) (11)

2 2 1 03 20,3(6,4,2,1) ()T
C U S C RK   (16)

(11) (11) (11)

2 1 0 02 20,2(4,6,1,2) ()T
U U S C RK   (17)

Figure 3. Equivalently-modified data processing part from the 9th

round to the 11th round.

(11) (11) (11)

1 0 1 01 20,1(2,1,6,4) ()T
U U S C RK   (18)

(11) (11) (11)

0 1 0 00 20,0(1,2,4,6) ()T
U C S C RK   (19)

where

() () () () ()

0 1 2 3(, , ,)j j j j j T

i i i i i
U U U U U (20)

() () () () ()

0 1 2 3(, , ,)j j j j j T

i i i i i
W W W W W (21)

()

0

()

() 1

()

2

()

3

()

j

j

j

j

j

C

C
C X X

C

C

 
 
    
  
 

 (22)

C
(j)

(XX) is the jth-round 128-bit output

corresponding to the input plain text (XX) where X is

an input difference. Ui
(j)

 and Wi
(j)

 are 32-bit intermediate

data of the equivalent circuit shown in Fig. 4 and Fig. 5

where the hexadecimal number in a box represents

multiplication. Because (6) is 8 sets of Boolean equation,

it holds with probability 2
-8

 even if a guessed key is false.

On the other hand it holds with probability 1 if the

guessed key is correct. Therefore attacker can recover the

total 104 bits of the round keys, RK16,0, RK19, RK20, and

RK21 in (6)-(22) by analyzing (6)-(22) for sufficient

number of times.

IV. ATTACK ALGORITHM AND COST ESTIMATION

In this section we show the attack algorithm to recover

the total 104 bits of round keys, and estimate the cost of

the attack. We reduce the computational complexity of

the attack by exploiting MOD for intermediate data of

(6)-(22), which is sequentially derived by using a partial

sum technique proposed by Ferguson et al. [8]. The

advantages of using MOD are as follows. Even number

of XOR operations of a certain variable x is zero, while

Figure 4. Equivalent circuit whose inputs are C0
(j), C1

(j), and RK2j-2. The

output is C2
(j-1).

Figure 5. Equivalent circuit whose inputs are C2
(j), C3

(j), and RK2j-1. The

output is C0
(j-1).

Odd number of them is x. Therefore even number of

XOR operations of x becomes unnecessary and odd

number of them can be substituted with x by using MOD.

These advantages result in complexity reduction.

149©2013 Engineering and Technology Publishing

International Journal of Electrical Energy, Vol. 1, No. 3, September 2013

Next we show the attack algorithm exploiting MOD as

follows.

A. Attack Algorithm

0) Make MOD of the total 72-bit data, C0
(11)

, C1
(11)

, and

C20
(11)

 (= C30
(10)

) (name as MOD1) and MOD of the

total 40-bit data, C2
(11)

 and C’30
(11)

 (name as MOD2)

from the 2
96

 blocks of cipher text C
(11)

(XX)

where X  V
(96)

. The number of elements of

MOD1 is at most 2
72

 and the average is 2
71

. The

number of elements of MOD2 is at most 2
40

 and the

average is 2
39

.

1) Guess 8-bit RK20,0, and make MOD of the total 64-

bit data, C01
(11)

, C02
(11)

, C03
(11)

, U0
(11)

, and C30
(10)

(MOD3) from MOD1 through the equivalent circuit

shown in Fig. 4 with at most 2
72

 times and the

average 2
71

 times of S0 operation and the following

multiplications, which corresponds to (19). The

number of elements of MOD3 is at most 2
64

 and the

average is 2
63

.

2) Guess 8-bit RK20,1, and make MOD of the total 56-

bit data, C02
(11)

, C03
(11)

, U1
(11)

, and C30
(10)

 (MOD4)

from MOD3 through the equivalent circuit shown in

Fig. 4 with at most 2
64

 times and the average 2
63

times of S1 operation and the following

multiplications, which corresponds to (18). The

number of elements of MOD4 is at most 2
56

 and the

average is 2
55

.

3) Guess 8-bit RK20,2, and make MOD of the total 48-

bit data, C03
(11)

, U2
(11)

, and C30
(10)

 (MOD5) from

MOD4 through the equivalent circuit shown in Fig.

4 with at most 2
56

 times and the average 2
55

 times of

S0 operation and the following multiplications,

which corresponds to (17). The number of elements

of MOD5 is at most 2
48

 and the average is 2
47

.

4) Guess 8-bit RK20,3, and make MOD of the total 40-

bit data, C2
(10)

 and C30
(10)

 (MOD6) from MOD5

through the equivalent circuit shown in Fig. 4 with

at most 2
48

 times and the average 2
47

 times of S1

operation and the following multiplications, which

corresponds to (16). The number of elements of

MOD6 is at most 2
40

 and the average is 2
39

.

5) Guess 8-bit RK19,0, and make MOD of the total 32-

bit data, C21
(10)

, C22
(10)

, C23
(10)

, and W00
(10)

 (MOD7)

from MOD6 through the equivalent circuit shown in

Fig. 5 with at most 2
40

 times and the average 2
39

times of S1 operation corresponding to (15). The

number of elements of MOD7 is at most 2
32

 and the

average is 2
31

.

6) Guess 8-bit RK21,0, and make MOD of the total 32-

bit data, C21
(11)

, C22
(11)

, C23
(11)

, and W00
(11)

 (MOD8)

from MOD2 through the equivalent circuit shown in

Fig. 5 with at most 2
40

 times and the average 2
39

times of S1 operation and the following

multiplication, which corresponds to (10). The

number of elements of MOD8 is at most 2
32

 and the

average is 2
31

.

7) Guess 8-bit RK19,1, and make MOD of the total 24-

bit data, C22
(10)

, C23
(10)

, and W10
(10)

 (MOD9) from

MOD7 through the equivalent circuit shown in Fig.

5 with at most 2
32

 times and the average 2
31

 times of

S0 operation and the following multiplication, which

corresponds to (14). The number of elements of

MOD9 is at most 2
24

 and the average is 2
23

.

8) Guess 8-bit RK21,1, and make MOD of the total 24-

bit data, C22
(11)

, C23
(11)

, and W10
(11)

 (MOD10) from

MOD8 through the equivalent circuit shown in Fig.

5 with at most 2
32

 times and the average 2
31

 times of

S0 operation and the following multiplication, which

corresponds to (9). The number of elements of

MOD10 is at most 2
24

 and the average is 2
23

.

9) Guess 8-bit RK19,2, and make MOD of the total 16-

bit data, C23
(10)

 and W20
(10)

 (MOD11) from MOD9

through the equivalent circuit shown in Fig. 5 with

at most 2
24

 times and the average 2
23

 times of S1

operation and the following multiplication, which

corresponds to (13). The number of elements of

MOD11 is at most 2
16

 and the average is 2
15

.

10) Guess 8-bit RK21,2, and make MOD of the total 16-

bit data, C23
(11)

 and W20
(11)

 (MOD12) from MOD10

through the equivalent circuit shown in Fig. 5 with

at most 2
24

 times and the average 2
23

 times of S1

operation and the following multiplication, which

corresponds to (8). The number of elements of

MOD12 is at most 2
16

 and the average is 2
15

.

11) Guess 8-bit RK19,3, and make MOD of the total 8-bit

data C00
(9)

 (MOD13) from MOD11 through the

equivalent circuit shown in Fig. 5 with at most 2
16

times and the average 2
15

 times of S0 operation and

the following multiplication, which corresponds to

(12). The number of elements of MOD13 is at most

2
8
 and the average is 2

7
.

12) Guess 8-bit RK21,3, and compute the right-hand side

of (6) via (7) from MOD12 through the equivalent

circuit shown in Fig. 5 with at most 2
16

 times and

the average 2
15

 times of S0 operation and the

following multiplication.

13) Guess 8-bit RK16,0, and compute the left-hand side

of (6) from MOD13 with at most 2
8
 times and the

average 2
7
 times of S0 operation. The guessed keys

at the steps 1-13 are the candidate of correct key if

(6) holds, otherwise they are false keys.

Attacker guesses all the 2
104

 kinds of the round key at

the steps 1-13. Attacker executes step 0 one time. Steps

1-13 are executed by using a nested structure of loop

iterations.

Step 1 is an outermost loop, and step 13 is an innermost

loop.

First, attacker confirms the authenticity of the total 2
104

sets of the guessed key by computing (6). And then, the

number of candidate keys is reduced to 2
96

 (= 2
104

  2
-8

).

Second, attacker confirms the authenticity of 2
96

 sets of

the guessed keys by computing (6) again where the plain

text X is different from the one at the first time. And then,

the number of candidate keys is reduced to 2
88

. Attacker

repeats this confirmation 14 times, and then the average

number of candidate keys is reduced to 2
-8

 (= 2
104

  (2
-

8
)

14
) where the last key shall be a correct key. Because

attacker has to compute the 96ht-order differential to

prepare one set of (6), the number of chosen plain texts to

prepare 14 different sets of (6) is given by D as follows:

150©2013 Engineering and Technology Publishing

International Journal of Electrical Energy, Vol. 1, No. 3, September 2013

96 99.814 2 2D    (23)

The maximum number (Tmax) of data processing of 11-

round CLEFIA, which include 88 sets of Si (i = 0, 1), for

the attack algorithm are given by

13
8 106.6

1

0

2 /88 2i

max

i

T T




  (24)

8 72 8 64 8 56

1 2 2 3 3 42 (2), 2 (2), 2 (2)T T T T T T      (25)

8 48 8 40 8 40

4 5 5 6 6 72 (2), 2 (2), 2 (2)T T T T T T      (26)

8 32 8 32

7 8 8 92 (2), 2 (2)T T T T    (27)

8 24 8 24

9 10 10 112 (2), 2 (2)T T T T    (28)

.22),2(2),2(2 88

1313

168

1212

168

11  TTTTT (29)

Ti (i = 1, 2, , 13) is the number of Si (i = 0, 1)

operations for the nested loops from step i to step 13.

V. CONCLUSIOINS

We have studied the 96th-order differential attack on

11 rounds of CLEFIA. We reduced the number of times

of data processing for the attack by applying a partial sum

technique proposed by Ferguson et al. With the technique,

we sequentially derived MOD of intermediate data of the

data processing part. Moreover we reduced the number of

the times by applying a nested structure of iterative

computation to the attack algorithm and optimizing the

order of the nest. As a result we showed that the 96th-

order differential attack can be performed with 2
99.8

blocks of plain text and 2
106.6

 times of data processing,

which is 1/2
52.4

 of computational complexity compared to

the conventional attack. The future work is to apply our

attack algorithm to [4].

REFERENCES

[1] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “The

128-bit blockcipher CLEFIA (Extended abstract),” in Lecture

Notes in Computer Science, Springer-Verlag, vol. 4593, pp. 181-

195, 2007.

[2] CLEFIA The 128-bit Blockcipher. [Online]. Available:

http://www.sony.net/Products/cryptography/clefia/

[3] CRYPTREC topics. [Oline]. Available:

http://www.cryptrec.go.jp/english/topics/cryptrec_20101001_call

forattack.html

[4] N. Shibayama and T. Kaneko, “A peculiar higher order

differential of CLEFIA,” in Proc. International Symposium on

Information Theory and its Applications, 2012, pp. 526-530.

[5] Y. Tsunoo, E. Tsujihara, H. Kubo, M. Shigeri, and T. Kawabata,

“Saturation characteristics of generalized Feistel structure,”

IEICE Trans. Fundamentals, vol. J93-A, no. 4, pp. 269-276. 2010.

[6] X. Lai, “Higher order derivatives and differential cryptanalysis,”
in Communications and Cryptography, Springer US, vol. 276, pp.

227-233, 1994.

[7] N. Shibayama, Y. Igarashi, T. Kaneko, and S. Hangai, “Security

evaluation of CLEFIA against saturation cryptanalysis,” in Proc.

Symposium on Cryptography and Information Security, no. 2B1-

4, 2011.

[8] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D.

Wagner, and D. Whiting, “Improved cryptanalysis of Rijndael,”

in Lecture Notes in Computer Science, Springer, vol. 1978, 2001,

pp. 136-141.

[9] N. Shibayama and T. Kaneko, “New higher order differential

property of CLEFIA,” in Proc Symposium on Cryptography and

Information Security, no. 2B4-2, 2013.

Yasutaka Igarashi received the B.E., M.E., and Ph.D.

degrees in information and computer sciences from

Saitama University, Japan, in 2000, 2002, and 2005. He

is currently an assistant professor of Kagoshima

University. His research is involved with optical CDMA

and the cryptanalysis of symmetric-key cryptography.

Dr. Igarashi is a member of IEICE and RISP.

Toshinobu Kaneko received the B.E., M.E., and Ph.D.

degrees in Electrical Engineering from the University of

Tokyo, in 1971, 1973, and 1976, respectively. He is

currently a Professor of Tokyo University of Science. He

has been engaged in coding theory and information

security. Prof. Kaneko is a member of CRYPTREC and

served as a chairman of Symmetric-Key Cryptography

subcommittee in 2001--2003. Prof. Kaneko is a member of IEICE, IEEJ,

IPSJ, and IEEE.

Seiji Fukushima received the B.S., M.S., and Ph.D.

degrees in electrical engineering from Kyushu

University in 1984, 1986, and 1993, respectively. He is

currently a Professor at Kagoshima University. His

research interests include photonics/radio hybrid

communication systems and their related devices. Prof.

Fukushima is a member of IEICE, IEEE/Photonic Society, Japan

Society of Applied Physics, Japanese Liquid Crystal Society, and

Optical Society of America.

Tomohiro Hachino received the B.S., M.S., and Dr.

Eng. degrees in electrical engineering from Kyushu

Institute of Technology in 1991, 1993, and 1996,

respectively. He is currently an Associate Professor at

Kagoshima University. His research interests include

nonlinear control and identification, signal processing,

and evolutionary computation. Dr. Hachino is a member

of IEEJ, SICE, and ISCIE.

151©2013 Engineering and Technology Publishing

International Journal of Electrical Energy, Vol. 1, No. 3, September 2013

