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Abstract—CLEFIA is a 128-bit block cipher proposed by 

Shirai of SONY et al. in 2007. Its key size is 128, 192, or 256 

bits. The number of the round of data processing part 

depends on a key size, viz. it is 18, 22, or 26 rounds for 128, 

192, or 256 bits of a key size, respectively. Such a 

characteristic of CLEFIA have been known that the 96th-

order differential of 64 bits out of 128 bits of the 8th-round's 

output is zero. With this characteristic, we reported the 

96th-order differential attack on 11 rounds of CLEFIA that 

requires 298.3 blocks of plain text and 2159 times of data 

encryption. In this paper, we reduce this number of the 

times of the encryption, (viz. computational complexity) by 

applying a partial sum technique proposed by Ferguson et 

al. With the technique, we sequentially derive a modulo 2 

occurrence distribution of intermediate data of 

cryptanalysis. We also reduce the complexity by introducing 

a nested structure of iterative computations to the attack 

algorithm. As a result we reduce the complexity to 2106.6, 

which is 1/252.4 of the conventional complexity. 

 

Index Terms—cryptanalysis, higher-order differential 

attack, block cipher, CLEFIA 

 

I. INTRODUCTION 

CLEFIA is a 128-bit block cipher proposed by Shirai 

of SONY et al. in 2007 [1], [2]. A data processing part of 

CLEFIA consists of some rounds of 4-branch type-2 

generalized Feistel structure, where two similar nonlinear 

functions are placed in parallel. CLEFIA supports 128, 

192, and 256 bits of secret keys. The number of round of 

data processing part depends on a key size, viz. it is 18, 

22, or 26 rounds for 128, 192, or 256 bits of secret key, 

respectively. CLEFIA has been applied and evaluated for 

cryptographic techniques towards the revision of the e-

Government Recommended Ciphers List in FY 2013 in 

Japan [3]. 

It has been known that the synchronous 8th-order 

differential of 24 bits out of 128 bits becomes zero at the 

6th-round output of the data processing part [4]. It has 

been also known that the 96th-order differential of 64 bits 

out of 128 bits becomes zero at the 8th-round output [5]. 

Exploiting this property we reported the 96th-order 
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differential attack [6] on 11 rounds of CLEFIA with 2
98.3

 

blocks of plain text and 2
159

 times of data processing [7]. 

In the article we reduce the number of times of data 

processing for the 96th-order differential attack by using 

a modulo 2 occurrence distribution (MOD) of the 

intermediate data of data processing part. MOD is derived 

by using a partial sum technique proposed by Ferguson et 

al. [8]. Moreover we reduce the number of the times by 

applying a nested structure of iterative computation to the 

attack algorithm and optimizing the order of the nest. 

As a result we show that the 96th-order differential 

attack can be performed with 2
99.8

 blocks of plain text and 

2
106.6

 times of data processing, which is 1/2
52.4

 of 

computational complexity compared to the conventional 

attack. Note that the best known higher-order differential 

attack on CLEFA is the 105th-order differential attack on 

14 rounds of CLEFIA with 2
108.5

 blocks of plain text and 

2
223.0

 times of data processing so far [9].
 

II. DATA PROCESSING PART OF CLEFIA 

In this section we describe the data processing part of 

CLEFIA. We omit the detail specification of CLEFIA [2] 

being not required for the article. 

Fig. 1 shows an 11-round data processing part of 

CLEFIA where input plain text and output cipher text are 

128 bits represented by Xi and Ci(11) (i = 0, 1, 2, 3), 

respectively. A bit size of Xi and Ci(11) is 32. Ci(j) (j = 1, 2, 

, 11) represents 32-bit output of the jth round given by 
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where C
(j)

ik (k= 0, 1, 2, 3) is an 8-bit data. The superscript 

T represents transposition of a vector or a matrix. The 

symbol  represents an XOR operation. WKi (i = 0, 1) is 

a 32-bit whitening key, and RK (i = 0, 1, 2, , 21) is a 

32-bit round key used in Fi (i = 0, 1). Fi is a bijective 

nonlinear function with 32-bit input/output (I/O) adopting 

SP structure. 4-branch 32-bit data Xi is mixed by XOR 

and substituted by a nonlinear function. Such a structure 

is called 4-branch generalized Feistel. 
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Figure 1. 11-round data processing part of CLEFIA. 

 

Figure 2. (a) F0 and (b) F1. 

Fig. 2 shows (a) F0 and (b) F1 where its input and 

output data are represented by an 8-bit xi and an 8-bit yi (i 

= 0, 1, 2, 3), respectively. RK,i (i = 0, 1, 2, 3) is an 8-bit 

key satisfying the following equation: RK = (RK,0, RK,1, 

RK,2, RK,3)T
. S0 and S1 are bijective nonlinear functions 

with 8-bit I/O. Their output is represented by x'i. M0 and 

M1 are 44 nonsingular matrices given by 
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where “a” is a hexadecimal number. The multiplications 

of a vector and a matrix are performed in GF(2
8
) defined 

by the primitive polynomial z
8
 + z

4
 + z

3
 + z

2
 + 1. 

III. THE 96TH-ORDER DIFFERENTIAL CHARACTERISTICS 

OF CLEFIA AND ITS ATTACK EQUATION 

In this section we show the 96th-order differential 

characteristics of CLEFIA and its attack equation. 

First we focus on an input plain text (see Fig. 1). We 

set X0 or X2 to take arbitrary constant, and input the 96th-

order differential to the three remaining Xi. Namely, all 

the 2
96

 kinds of data from 0 to 2
96

 -1 are put into the three 

Xi. At this time the 96th-order differentials of C10
(9)

 and 

S0(C00
(9) RK16,0) becomes the same value [7] (see Fig. 3 

that shows the equivalently modified data processing part 

from the 9th round to the 11th round). M0
-1

 is the inverse 

matrix of M0 that is given by M0
-1

 = M0. There is the 

product of the matrices M0
-1

 and M1 at the right side of 

the 11th round that is given by 
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By using the 96th-order differential characteristics the 

following attack equations can be derived: 

(96) (96)

(9) (9)

0 00 16,0 10( )
X V X V

S C RK C
 

   

                 (6) 

(9) (10) (11) (11)

10 00 20 0 23 21,328 ( )C C W S C RK             (7) 

(11) (11) (11)

20 10 1 22 21,222 ( )W W S C RK                (8) 

(11) (11) (11)

10 00 0 21 21,12 ( )W W eS C RK                (9) 

(11) (11) (11)

00 30 1 20 21,025 ( )W C' S C RK                (10) 

(11) (11) (11) (11) (11)

30 30 31 32 332 4 6C' C C C C             (11) 

(9) (10) (10)

00 20 0 23 19,3( )C W a S C RK               (12) 

(10) (10) (10)

20 10 1 22 19,22 ( )W W S C RK              (13) 

(10) (10) (10)

10 00 0 21 19,18 ( )W W S C RK              (14) 

(10) (10) (10) (10) (11)

00 30 1 20 19,0 30 20( ),W C S C RK C C       (15) 
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(10) (11) (11)

2 2 1 03 20,3(6,4,2,1) ( )T
C U S C RK         (16) 

(11) (11) (11)

2 1 0 02 20,2(4,6,1,2) ( )T
U U S C RK        (17) 

 

Figure 3. Equivalently-modified data processing part from the 9th 

round to the 11th round. 
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C
(j)

(XX) is the jth-round 128-bit output 

corresponding to the input plain text (XX) where X is 

an input difference. Ui
(j)

 and Wi
(j)

 are 32-bit intermediate 

data of the equivalent circuit shown in Fig. 4 and Fig. 5 

where the hexadecimal number in a box represents 

multiplication. Because (6) is 8 sets of Boolean equation, 

it holds with probability 2
-8

 even if a guessed key is false. 

On the other hand it holds with probability 1 if the 

guessed key is correct. Therefore attacker can recover the 

total 104 bits of the round keys, RK16,0, RK19, RK20, and 

RK21 in (6)-(22) by analyzing (6)-(22) for sufficient 

number of times. 

IV. ATTACK ALGORITHM AND COST ESTIMATION 

In this section we show the attack algorithm to recover 

the total 104 bits of round keys, and estimate the cost of 

the attack. We reduce the computational complexity of 

the attack by exploiting MOD for intermediate data of 

(6)-(22), which is sequentially derived by using a partial 

sum technique proposed by Ferguson et al. [8]. The 

advantages of using MOD are as follows. Even number 

of XOR operations of a certain variable x is zero, while 

 

Figure 4. Equivalent circuit whose inputs are C0
(j), C1

(j), and RK2j-2. The 

output is C2
(j-1). 

 

Figure 5. Equivalent circuit whose inputs are C2
(j), C3

(j), and RK2j-1. The 

output is C0
(j-1). 

Odd number of them is x. Therefore even number of 

XOR operations of x becomes unnecessary and odd 

number of them can be substituted with x by using MOD. 

These advantages result in complexity reduction. 
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Next we show the attack algorithm exploiting MOD as 

follows. 

A. Attack Algorithm 

0)   Make MOD of the total 72-bit data, C0
(11)

, C1
(11)

, and 

C20
(11)

 (= C30
(10)

) (name as MOD1) and MOD of the 

total 40-bit data, C2
(11)

 and C’30
(11)

 (name as MOD2) 

from the 2
96

 blocks of cipher text C
(11)

(XX) 

where X  V
(96)

. The number of elements of 

MOD1 is at most 2
72

 and the average is 2
71

. The 

number of elements of MOD2 is at most 2
40

 and the 

average is 2
39

.  

1)   Guess 8-bit RK20,0, and make MOD of the total 64-

bit data, C01
(11)

, C02
(11)

, C03
(11)

, U0
(11)

, and C30
(10)

 

(MOD3) from MOD1 through the equivalent circuit 

shown in Fig. 4 with at most 2
72

 times and the 

average 2
71

 times of S0 operation and the following 

multiplications, which corresponds to (19). The 

number of elements of MOD3 is at most 2
64

 and the 

average is 2
63

. 

2)   Guess 8-bit RK20,1, and make MOD of the total 56-

bit data, C02
(11)

, C03
(11)

, U1
(11)

, and C30
(10)

 (MOD4) 

from MOD3 through the equivalent circuit shown in 

Fig. 4 with at most 2
64

 times and the average 2
63

 

times of S1 operation and the following 

multiplications, which corresponds to (18). The 

number of elements of MOD4 is at most 2
56

 and the 

average is 2
55

. 

3)   Guess 8-bit RK20,2, and make MOD of the total 48-

bit data, C03
(11)

, U2
(11)

, and C30
(10)

 (MOD5) from 

MOD4 through the equivalent circuit shown in Fig. 

4 with at most 2
56

 times and the average 2
55

 times of 

S0 operation and the following multiplications, 

which corresponds to (17). The number of elements 

of MOD5 is at most 2
48

 and the average is 2
47

. 

4)   Guess 8-bit RK20,3, and make MOD of the total 40-

bit data, C2
(10)

 and C30
(10)

 (MOD6) from MOD5 

through the equivalent circuit shown in Fig. 4 with 

at most 2
48

 times and the average 2
47

 times of S1 

operation and the following multiplications, which 

corresponds to (16). The number of elements of 

MOD6 is at most 2
40

 and the average is 2
39

. 

5)   Guess 8-bit RK19,0, and make MOD of the total 32-

bit data, C21
(10)

, C22
(10)

, C23
(10)

, and W00
(10)

 (MOD7) 

from MOD6 through the equivalent circuit shown in 

Fig. 5 with at most 2
40

 times and the average 2
39

 

times of S1 operation corresponding to (15). The 

number of elements of MOD7 is at most 2
32

 and the 

average is 2
31

. 

6)   Guess 8-bit RK21,0, and make MOD of the total 32-

bit data, C21
(11)

, C22
(11)

, C23
(11)

, and W00
(11)

 (MOD8) 

from MOD2 through the equivalent circuit shown in 

Fig. 5 with at most 2
40

 times and the average 2
39

 

times of S1 operation and the following 

multiplication, which corresponds to (10). The 

number of elements of MOD8 is at most 2
32

 and the 

average is 2
31

. 

7)   Guess 8-bit RK19,1, and make MOD of the total 24-

bit data, C22
(10)

, C23
(10)

, and W10
(10)

 (MOD9) from 

MOD7 through the equivalent circuit shown in Fig. 

5 with at most 2
32

 times and the average 2
31

 times of 

S0 operation and the following multiplication, which 

corresponds to (14). The number of elements of 

MOD9 is at most 2
24

 and the average is 2
23

. 

8)   Guess 8-bit RK21,1, and make MOD of the total 24-

bit data, C22
(11)

, C23
(11)

, and W10
(11)

 (MOD10) from 

MOD8 through the equivalent circuit shown in Fig. 

5 with at most 2
32

 times and the average 2
31

 times of 

S0 operation and the following multiplication, which 

corresponds to (9). The number of elements of 

MOD10 is at most 2
24

 and the average is 2
23

. 

9)   Guess 8-bit RK19,2, and make MOD of the total 16-

bit data, C23
(10)

 and W20
(10)

 (MOD11) from MOD9 

through the equivalent circuit shown in Fig. 5 with 

at most 2
24

 times and the average 2
23

 times of S1 

operation and the following multiplication, which 

corresponds to (13). The number of elements of 

MOD11 is at most 2
16

 and the average is 2
15

. 

10)   Guess 8-bit RK21,2, and make MOD of the total 16-

bit data, C23
(11)

 and W20
(11)

 (MOD12) from MOD10 

through the equivalent circuit shown in Fig. 5 with 

at most 2
24

 times and the average 2
23

 times of S1 

operation and the following multiplication, which 

corresponds to (8). The number of elements of 

MOD12 is at most 2
16

 and the average is 2
15

. 

11)   Guess 8-bit RK19,3, and make MOD of the total 8-bit 

data C00
(9)

 (MOD13) from MOD11 through the 

equivalent circuit shown in Fig. 5 with at most 2
16

 

times and the average 2
15

 times of S0 operation and 

the following multiplication, which corresponds to 

(12). The number of elements of MOD13 is at most 

2
8
 and the average is 2

7
. 

12)   Guess 8-bit RK21,3, and compute the right-hand side 

of (6) via (7) from MOD12 through the equivalent 

circuit shown in Fig. 5 with at most 2
16

 times and 

the average 2
15

 times of S0 operation and the 

following multiplication.  

13)   Guess 8-bit RK16,0, and compute the left-hand side 

of (6) from MOD13 with at most 2
8
 times and the 

average 2
7
 times of S0 operation. The guessed keys 

at the steps 1-13 are the candidate of correct key if 

(6) holds, otherwise they are false keys. 

Attacker guesses all the 2
104

 kinds of the round key at 

the steps 1-13. Attacker executes step 0 one time. Steps 

1-13 are executed by using a nested structure of loop 

iterations. 

Step 1 is an outermost loop, and step 13 is an innermost 

loop. 

First, attacker confirms the authenticity of the total 2
104

 

sets of the guessed key by computing (6). And then, the 

number of candidate keys is reduced to 2
96

 (= 2
104

  2
-8

). 

Second, attacker confirms the authenticity of 2
96

 sets of 

the guessed keys by computing (6) again where the plain 

text X is different from the one at the first time. And then, 

the number of candidate keys is reduced to 2
88

. Attacker 

repeats this confirmation 14 times, and then the average 

number of candidate keys is reduced to 2
-8

 (= 2
104

  (2
-

8
)

14
) where the last key shall be a correct key. Because 

attacker has to compute the 96ht-order differential to 

prepare one set of (6), the number of chosen plain texts to 

prepare 14 different sets of (6) is given by D as follows: 
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96 99.814 2 2D                         (23) 

The maximum number (Tmax) of data processing of 11-

round CLEFIA, which include 88 sets of Si (i = 0, 1), for 

the attack algorithm are given by 

13
8 106.6

1

0

2 /88 2i

max

i

T T




                     (24) 

8 72 8 64 8 56

1 2 2 3 3 42 (2 ), 2 (2 ), 2 (2 )T T T T T T       (25) 

8 48 8 40 8 40

4 5 5 6 6 72 (2 ), 2 (2 ), 2 (2 )T T T T T T        (26) 

8 32 8 32

7 8 8 92 (2 ), 2 (2 )T T T T               (27) 

8 24 8 24

9 10 10 112 (2 ), 2 (2 )T T T T             (28) 

.22),2(2),2(2 88

1313

168

1212

168

11  TTTTT   (29) 

Ti (i = 1, 2, , 13) is the number of Si (i = 0, 1) 

operations for the nested loops from step i to step 13. 

V. CONCLUSIOINS 

We have studied the 96th-order differential attack on 

11 rounds of CLEFIA. We reduced the number of times 

of data processing for the attack by applying a partial sum 

technique proposed by Ferguson et al. With the technique, 

we sequentially derived MOD of intermediate data of the 

data processing part. Moreover we reduced the number of 

the times by applying a nested structure of iterative 

computation to the attack algorithm and optimizing the 

order of the nest. As a result we showed that the 96th-

order differential attack can be performed with 2
99.8

 

blocks of plain text and 2
106.6

 times of data processing, 

which is 1/2
52.4

 of computational complexity compared to 

the conventional attack. The future work is to apply our 

attack algorithm to [4]. 
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