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A INTRODUCTION

Just over a decade ago, Weinblum and St. Denis' presented a compre-
hensive review of the state of knowledge at the end of what we may call
the "classical"™ period in research on seakeeping. Soon after, St. Denis
and Pierson® opened the "modern" period (some would prefer to call it
‘the "statistical™ period). The studies of the former period were pri-
marily concerned with sinusoidal responses to sinusoidal waves, but the
introduction of spectral techniques opened the door for the discuskion of
responses to random waves; both long and short crested. The construction
of the spectral theory on regular wave theory as a foundation delighted
us all, as it presented an apparent justification for the admittedly
artificial studies of the Yclassical'pperiod.

The activity during this last decade has been spectacular, with five
major and many minor facilities for seakeeping research being opened.
Hundreds of models have been tested, many full scale trials have been run,
and there has even been some real growth in our knowledge of the subject.
In particular, the spectral tool has been sharpened and tempered by the
&mphricists, and the analysts have made important advances with the rather
frightful boundary value problem. In fact, we have all been forging ahead
so rapidly, that we appear to have forgotten that we are wearing a shoe
which doesn't quite fit. The occasional pain from a misplaced toe is

ignored in our general enthusiasm for progress.

The "shoe" to which I refer is our mathemptical model, the. forced
representation of the ship response by a system of seCth order differential
equations. The shoe is squeezed on, with no regard for the shape of the
foot. The inadequacy of the shoe is evident in the distortions it must
take if it is to be worn at all. T am referring, of course, to the fre-
quency dependent coefficients which permit the mathematical model to fit
the physical model, (if the excitation is purely sinusoidal, that is).

l1References are listed on page37




But what happens when we don't:have a well defined frequency? The
mathematical model becomes almost meaningless. True, .a Fourier analysis
of the exciting force (or encountered wave) permits the model to be

retained, but physical reality is almost lost. in the infinity of equations_

required to represent the motion. The all important intuition of the engineer /s

heavily encumbered with this grotesque baggage - .
Let us‘consider this mathematical model briefly, and restrict ourselves

to a single degree of freedom. 'To be completely fair, 1et us consider a

pure, sinusoidal osci%lation The forcing function (if the sy;tem is 1inear)

.wi11 be sinusoidal, and can be brbken into two components, one in phase with

the displacement and one 90° out of phase. We further divide the in-phase

component into a restoring force, proportional to the displacement, and a

remainder. The latter, we call the inertial force, and treat it.as if it

were proportional to the instantaneous acceleration. ' The out of phase

component , which provides all the damping, we treat as if it were proportional

to the instantaneous velocity.

We can now write an equation, which has the appearance of a differential

equation, relating these various quantities.
a(% + b(wx + c(w)x = F_ sin w(t+e)

But a differential equation is supposed to relate the instantaneous values
of the function® iavolvéd. If the periodic motion continues, this condition
is satlsfied 'pf, course, it could just as well be satisfied by the. equation

bk + (c-awf)x = £(t)

or, more genera.llyr d% + dutx = o

(a+d)% + bk + (c¥deP)x = f(t).

where d is arbitrary. These are all. equally valid models. One of them
is to be preferred only if it truly relates the displacement and its first
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and second derivatives to the excitation. But suppose £(t) were to suddenly

be doubled. Would the instantaneous acceleration be given by

. 2£@)-b@kc@x
o a(w) ’

' In general, no' .Or suppose the amplitude of the oscillationhto be suddenly
increased Would the out of phase component of f(t), immediately after :
the change, be equal to bx. Again, in general, no- Thus, at best, b(w)
must , be considered as a sort of "apparent" damping coefficient, a(w) is
an apparent apparent mass, and the physical significance of both is
obscure. When the oscillation consists of several coupled modes, the
so*called coupling coefficients are equally confused and confusing.

If one restricts himself to a'phenomenological investigation of how
a given ship behaves in a given wave system, these difficulties do not
concern us. We simply measure responses to known waves. Most of the work
‘ over the past decade has been of this nature, ‘and much of it has been
excellent ; However, sooner or later, we are required to consider not what,
but "why,' and a more analytical technique is demanded. The ‘phenéimenological
study can tell us the effect of a change in ship loading on seakeeping
qualities onlv after: we have measured it; there is no basis for quantitative
prediction given the results for one gyradius And the effect of a- change
in form is presented as an isolated result, unrelated and unrelatable to the
geometric parameters involved. We are driven to the use of the médel discussed
above, - in an attempt to clarify the relation of cause and effect. However,
" such a poor mirror of reality is of little value, and in fact can do much .
harim. '
I\am not the:first>to raise this issue. The difficulties are well
known, and a number of writers have discussed them. In particular, Tick?
has vigorously argued against our usual practice, and has proposed a model
which is very close to the one which will be exhibited here His case is
based solely upon the general characteristics of linear systems, while ve '
shall take advantage of the principles of hydrodynamics to tie the model
to the phenomena. More fecently, Davis? has proposed a rational approach

from the point of view of statistics. This is suggestive, particularly
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since it was the spectral theory of statistics which at first. gave weight

to the investigation of responses to periodic waves.
Briefly, the specific objectives of this paper are:
: £~

- 1. ¥6 exhibit a model which permits the representation of the
response of a ship (in six degrees of freedom) to an
arbitrary forcing function (with excitation in all six modes).

The model will not involve frequency dependent.parameters.

2. to separate the warious factors goverﬁing the response into
clearly identifimble units, the effect of each to be separately
determinable. Thus the effect of gyradius will be separable
from added mass. ' The added mass will be rélated only to
inertial forces and moments. ' The nature of the damping force
will be exhibited. The effect of coupling will be dfrivable,
and the effect of "tuning" upon coupling will,ﬁ% determinable.

"In this paper we shall not consider the complementary problem of the
relation of the exciting force to the incident wave sgstem " This probfem
is equally basic, and when it-has been adequetely treated, we will begin
to have a satisfactory framework for the interpretation of our empirical

studies. {




. /2, THE IMPULSE RESPONSE FUNCTION
The basxc tool. whlch w111 be used in thls study is an elementary one,
widely used in other flelds, and well known to ‘all englneers ‘the lmpulse

response function. It is d1ff1cult to understand its neglect in our field.

Perhaps as Tle suggests, it is because waves look sinusoidal.’

7

For any stable linear system, if R(t), the response to a un1t impulse,

is known, then the response of the system to an arbitrary force f(t) is

= >, c

: x(t) = St’ R(t T)f(T)d"r I \.\G“-:“,
or ' ’ | v | ‘ o R

o

© ) -, A
o b Ny oo v
o . ) ! e PR — e

| :{(,_t)' = 50 R(T)£(t-T)dT

The only assumptlon requlred (as1de from convergence) 1is linearity. 1In the -
present context this ls, of course, a very strong assumptlon, and the puriests

will argue that it implies a thin ship of the equivalent, However all

wexperlmental data indicate that the assumptlon is a good worklng approx1mat10n

for small to moderate osc111at10ns of real ships forms. We shall hypothe51ze

that . the assumption holds absolutely.

Let X (i =1,-:+, 6) be displacements in the six modes of-reSponsei-f
LXK = surée (positive forward)
¥ = sway (positive to pbrt) | I . , .
Xa = heave (pOSltlve upward)
X4 32 Vroll (pos1t1ve, deck to starboard)
© X = pitch (positive, bow downwatd) ‘
| Xg - yaw (positive, bow to port)

Let R (t) be the response in mode j to a unit impulse at t =0 in mode 1i.

Note that R (m) does not necessarily equal zero, though in a damped system -

which is not unstable, it will ordinarily be finite. 1In modes without a
w




restoring force (sway, surge, and yaw) the impulse response W111 asymptot-

1ca11y approach some value For other modes, R JQm) = 0.

If the {fi(t5}¢afe'a set of arbitrary forciﬁg functions, the corresponding

responses :are : _ C ) ,
&y (t) Zl 5 ('r)f (t-1) dr . (2]
Thus,.the.mattix;|R (t)| completely characterlses the response of the ship’

= Wﬁhﬁ-" e "&ﬁ—c" !

to an arbitrary exc1tatlon A"bv- Ao Aldforaints o e A A ﬁ anadl
' _ 5 £ é ’uoCAﬁaéwaahgaﬂﬂ, ,ﬁ27$4u6&~g e c7§¢, ‘

\

\ fat Gebiole- Stotang un Llhe %@uw?

'”2 - Before we go on, let us consider the relation of these functions to
Xthe usual coeffiolents._ First consider the case where the modes are
uncoupled. Let. = o

'fi(t) = Fi. oos(wt f\ei) - ] ’ : ‘[3]_

where e, is a ohgse angle whose value will be assigned latef;'

?i(t)»=.Fi S; .Rii(T) cos[&(ﬁ-f)#si]dTr

Fi[cos(wt+ei) 5: R4 cos wrdT

+ sin (wt+ei),S: Rii sin omd?}

= Fi [Rfi (@>-c°5.(®t+§i) + Ri; (@) sin (wtéei)] (4]
where | {
. ® ' | | | \ |
" Rj_ci ‘(w) = S’o Rii (1) »co's', wrdT ' . . [,5'3] | .
and . o
f Jo By sin (.l’;rd'r, s




are the Fourier cosine and sine transforms of Rii(t)' We shall call

these transforms the frequency response functions. We make the further

e —————————————

reduction
x.(t) = F, [(RC. cos €, + R.° sin ¢.) cos wt
i i ii i ii i

S - .
+ (R, cos e, - RS ¢bm ¢.) sin wt]
11l 1 11l 1

S
Taking ' . ‘e
. — e ———
Jlouf‘ = ﬁsl g.cz Yo
{4‘(.' +RC }
s ,.C
tan €, = Rii/Rii /?.F; [6]
C«nl‘; = ;?;1 c? V?..
we have {l—'c‘ ‘*%‘C }
x,(t) = F [(Rs)2 + RS )""‘]}2 cos wt [7]
i I TS & ii
Also

F.(R;; cos wt - Rii sin wt) _ L -
= F. cos WE cos E; [8]

(@)% + R2)?1% ¢

fi(t) =
_ FZ Sik ot s €.

Now consider the usual representation
a;¥; + bk, + ;X = fi(t) | [9]

Using the X, and fi from [7] and [8], it is easily seen that
c

C \z S \3
w[(Rii)" + R ]

1 [ . Bis } [10a]
a, = ~g c, — a
Poa L GO (RS}
RS
‘b, = e [10b]



A more useful relationship is obtained by setting €y O in [4]: = .

(t) -..3.. Cra s - . e e ~ .
— RE (w). cos wt + R (w) sin wt ' [11]
Fi ii _ o
g_Thus R{i and R11 are the amplitudes of the in-phase and out-of-phase
»% components of the response to a unit amplitude forcing function of frequency

''w. The impulse response function is related to these functions by

@.

L e o
So' Riy (@) cos ot dw.

fame .

Ri;i(T)
-% S; I.{isig(w) shin T, dw | . ’ A [12.].--

- e

_using the Fourier inversion formulas. Note that Rii and R;; are uniquelj

related. If one ia known, then bj [lZlvand [5]5 the other is determined.

- Equation [11]-can:also-Be written

O el s ol o

:ﬂFi = [(Rii) + (Rii) 1% cos [wt - si(uD]. - | [131.

where . , .
R, (w) .' | " _ o .
tane - 21— S [14] :

c ,
R (@) o
Thus, the response follovs the excitation by the phase tan (R R;;) and
' 2 31% o
_ has the amplitude [(Rii) + (R ) 12, 'ﬁdé/':: fﬂy
. The response‘for a given freQueney,'as determined by the pair of
2 cia1%
functions R i’ Rii’ or alternatively, the pair [(Rii) + (Rii) 1%,

. tan (Rii/Rii) is a mapping in the frequency domain of the unit response
function, which is defined in the time domain. As equations- [4] and [11] -
permit us to pass from either domain to the other, the two representation$
are completely equivalent. Viewed in this way, the;frequency response
function is a meaningful, useful s concept. It is only when we try to_

attribute a deeper meaning to it by imbedding it in a- false time domain

e ™

|
model that e create confusion . _ ' - L }
|




.2.5 Now consider the more general,coupled system, with excitations in a

single mode of the same form as given in Equation [3]. Then
c s
xj(t) = Fi[Rij cos (wt + ei) + Rij sin (wt + si)] [15]

1f we consider the usual representation,

6 .
jZ]_(ajkﬁj + bjkij + cjkxj> = fk(t)

where fk(t) - 0 for k & i, we can develop 2 system of equations in the
unknowns, ajk’ bjk' (The cjk are assumed known from static measurements.)

All 72 of these unknowns are present, in principle, except where modes are
uncoupled. To determine them, it is necessary to consider the responses to
excitations in each of the modes, separately. We then have enough equations,
if we separate the in-phase and out-of-phase éomponents, to determine the
coefficients. We have no .need for them here, so we defer further discussion
until we have an analogous problem. It is only significant to note that

they can, in principie, be determined from the set of impulse response
functions, and therefore they contain no information which is not derivable

from these functioﬁs.

Setting ¢, = 0 in [15], we have the system
x, (t)
3 _ o€ s :
A = Rij cos wt + Rij sin wt [16]

R Thus, R;; and RS are the amplitudes of the in-phase and out-of-phase

1}
responses in the jth mode to unit amplitude excitation in the ith mode.

As before,

Rij'(t) = %S; 1?.1‘:j cos wt du [17a)
= % S.o gisj sin wt dw | [17b]
and
x, (t)
s ley® (8 1* cos (ut-e ) [18)
9




- where

-
P wee

' § ¢ ' 1e
.tan ey = iJ/Rijv o lz;l19],;;; :

3.9{ : We have passed over the question of convergence of the integrals in
Equations [2] and [5). Consistent with our hypothesis of linearity, we
shall assume If (t)l is ‘bounded. There will then be no difficulty unless
lfRij(T)dTI does not exist. Unfortunately, in three modes there are no o ' J
restoring -forces (or. else they are negative), and evidently some ‘care is o
needed in treating these cases. A negative restoring force implies an
unstable’ system, which would be beyond the scope of ‘this analysis. However,,
the case in which Rij approaches some non-zero but finite limit can be ‘ -
treated. The divergence of the integrals can be: overcome, if we arbitrarily ‘

_ assign a value to x (0). We can formally write
, : S t S L Spe |
xj-‘t) = S:m Rij (té!r)fi(T) dr - S—'OIRij(l"T)fi(T)» ar + x, ).,
‘or
.xj(t):e SLJRij(T)fi(tfm? ar
. S; [Ry(E4m) = Ryy(MIE (1) d7 4 %, @) (201

The second integral.converges,.SO this expression provides a usable
definition of'xj(t). Now let fi(t) = cos wt. After an integration by
parts, we have - : . .

x (t) = lS‘o 11(1') sin w(t 'r) dr I o e H
+ S; [Rij,(tq‘-fr) - R.i'j (1')] cos wr dT +.x,, ()

Our only concern is with the oscillatory components of X, These are

_edsily determined by considering the asymptotic form of the above expression

as t becomes. large R (t+T) = R jﬁm), and the second integral becomes ; j

constant. If we set




lim - Jhﬂﬂ MZ’"‘ ,wf‘-" (70

xzj(O) == o Jo [Rij(t+'r) - Rij(T)] cos wt(td;r_/
| ver LR (T WL AT
then ,R‘J((J) = { ( .) Cos
L. . R ()= (' R ()sm wlaT
Zj(t) =% (-Rij cos wt + Rij sin wt) Y Yo ¢ [21]

where Rij and R 14 are the sine and cosine transforms of Rij (t). We know
that xj (t) is sinusoidal, with frequency w. Therefore, this expression

holds, not onlyffor large t, but for all t.

,é{ neaL *(ﬁ Mo
1f we define

(o] s ’
Ry = Rij/w [22a]
s ‘c -
Ry = Rij/w | [22b]
then [16] still holds. Note however, that Rij and Rij are no longer trans-
" forms of Rij’ because these do not exist. Nevertheless, an inversion is
s1ll possible. Consider
50
o [Rij(T) - Rijcm)] cos wT dT

-

=% [Rij('r)-Rij(w)] sin wT |: - %S; liij(T) sin wr dT

= = R W= R
13/ = Ry
That is, Ri<j: is the cosine transform of [Rij (t) # Rij (=)] and
[=-]
R,,(t) = R, (=) +251 RS cos wt dw
1% = Ry mJdo Ty
Letting t equal zero,
[=-]
zj‘ c
Rij(m) = =7 Jo Ryy dv [23]




§0

When

and

since

Ry (&) = %i‘” RS (cos wt - 1) do 2]
Rij(w). = 0, this reduces to [17al].
Similarly,
S: [Rij(‘r) - Rij(w)] sin wr dr
= 'Rij =) /w + %iwﬁij cos wT dT
- [RG - Ry, @)1/ |
R y(E) = R () + ;TZ—S: [Rfj - R—Jiwg ] sin wr do
= Ry [1 - %5:513—‘“ dw ] + % S:Rfj sin wr dw
- éy:nfj sin wt do

«®©
S‘ sin wt do = I
o w 2

Therefore, [17b] holds even when Rij (=) #0.

not Rijcw) = 0. Equation [23] gives R

1f RS, and R;; are known; it is not difficult to determine whether or

i
|
|
|
i)
ijow) in terms of R{} . :
|
|

12




Also

@
1lim Zg s
Rij(cn) = e o Jo Rij sin wt dw g
A®
lim 2 .5 sin wt
S to®mYo Rij w do
. C lim s »
= = . 2
Rij(O) - o wRij [25]

using a well known theorem in Fourier transform theory (Reference 5, page 12).

2.5- When the matrix of impulse response functions is known, our first
objective of finding a representation of the ship response which is free
of frequency dependence is achieved. These functions, which we shall
collectively call the impulse response matrix, can in principle be determined :
experimentally.. We shall discuss such an experiment, but we defer these

remarks until we have made some progress toward our second objective..

13




3. EQUATIONS OF MorION

4 The transient response of a ship has been considered by Haskind, 6 who
attempted an explicit solution of the: boundary value problem This, we
shall not try, as we are concerned only with finding an appropriate form
for the equations of motion to use as a basis for the interpretation of
experimental results. We do not agree with certain of Haskind' s'hypotheses;
and our resulting equations differ from his in several important respects.
Our approach is- quite different, ‘depending much more upon,physical argument

than:upon“mathematical,analysis,- o T - ‘ SR S

Golovato’ carried out an experimental investigation: of the declining‘.

~oscillation motion in'pitch  We shall see later that: this is equivalent .
to measuring the: response to an impulse. However, Golovato was not ‘aware
of’ the equivalence between the transient and steady staté responses which
we haVe-just,discussed;.so he attempted only to match the coefficients
derived from the transient experiment, at the frequency of the declining
oséillation, with those from a forced oscillation experiment at this

- frequency. He was handicapped because of the anomalous behavior of the
curvevof declining amplitudes. For -a simple harmonic oscillator, tbis
curve is-a straight line when plotted on semi-logarithmic’paper. His
curves departed radically from such a pattern. He recognized that this
implied that thevmathematical model was faulty, and attempted; with some .

success, to fit hiS'results.with forms based on Haskind's study.

More recently, Tasai® has performed declining oscillation experiments
in heave, using two dimensional forms. His results are not significantly
different from those of Golovato. He matched his results at the measured
freguency'with‘Ursell's theoretical results for forced oscillation. fhe

agreement is quite good.

force can be given in terms.of the dynamic response to an impulsive force,

the response of our hydrodynamic system can be stated in terms of the hydro-

Just as the response of a stable, linéar, dynamic system to an arbitrary

dynamic response to an impulsive displacement. Before we demonstrate this -

14




principle in the most general case, let us. verify it in the simplest case.

Let- the ship be floating at rest in still water. We use a system of
coprdinates (Cl, {z, Ga), fixed in space, with origin in the free surface
- above the center. of gravity of the ship(k‘, Mw})

_e= At time t =0, ue suppose the shi-p to be given dn impulsive displace-

" ment in the jth mode, through the displacement Ax 3 The time his‘tOry of
this impulse is not significant, but for purposes of visualizationm, it may
‘be considered to corsist of a movement at a large, uniform, velocity v.1 for‘
a small time At, with the motion- terminated abruptly at the end’ of -this

.'.ti.me interval Then :

v, At

j .

During the impulse, the flow will have a velocity potential which is |
'proportional ‘to the instantaneous impulsive velocity of the ship. It may,
therefore be written v wj, where ‘Vj 15 a normalized potential for impulsive. -
flow. "3 will satisfy the conditions: ?J % (&, ,4',_,{3) -

' 7 ’ V‘ﬂ—‘—\r é /
frn, Frervre 5,

&/W&M 4, =0 on (=0 | [26]

aliyer Vi Ae Bt

?...:-t/,?ﬂf. Mven ek, lj/aﬂ=sj on § | [27]
'

L - Y —
Ry

/]
[ 5
0
gl
=l
[
]
-
N
W

=T Xn 23-3 [28]

{ V)
"
>
-
g
o
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8 = surface of the ship

n = outwardly directed unit normal

Ij = unit vector in jth direction

T = position vector with respect to c.g. of ship

It is well known® that the above problem is equivalent to that obtained by

reflecting S in (3 = 0, and taking the surface condition over the reflection
to be the negative of that over S. The solution to the Neuman problem for
the flow outside this composfte surface is also the solution to the éiven
problem in the lower half-space. For non-pathological surfaces, the

solution exists, and in fact can be computed by means of modern, high-spéed

equipment .1

During the impulse, the free surface will be elevated by an amount

3 3 4y, < Honse)
S S 1%
MMy = - vy 35 At =-37 A 7i [29]

rM >
CELLEO (o ayw A chd
After the impulse, this elevation will ‘dissipate in a radiating disturbance

of the free surface, until ultimately the fluid is agaiﬁ at rest in the
neighborhood of the ship. Let the velocity potential of this decaying wave

motion be qh(t)Ax It must satisfy the initial conditions

.
ch(gl: Ca: Ca, to)=0 : [30]
and
3 Y
—1 _ P | -
ij 3t = gA'f'Ivj = “837, ij on {3 =0
or ;. -
g, (£1 5 G ,0,t0) 3, (G .G ,0) -
ki ;t = . -g—JaZa— [31]
16




Afterward, it satisfies the usual free surface condition,

FPo 3¢
_Elat +g .a_c.al =0 [32]

and the boundary condition on S,

\ _
i I ] [33]

We may take this to hold on the original position of S, introducing errors
of higher order in ij, only. This is a classical problem of the Cauchy-
Poisson type, and there exists an extensive literature on the subject. With
condition [33]), it is more difficult, by an order of magnitude, than the

Neumann problem. Nevertheless, it has a well defined éolution.

—  Now let the ship undergo an arbitrary small motion in the jth mode,
xj(t). To the first order, the velocity potential of the resulting flow
~will be simply

N\

t
® = }?‘j + S‘_m cpj (t'.--"l')}':j (t) 4t _ 'L34]

It is evident that the boundary condition on S is satisfied on the equilibrium
position of S, as the first term provides the proper normal velocity and
a¢j/an = 0 on this boundary. But also, the value qf d8/3n on the actual
position of S will only differ from its value on S8 by terms of second and
higher order in x-1 and its derivatives, so we may consider that [34] holds

on the actual position of the hull.

To verify that the free surface condition is satisfied, first note

fhat
@x dx dep, (0)
28 R 5 Rand
- b+ OF + e %

t
- P, (t-1)
+g_¢ —?g?—'ij('r) dar

By [26] and [30], on {3 = O this reduces to

17




2 bcp ()] t e, (t-7)
fo . ST e e
Also,
t
v Ao, (t-T)
. S' j .
3G - ¥ 3G tYe 3 xj('r) dr

Substituting these in the free surface condition

2g 39, ) >
W*gaca‘xj< *834;3

t 2
+S’-m<at +ga€a>x('r) dr =0 [35]

by [31] and [32]. Thus, this condition is also satisfied, and ® is the
required potential.

The formula [34] is a hydrodynamic analog of [1]. It is quite general,
and can for instance, be used to find the velocity potential due to ;
sinusoidal oscillation with arbiﬁrary frequency. It is, of course, necessary
to know the function qﬁ(t)’ and this presents unpleasant difficulties. In
th:l.s study we are content that r.pj (t) exists, and these difficulties do not

concern us.

— Of more importance than the velocity potential is the force acting on
the body. The dynamic pressure, in our linearized model, is simply

P=2p 3t

or

t
' (t T)
AR XQLY +S_a _qu_ %, (1) dr

ok

S‘.t aqu (t-1)
ijj tdoo T2 xj(T) dr [36]

The net hydrodynamic force (or moment)acting on the hull in the kB mode

18




is then given by

_ij = S; P Sk do

t
dep, (t-T)
':ij P SS d;j 8, do + pS; 5 4o S‘.m—‘a‘t——_‘*j(") dr

t dep, (E-T) _
'ij mjk + P S_O %, (1) d'r‘g —(ﬁa— sk'dc

]

t
t
= %y my + S_o Ry (£-T) &y(1) dr [37]
vhere
myy = P SS M do ‘ [38]
PIRERI VYRS |
Kjké\) = PS; Qi;'z(;) 8 40 [39]

We can now write the equations of motion of the ship which is subjected
to an arbitrary set of exciting forces, {fk(t)}. These will be

6
. St
j; [(mjéjk"'mjk)xj + cjkxj + Jowe Kjk(t-f)*j (1) d'r] = fk(t‘) [40]
i e e e T 3nHEUeEN !
where
) my = inertia of the ship in the jth mode
cjkxj = hydrostatic force in the kth mode, due to displace-
ment x, in the jth mode.
éjk = Kroneker delta (éjk =14if J =k, =0 if §J # k)
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3.3

CASE II - SHIP UNDERWAY

The case of the ship experiencing small oscillations about a.reference
position of mean uniform velocity is much more complex _A pair of functions,
*3 and qﬁ’ no longer suffices, although the pattern of our analysis will be
similar to that followed in Case I. ‘

~ We use a fixed reference system, with (s 0'on the free surface and
with the c. g. of the: ship at 1 =0 at time t

0. We suppose the ship to

-be moving with a uniform velocity v in the C1 direction

Consider the Cauchy -'Poisson problem defined by [30], [31], [32],‘and _

[33], except that now [33] is to hold on the moving surface S. This problem

has a solution ¢ (€1 582 5Ca ot ,V) which is, of course, identical with the qﬁ

of .Case I when V 0. Using this qﬁ and the vj ‘obtained in Case I, we may
: write the velocity potential for steady motion,

¢ ,
_h-(cl-Vt,ca,Ca). *+ Jow @ (T,E57) dT:' | [41]

where -

(T taT) = (CI'VT,GQ ga t- T)

That this satisfies the boundary condition on S is evident, -as Vy, provides
the necessary instantaneous normal velocities, and 3 /on =0 on S for all

TI. The free surface condition is also satisfied ‘a8 may be verified by

"direct evaluation, as in Case I.

© The velocity potential for the flow generated by the ship moving with

u‘constant velocity, after an impulsive start at time zero, is

-

[vl (G-VE,G o) + S @ (7,t=7) dT] [42]

The free surface and ship surface conditions are satisfied as before . The

surface elevation at t = 0 is




1 a8 '
[ r g_:];,.:o -3 [-V & f 0] -0
t =0

as required, and the initial conditions are met. Therefore, this must be

the stated potential.

We shall need the steady motion velocity potential for the case in
which the ship is displaced by ij from its reference position. We could,
of course, consider the displaced ship as a completely new hull, and write
down a potential similar to [41];.with new functions {, and @ . Instead,'
we determine the corrections to the §; and ¢ discussed above which axe

necessary to satisfy the new boundary conditions. We wish a le'such that
¢1+ij‘#1j=00nca=0 [43]

which implies that

Also
%; (V1+ij¢lj) =0 ° Il on S (displaced) [44]
or
oy oV
ij 3311 =n " Il --S;i on S (displaced) [44a]

In three cases, solutions are immediately available. If j =1

_ o
V1 (C1-8%) ,¥2,¥3) = V1=Ax 356 ¢ o (Ax;)

{s a solution of [43] and [44], since in this case we have simple translation.

Therefore

Y11 = - CLS [45a]




Similarly

.- 9

ha = - 35 [45b]
For J = 3, there is no such simple solution. Noting that the right side

of [44a] is zero on S(original), it is only necessary to find its change

when S is displaced. Then

V13 P
Axa don Bxa ondla
or
oV1s P
30 - 3ndls [46]

If j = 6, the displacement is simply a rotation in yaw. The trans-
lation of a yawed body is equivalent to simultaneous translations parallel
and perpendicular to the body axis. Therefore, the solution to [43] and
[44] is

2 (6 +Ga b 1 Ga-Ca e 1Ca) = s Yo (Gu.+a B ,Ca ~Ca Bas)

Va 12 ;
=Y + Axe Caa_cI‘CISE”W

80
Eh 121
¢1e=@£'€1£+% - ;471

If § =4, or 5, the first term of [44a] becomes

[3+ij(-fj_3x3)] " il

The second term is

ot

-3 =0 73 on S (displaced)
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which may be written, using values of 7 and 7¢ evaluated on S (original),

—.[3+ij('i°j__3x3)>] D7 eax, @, XT-D7, ]

373-3

If we drop terms of higher order in ij and use [27], condition [44a]

reduces to

My s
=M_3 . x3-n-I[1, xn-7¢1+n-('1’j_3xr-7)7¢1]

on j-3 j-3
or

dMa  [L/, W _ M n P

3™ -~ [“'(1’ FY R Y >+ & mG - % e ] [48a]
and

Mis (. o 131 i *hn :
e ew-[fa gt m ) e a0

Conditions [43a] and [44a] are sufficient to determine ¢1j' Strictly,
L44a] holds on S (displaced), but we only introduce errors of order (ij)a
if we take the ship surface condition to hold on the original S. Similarly,
[46) and [48] can be applied on the reference position of S.

To wlj corresponds a P14° with

3y 3y |
atl =-8 ac: for g3 =0, [49]

(a4
It
o

and with conditions corresponding to [303, [32], and [33] holding. Again

‘we .take the ship surface condition to hold on the reference position of §.

We need yet one more pair of functions. The normal derivative’ Bqu/an

" will differ from zero on S (displaced) to the first order in ij__

correct it, we define a functioén which satisfies the conditions

) t
ij 3221 = gn @ (Tt~ -1) dT on S(displaced) - [50]




and

= 0 on (a=0 [51]

As we do not intend to exhibit solutions for woj’ we shall not reduce
the right side. We also need a ¢oj’ with

dp oy
ol _ _ ., —°i
3% = 8 35 [52]

and the other appropriate conditions also holding.

We now have all the pieces néeded to write the velocity potential for
the flow about the ship when displaced by ij from its reference position.

It will be
t t

8=V {:[¢1+ - ¢h(7’t'7) dT] + ij [¢1j+ S:m ¢1'(T,t-7) dT]

t
+ ij [woj+ Siw o (THE-T) dT] }' [53]

The *evus

V(s + ijwlj)

provide the necessary normal velocity in the displaced position. The normal

velocities due to -
t
v ij Woj and V 5:0 qi(T,t-T) dr

cancel, and none of the other terms contribute normal velocities of first
order in ij. ‘Therefore, the ship surface condition is satisfied in the
displaced position. Further, each pair of terms in brackets satisfies the

frge surface condition, as may be verified by direct evaluation.
We also have all the pieces needed to assemble the potential for the
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flow generated by a ship experiencing small oscillations{xj(t)}. It will be

' -t < t -
0= Y {:[¢1+ S;Q @ (T,t-T) dT] +;zi [xjwlijim ¢lj(7,t-7)xJ(T) dT]
6 t
i ;Z; [xjvoj+ Siw Poy (T>£-T) %4 (T) dT}.}
6

t .
+;§; [*j¢j+ Siw qﬁ(T,t-T)*j(T) dr ] [54]

The ship surface condition is satisfied as before, except now the term
zij*j proVides the additional components required for the oscillatory
velocities. . And again, the bracketed pairs of terms satisfy the free

surface condition.

TRe dynamic pressure at any point in the fluid is given by

6

¥
25 ol 2]
p =3t “;Z; 3W1y*¥oy) - ac1 30

A, t Mg, (T,t-1)  dp_,(T,t-T)
. | 5‘ [ ij o]l ]
v o+ V) 3t + .bt ‘xj(T) dr

ot 3 ,
2 S’t 3 (T,t-T) >
-— ‘P -éE.— + e —bt_ dT [55]

There are two convolution integrals in [55], one involving the
oscillatory displacement and one involving the oscillatory velocity. These
ﬁay be reduced to one by means of an integration by parts. We can go_

either way, but there is some advantage in defining
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Tu |
S:Q (o y(Tot-m) + Py (Tot=T) ] AT = 0, (e-15) [56]

so that

To )
S [, R ] 2 [57]

t
t rap 30, (0) 30, (t-T)
Sl_m [—ia:_ —lat ] x, (1) dr = —J—at X, () - 5.@ -—j_at :’cj (T) dar

-'r)
- - in S’ _1 (1) ar [58]"

'(

The significance of this function Qj can be seen by rewriting the potential
for the uniform flow with the body deflected (Equation [53]). It becomes

{h + cpl(‘r t-1) aTehx, [y 4y, )40 (0)]} [59]

Equation [55] now reduces to

= Z{ ‘#J + X V(ﬂrljwoj 30

-
- x v C [W1J+¢oj+¢3(0)]

Ct 3, (T,t-T) 30, (t-T)
+~S-°< STk >x(T)‘"}

' S‘t 3 (T,t-1) > | _
-V aC 3 dr [60]

We are concerned with the oscillatory value of the hydrodynamic force, but
not steady components. The last term [59] does not involve the {x ].

However, when we integrate the pressure over S, the fact that S is changing
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its position in a steady flow field implies that even thils term contributes
to the oscillatory pressure. These pressures will be functions of the

displacement, only.

Integrating the pressure over the surface of the ship, we can write

the equation of motion:
6

[(mj jk+mjk)xj + bJ xj + ey

I.a-

t .
+ Sim Kjk(t-T) ij(T) dT] = fk(t) [61]

where m, and m,, are as defined in [40] and [38], and

va (’4’13**03 3¢, o 4o : . [62]

c..x, = Total hydrodynamic and hydrostatic force in the kth mode,

L th
due to displacement xj in the j  mode.
, © /A, (T,t-T) 30 (t-T)
K, (t-T) = oyl . 40 [63]
jk S ot

There are symmétries which reduce the number of coefficients. For

instance

mjk =p ¢ sk do

S\ *3 EE— do

1f we consider the space enclosed by S, the free surface, and an infinite

hemisphere, we can apply Green's theorem, and we find

oV, o
= - —_— =
K =P S; Vi - do = By [64]
Further, if we consider the transverse symmetry of the ship, the matrix
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{mjk} reduces to

my o ma o mg ©
o ms © mg O Mo
my o© 3 o© ms ©
{mjk}, = o L ER meg © mee
m1 o msz o ms o .
| © mz o my © mee [65]

Evidently, the matrix {bjk} is of the same form, except that in general
bjk # bkj' The matrix cjk is even simpler, as surge and sway displacements
provide no restoring forces, hydrostatic or hydrodynamic.

Therefore

'— -!
o o o o o o
o o o o o o
Caa o] Caa o] Cas o]
c = o c o c
{ jk} 43 44 o Cas
’ Cs1 o Csa o Ces o
o Ceg © Cgs O Cas {66]

The matrix»ikjk(t)] is of the same form as {bjk}

Equations [61], though similar in form to these developed by Haskind,
daskind found no hydrodynamic force proportional to the displacement, nor
did he‘find the components of bJ due to ¢j and *oj' He also found that
bga = bgg = 0, and bgg = - bsgg. The presence of *oj in the definition of
makes it unlikely that such relations hold here. Further, his kernal

jk
in the convolution integral must differ from that found here. The reason
for these differences is that Haskind neglected terms in satisfying the

houndary condition on the displaced S which are of fqrst order in xj

With equation [61], we have advanced a long way toward the second

objective of this paper. The dynamics of the body have been separated from

the dynamics of the fluid. Further, the hydrodynamic effects have been
28



separated into separate, well defined, components, each of which can be
found (in principle) from thre solution of a Neumann problem or a Cauchy -

Poisson problem. Specifically, we draw the conclusions:
B

1. The equations of motion are universally valid, within the
range of validity of our assumption of linearity. That is
any excitation, periodic or non-periodic, continuous or '
discontinuous, is permissible, just so it reéults in small
displacements from a condition of uniform forward yelocity.
The case of motion with a negative restoring force, or at

least the early history of such motion, is not exéludgd.

2. The inertial properties of the fluid are reflected in the

products m, . X,. The coefficients are independent of frequency

jk7j
and of the past history of the motion, so they are legitimate

added masses. Further, they are independent of forward velocity.

3. There is an effect proportional to *i which accounts for some

_of the damping. This effect vanishes when the mean forward
speed 1i: is zero. ( 17 M 5: ,5.

4. There is a hydrodynamic 'restoring' force (it may be negative).

It is equal to the difference between the hydrodynamic forces
acting on the ship due to the steady flow in the equilibruim
position and the deflected position:

5. The effect of past history is embedded in a convolution
integral over ii(t). For sinusoidal motions, this integral
will ordinarily have components both in phase with the motion
and 90° out of phase. The latter component contributes to
the damping.
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£/ HYDRODYNAMICS OF THE IMPULSE RESPONSE FUNCTION

We now have two systems of relations between the excitation and théﬁ
response‘of the ship, the impulse response relations, [2], and the equa-
tions of motion, [61]. The former are of greater value in describing the
response to a given excitation, while the latter are useful in analysing
" the nature of the response. Both systems hold for small oscillatory mo-

tions, so there are relations between them. We shall examine these.

| First, let us start with the equations of motion, and derive the
functions {Rij(t)}. Suppose a ship, moving at constant forward velocity,
to be subjected to a unit.impulse in the ith mode at time t = 0. During

the impulse, the equations of motion reduce to
6
m X +;Z;mjk xj = f5 684y

where &,
J
At.

Kk is the Kroneker delta. Suppose the impulse acts during time
Then, since
¥, At = A%, = R_ (+ 0)
J J y
we have
6 .
o Ry 0 +§_.\mjk Riy (0) =8, [67]
j=1
As 1 and j range independently from 1 to 6, we have 36 equations reiating
the two sets, {mij} and {ﬁij(O)}. If the equations of motion are known,
equations [67] fix the initial conditions from which the impulse response

functions can be determined. Conversely, if the impulse response func-

tions are known, these equations yield the apparent masses.

Immediately after the impulse, we have
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xj = 0(t)
:'cj = xj(O) + 0(t)
iij = ifJ.(O) + 0(t)

So“’ R, ; (D, (c-7) dr = 0(t)

Therefore, considering only zero order terms in t, the equations of motion
yield:

6
- . . =0 _
m, Ry, (+0) +jZl[mjk R (0) + by Ry (40) ] [68]
which relates the coefficients {bjk} to the accelerations {Kij(+o)}'

Now suppose the ship to acted upon by a constant unit force in the

ith mode (we assume a positive restoring force to exist in this mode).

Then, after equilibruim is reached,
6
y ik %5 < ik
j=1

and

Xy = S; Rij (T) dr

or

6 -]
Z ik S.o Ryy(m) dr =8,y [69]
j=1

In modes without a positive restoring force there is difficulty, as there
is no guarantee that all of the coupling coefficients are necessarily zero.
Thus, caz X 5, the sway force due to a yaw angle x, will not ordinarily be
zero, or even negligible. We shall return to this point a little later.
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If we rewrite [61] in the form

6 .t .
) | Ko™ Ryy (eemar =
§=1

[70]

_Z[mj 6o + myp) Ryj(®) + by (e) + ey Ry (:)]
3=1

we have a set of 36 equations which canm either be regarded as a set of

simultaneous integral equations for the kernals {Kjk(T)}, or a set of
simultaneous integro-differential equations for the impulse response
functions, {Rij(t)}'

We have already seen (equation [16]) that if
fi(t) = cos Wt
then

c 5 .
xj(t) = Rij cos Wt + Rij sin ot

Substituting these values in the equations of motion, we get

c

6
‘ _ c 8
L[ @ 5+ mpdFRyy - by Ry - ek
§=1

-oR,% kS + RS cos Wt

13 ik T %4y Jk)]

s c .8
[( jk +m k)wakij - bjk ® Rij - ch RiJ
8

8 [ [
-w (1?.ij R~ Ry Kjk):l sin wt}

= (O]}
51k cos Wt
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For any given frequency, this is an identity, so the net coefficients of
cos Wt and sin Wt must be zero. This gives us 72 equatioms relating the
c

trapsforms {Rig, Riz} with the transforms {Kij’ K;;}.
We have,
-ﬁn 5 ¢ ¢ =
o) CHE IR [71a]
J=1 6 c
v 2
=8, "')_‘1 [(m.1 Syp + mjk)w"’ki‘f1 - by Ry~ € Rij_]
)= '
6 c ¢ 5§ s
T Rey Ry T Ryy Ry
j=1 _
6
s c s
= wZ[(mJ bjk + mjk)UF Rij + bjk w Rij - cijij] [71b]
J=1 ‘
or, equivalently,
6 . s c
D ALms bt o - e - @ F3k] R [72a]

3=1 c s

= (byp + K)o Rij} ==

)1 10 O Ry,
£ 8- 8
+ [(mJ ajk + mjk) - cjk- w Kjk]RiJ} =0 [72Db]
Thus, instead of the integral and integro-differential equations relating
{Rij} with {Kjk}’ Equation [70],we have systems of linear equations relating
their transforms.
The transforms of {Rij} also yield useful variants of the relations

already given. For instance, if we let ® = 0, we have
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6
) Cak Ryg @) = by
3=1

a more general form of [69].

Also, noting that
R 2 fm ® R, (W wt dw
Rij (t) -_ﬂ_o Rij( ) cos wt d

and ©
o _ 2 C
Rij (t) =— —F-f; of Rij(w) cog Wt dw

we have
-]

. 2 A
Ry @ = ?J:"’ Ryg &
(1] = — 2 g c

K, (0) Tfo o Ry, do

Therefore, [67] and [68] may be written
6 ®
. 8 =1
jzllgml ajk + mjk)Iow Rij d(D:I 2 Sik

and
6

ZE(mJ 84k * mjk)‘l‘:u’?Rﬁ dw - bij‘:w R:lsj dw] -0
i=1 , _
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“y, CONCLUSION

In the forégoiné; ﬁe have pfesented two mathematical models for rep-
resenting the respénée characteristics of ship. The‘quatidns of motion
are more genéral, as they épply to the initial stagés of an unstable motion.
Where the two systems are equally valid, we have relations whiéh permit us
to pass_(at least in principle) from either system to the other. )

The'impulse response function is certainly the better‘representation
for computiﬁg responses. It integrates all factors, mechanical, hydro-
static, and hydrodynamiq, in the most efficient manner possible for com-
putation. Howevér,vfor this very reason, it is a poor analytical tool
for explaining why the ship responds tﬁé way it does, or how the response
will be affected if any change in conditions occurs. For instance, models

are ordinarily tested with restraints in certain modes. A restraint in

any mode wiil.affect the impulse response function in any coupled mode.

s

response functiomsto predict full scale behavior, unless they are corrected

for the éffect of such restraints.

The hydrodynamic equations do not suffer from this disadvantage.
Known restr&ints\arg readily includable, and their effects determimable.
Or a change in mags distribution can be treated independently of the
hydrodynamics. It is not uncommon in model testing to have "incompatible"
parasitic inertias in the different modes. Thus, the towing gear may con-
tribute a different mass in surge from that in heave. By means of the
equations of motion, the effect of these inertias upon the motions can be
analyzed. Thus, the equations of motion provide a more powerful amalytical
tool for studying the relationship of the response to the parameters

governing that response.

We can conclude, then, that these two representations complement each
other; the one for response calculation, the other for response analysis.
In fact, if it is truly practicable to pass from one representation to the

other, several possibilities present themselves:
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S

a)

" b)

c)

Model experiments may be designed to obtain maximum accuracy,
rather than maximum realism. Hydrodynamic effects should be
emphasized in the design, since other effects are separately

determinable. Thus, one.should test at small gyradius, in

order that the effect of the inertial properties of the body

itself will be minimized.

Restraints are permissible, if their character is fully known.

Thus, rather than directly find the impulse response matrix,
!in its complete generality, more elementary experiments may be

" conducted to determine specific terms in the equations of

motion. One may restrict himself to one, two, or three degrees

of freedom, and obtain results which are completely valid, when

interpreted by means of the equations of motion.

The recurring difficulty of handling modes in which the
restoring force .is zero or negative can be easily overcome.
It is clear that an accurate experimental investigation of
these modes would uncover practical difficulties analogous .
to the theoretical ones we have discussed. However, the
problem can easily be solved by imposing known restraints
(i e. springs) which will restore positive stability The
effect of these restraints 1s readily includable in the -
equations of motian, it can be removed by calculation, and
the correct impulse response, free of restraint, can be
determined. |

36




REFERENCES

1. Weinblum, G., and St.Denis, Manley, "On the Motions of Ships at
Sea," Transactions, The Society of Naval Architects and Marine Engineers,
Vol 58, 1950,

2. St. Denis, Manley, and Pierson, W. J., Jr., "On the Motions of

Ships in Confused Seas," Traﬁsactions, The Society of Naval Architects and
Marine Engineers, Vol. 61, 1953.

3. Tick, Leo J., "Differential Equations with Frequency-Dependent
Coefficients," Journal of Ship Research, Vol. 3, No. 2, October 1959.

4. Davis, Michael C., "Analysis and Control of Ship Motion in a Random
Seaway," M.S. Thesis, Massachusetts Institute of Technology, June 1961,

5. Sneddon, Ian N., "Fourier Transforms," McGraw-Hill Book Company,
Inc., 1951.

6. Haskind, M. D., "Oscillation of a Ship on a Calm Sea," Bulletin
de 1'Academie des Sciences de 1'URSS, Classe des Sciences Techniques,
1946 no. 1, pp 23-34.
7. Golovato, -P., "A Study of the Transient Pitching Oscillations of
a Ship," Journal of Ship Research, Vol. 2, No. 4, March 1959.
8. Tasai, Fukuzo, "On the Free Heaving of a Cylinder Floating on the
Surface of a Fluid,"vReports of Research Institute for Applied Mechanics,
Vol. VIII, No. 32, 1960. !

9. Weinblum, G. P., "On Hydrodynamic Masses," David Taylor Model
Basin Report 809, April 1952.

10. Smith, A. M. 0., and Pierce, Jesse, "Exact Solution of the Neumann
Problem. Calculation of Non-Circulatory Plane and Axially Symmetric Flows
about or within Arbitrary Boundaries," Douglas Aircraft Company, Inc. Report

ES 26988, April 1958. 37 '

i
\
:




Delft University of Technology
Ship Hydromechanics laboratory
Library
Mekelweg 2 26282 CD Delft

Phone: +31 (0)15 2786873
E-mail: mem

" WE. Cummins

- saqpsrenmsx mmnmmsmn&ﬂw _'
SiR ULERTI
KORTFORT:/  DATO MOTTATT:
4
j.ls-rer-'zm ,29/ 63

Octobar 1962




,(77, DTNEDC . 1e6 |

THE IMPULSE RESPONSE FUNCTION AND
SHIP MOTIONS

W.E. Cummins

This paper was presented at the Symposium on
Ship Theary at the Institut fur Schiffbau der Universitat
Hamburg, 25—-27 January 1962.

October 1962 Report 1661




ABSTRACT

< After a review of the deficiencies of the usual equations of motion for an
oscillating ship, two new representations are given. One makes use of the impulse
response function and depends only upon the system being linear. The response is
given as a convolution integral over the past history of the exciting force with the
impulse response function appearing es the kernel. The second representation is
based upon a hydrodynamic study, and new forms for the equations of motion are
exhibited. The equations resemble the usual equations, with the addition of con-
volution integrals over the past history of the velocity. However, the coefficients
in these new equations are independent of frequency, as are the kernel functions
in the convolution integrals. Both representations are quite general and apply to
transient motions as well as periodic. The relations between the two representa-
tions are given. The treatment considers six degrees of freedom, with linear

coupling between the various modes.
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The Impulse Response Function and Ship Motions

W. E. Cummins

Introduction

Just over a decade ago, Weinblum and St. Denis’) presented
a comprehensive review of the-state of knowledge at the end
of what we may call the “classical” period in research on sea-
keeping. Soon after, St. Denis and Pierson?) opened the
“modern” period (some would prefer to call it the “statistical”
period). The studies of the former period wers primarily con-
cerned with sinuscidal responses to sinuscidal waves, but the
introduction of spectral techniques opened the door for the
discussion of responses to random waves, both long and short
crested. The corstruction of the spectral theory on regular
wave thegry as a foundation delighted us all, as it presented
an apparent justification’ for the admittedly artificial studies
of the “classical” period.

The activity during this last decade has been spectacular,
with five major and many minor facilities for seakeeping re-
search being opened. Hundreds of models have been tested,
many full scale trials have been run, and there has even been
some real growth in our knowledge of the subject. In particu-
lar, the spectral tool has been sharpened and tempered by the
empiricists, and the analysts have made important advances
with the rather frightful boundary value problem. In fact, we
have all been forging ahead o rapidly that we appear to have
forgotten that we are wearing a shoe which doesn'’t quite fit.
The occasional pain from e misplaced toe is ignored in our
general enthusiasm for progress.

The “shoe” to which I refer is our mathematical model, the
forced representation of the ship response by a system of
second order differential equations. The shoe is squeezed on,
with no regard for the shape of the foot. The inadequacy of
the shoe is evident in the distortions it must take if it is to be
worn at all. I am referring, of course, to the frequency de-
pendent coefficients which permit the mathematical model to
fit the physical model (if the excitation is purely sinusoidal,
that is).

But what happens when we don’t have a well defined
frequency? The mathematical model becomes almost meaning-
less. True, a Fourier analysis of the exciting force (or encoun-
tered wave) permits the model to be retained, but physical
reality is almost lost in the infinity of equations required to
represent the motion.

Let us consider this mathematical model briefly, and restrict
ourselves to a single degree of freedom. To b campletely fair,
let us consider & pure, sinusoidal eacillation, The forcing func-
tion (if the system.is linear) will be sinusoidsl, and can be
broken into two components, one in phsase with the displace-
ment and one 90° out of phase, We further divide the in-phase
component into & restoring force, proportional to the displace-
ment, and a remainder. The latter we call the inertial force,
and treat it as if it were proportional to the instantaneoms

1) References are listed at the end of the paper

acceleration. The out-of-phase component, which provides all
the demping, we treat as if it were proportional to the in-
stantaneous velocity. .

‘We can now write an equation, which has the appearance of
a differential equation, relating these various quantities:

a(w)% +b(w}x + c(w)x = Fysin (0t + ¢€) .
But a differential equation is supposed to relate the instan-
taneous values' of the functions involved. If the periodic
motion continues, this condition is satisfied. Of course, it could
just ag well be satisfied by the equation
bx + {c—an®)x = f{1)
or more generally
@+ HE+bk+ (c+do?)x=£()
where d i3 arbitrary. These are all equally valid models. One
of them is 1o be preferred only if it truly relates the displace-
ment and its fizst and second derivatives to the excitation in
some more general way. But suppose £ ({t) were to be suddenly
doubled: Would the instantaneous acceleration be given by
- 2f@)—b(wi—c()x ,

a ()

In general, no! Or suppose the amplitude of the oscillation to
be snddenly incrensed. Wonld the out of phase component of
f(t), immediately after the change, be equal to bx? Again, in
general, no. Thus, at best, b () must be considered as a sort
of “spparent” damping coefficient, a(®w) as an “apparent”
apparent mass, and the physical significance of both is
obscure. When the oscillation consists of several coupled
modes, the so-called coupling coefficients are equally eon-
fuged and confusing,

If we restrict ourselves to a phenomenological investigation
of how a given ship behaves in a given wave system, these dif-
ficulties do not concern us. We simply measure responses to
known waves. Most of the work over the past decade has been:
of this nature, and much of it has been excellent. However,
sgoner or later, we are required to consider not “what” but
“why,” and a more analytical technique is demanded. The
phenomenological study can tell us the effect of a change in
ship loading on seakeeping qualities only after we have mea-
sured it; there is no basis for quantitative prediction given
the results for one gyradius. And the effect of a change in form
is presented as an isolated result, unrelated and unrelatable
to the geometric parameters involved. We are driven 10 the
use of the model discussed above in an attempt to clarify the
relation of canse and effect. But such a poor mirror of reality
is of little value, and in fact can do much harm.

T am not the first to raise this issue. The difficulties are well
known and a number of writers have discussed them. In parti-
cular, Tick®) has vigorously argned against our usual practice
and Bag proposed a model which is very ¢lose to the one which
will be exhibited here. His case is based solely upen the gene-
ral characteristics of linear systems, while-we shall take ad:




vantage of the principles of hydrodynamics to tic the model
to the phenomena. More recently, Davis*) has proposed a ratio-
nal appreach from the point of view of statistics. This is sug-
gestive, particularly since it was the spectral theory of stati-
stics which first gave weight to the investigation of responses
to periodic waves.

Briefly, the specific objectives of this paper are:

1. To exhibit a model wbich permits the representation of

the response of a ship (in six degree of freedom) to
an arbitrary forcing function (with excitation in all six
modes). The model will not involve frequency dependent
parameters.
To separate the various factors governing the response
into clearly identifiable units, the effect of each to be
separately determinable. Thus the effect of gyradius will
be separable from added mass. Tbe added mass will be
related only to inertial forces and moments. The nature
of the damping force will be exhibited. The effect of
coupling will be derivable and the effect of “tuning”
upon coupling will be determinable.

In this paper we shall not consider the complementary pro-
blem of the relation of the exciting force to the incident wave
system. This problem is equally basic, and when it has been
adequately treated, we will begin to have a satisfactory frame-
work for the interpretation of our empirical studies.

The Impulse Response Function

The basic tool which will be used in this study is an elemen-
tary one, widely used in other fields and well known to all
engineers: the impulse resporse function. It is difficult to
understand its neglect in our field. Perhaps as Tick suggests,
it is because waves look sinusoidal.

For any stable linear system, if R (t), the response to a unit
impulse, is known, then the response of the system to an arbi-
trary force f (1) is

x(t) = jt'R(!—':)i(':) dt

or

m
x(t) = fR (o) f(t—t) dr.
°

The only assumption required (aside from convergence) is
linearity. In the present context this is, of course, a-very strong
assumption, and the purists will argue that it implies a thin
ship or the equivalent. However all experimental data indicate
that the assumption is a good working approximation for small
to moderate oscillations of real ship forms. We shall bypo-
thesize that the assumption holds absolutely.
Letx;,i=1, . . ., 6) be displacements in the six modes

of response:

x, = gurge (positive forward)

xg = sway (positive to port)

xg = heave (positive upward)

% = roll (positive, deck to starboard)

xg = pitch (positive, bow downward)

x; = yaw (positive, bow to port)
Let Ry3 (t) be the response in mode j to & unit impulse at t = 0
in mode i. Note that Rj; (o) does not necessarily equal zero,
though in a damped system which is not unstable, it will ordi-
narily be finite. In modes withont a restoring force (sway,
surge, end yaw), the impulse response will asymptotically
approach some value, For other modes, Ryj(©) = 0.

Ii the {fi ()} are an arbitrary set for forcing functions, the
corresponding responses are
[

=3 .F R (i (t—1) dx. 2]
i=lo

Thus, the matrix {Ry (ti-} completely characterizes the response
of the ship 1o =n arbitrary excitation.

Before we go on, let us consider the relation of these func-
tions to the usnal coefficients. First consider the case where
the modes are uncoupled. Let

fi (t) = Ficos (0t + 1) 31
where € is a pbase angle whose value will be assigned later.

xi() =F; j"Ru (1) cosfw (t—7) + &l dt
o
= Fj [cos (0t + &) FRn cos wtdt
o

<+ gin {wt + &) .FRii sin wtdt]
= F; [R;i® () cos (0t + &) + Ri® (w) sin (ot + &)
4]

where

Ri® (0) = fRn (1) cos wtdt {5a)
o

f5b]

are the Fourier cosine and sine transforms of Ry; (t). We shall
call these transforms the frequency response functions. We
make the further reduction
x; (t) = F; [(R;¢ cosg; + R;®sing;) coswt .
+ (R;;® cosg;— R;;® cosg;) sin o] .

R (@) = § Ri (¢) sin weds
o

Taking tan g; = R“'/ Rlic [6]
we bave % (1) = F, [R;®)? + R;9)f " cos wat. (4]
Also f(0) = F; (R“c cosB Wt — Rn‘ s’in wt) (8}
[Ry? + Ry
Now consider the usual representation

a;%; + bk + x; = £ (1) - 91

Using the x; and f; from (7] end 8], it is easily seen that

R.©
a=1/0? q——"—] [10a)
e e
R.®

4 [10b)

T 0 [+ R

A more unseful relationship is obtained by setting ¢ = 0
in [4]):

%) _

i
Thus R;; and R;? are the amplitndes of the jn-phase and out-
of-phase components of the response to a unit amplitude forc-
ing function of frequency ®. The impulse response function
is related to these functions by

R;® (o) cos wt + Ry® () sinwt. nn

R;i (o) 2 j R;;® (@) coswt dw
n

= 2 j. R;® (») sinwc do 2]
n

°

using the Fourier inversion formulas. Note that R;;© and R;®
are uniquely related. If one is known, then by [12] end [5],
the other is determined.

Equation [11] can also be written

B0 — (o + @I e for—m @) 03]
where tane = Ry® (0) )
Ry® (@)
Thus, the response follows the excitation by the phase
tan't (R®/R;;%) and has the amplitude [(R;%)? + (Ry%)%"

4]




The response for a given frequency, as determined by the
pair of functions R;*, R;, or alternatively, the pair [(R;;*)? +
Rg92'"e, tant (R;5/R;), is a mapping in the frequency do-
main of the unit response function, which is defined in the
time domain. As equations [4] and [11] permit us to pass from
either domain to the other, the two representations are com-
pletely equivalent. Viewed in this way, the frequency response
function is a meaningful, useful concept. It is only when we
try to attribute a deeper meaning to it, by imbedding it in a
false time domain model, that we create confusion.

Now consider the more general, coupled system, with exci-
tations in a single mode of the same form as given in equation
[3]. Then

x; () = F;[R;;® cos (ot + g;) + R;;®sin (ot +g3)]. [15]
If we consider the usual representation

[
;2; (85 %; + by %5 + epexp) = £ (1)

where f; (1) = 0 for k #i, we can develop a system of equa-
tions in the unknowns, a;i, by,. (The c;; are assumed known
from static measurements.) All 72 of these unknowns are
present, in principle, except where modes are uncoupled. To
determine them, it is necessary to consider the responses to
excitations in each of the modes separately. We then have
enough equations, if we separate the in-phase and out-of-phase
components, to determine the coefficients. We have no need
for them here, so we defer further discussion until we face
a closely related problem. It is only significant to note that
they can, in principle, he determined from the set of impulse
response functions, and therefore they contain no information
which is not derivahle from these functions.

Setting g; = 0 in [15), we have the system
x (1)

F;
Thus, R;;® and Ry? are the amplitudes of the in-phase and
out-of-phase responses in the j mode to unit amplitude ex-

citation in the i*h'mode. As before,
oo

= Rﬁc cos at + R;i‘ sinwt . el

R = 2 j R;; cos ot dw (17a)
T o
=2 J R;;* sin ot do (17b]
* -]
nd E"F(_n = [®;%)® + (R;;")*]"* cos (0t —¢;) (18]
where tan g = Ryp/ RS . (191

‘We have passed over the question of convergence of the inte-
grals in equations [2] and [5]. Consistent with our hypothesis
of linearity, we shall assume | f; (t) | is bounded. There will then

be no difficulty unless  |R;; ()] dz does not exist. Unfortunate-
L]

ly, in three modes there are no restoring forces (or else they are
negative), and evidently some care is needed in treating these
cases. A negative restoring force implies an unstable system,
which would be beyond the scope of this analysis. However,
the case in which R;; approaches some non-zero but finite limit
can be treated. The divergence of the integrals can be over-
come if we arbitrarily assign a value to x;(0). We formally
write

t [+ ]
% (1) = § Ry (t—7) f; (1) dv— J Ry &—1) £ () dt + x;(0)

or

13
x() = ! R;; (1) fi(t—1)de

+ 3?[“” (t + 1) — Ru ('I)] fi (—1) dt + Xj (0 2) [20]
]

The second integral converges, so this expression provides a
usable definition of x; {t). Now let {; (t) = cos cot. After an inte-
gration by parts, we have

% (1) = 1/::»,1"12&‘j (1) sino (t — 1) dt
o

+§[Ru (t + ©) — Ry (1)) cos wr dr + x; (0) .

Our only concern is with the oscillatory components of x;.
These are easily determined by considering the asymptotic form
of the above expression as t hecomes large. Rj; (t+1)—>Ry;(%°),
and the second integral becomes constant. If we set

x; (0) = — t_limw J.[R;,- (t + ) — Ry (¥)] cos mr dz
L]

then

21]

x; () = L (—Ry;® cos wt + Ryy® sin )
©

where R;;® and R;;® are the sine and cosine transforms of
Ry (t). We know that x; (1) is sinusoidal, with frequency o.
Therefore, this expression holds not only for large t but. for
all ¢

If we define
Ruc = — R“'/(l) [22a}
Rii' = Ru"/m [22})]

then [16] siill holds. Note however, that R¢ and R;;® are no
longer transforms of R;; because thess do not exist. Neverthe-
less, an inversion is still possible. Consider

.F[R-ij (t).— R;; (00)) cos wrdt
o
=L [Ry; () — Ry; (20)] sin @t l& _ JRU (€) sin 0t dt
o s o
L]

=—Rij./(ﬂ = Ruc.
That is, Ry;® is the cosine transform of [Ry; (t) — Ry ()] and
Ru (ty = Ru {o0) + -E 'J uc cos wt do
"
°

Letting t equal zero,

[23]

Ry (0)= —% I Ry¢do
o

Ry@) = i j' R;®(cos ot —1) do . [24)
x
0

When R;; (9©) = 0, this reduces to [17a].
Similarly,
T IR;; (1) — Ry; (o0)] sin wr dv

=—R; (%) /o +LJ‘R;,cosm-¢dt
o

°
= [R;*—Ry (o)) / w
and -
Rii 1) = Ru (°0) + _2_j' [Rﬁs_ RU (=)
x
°

(]

sin 0t do




=Ry (oc)[l __2_‘[ sin 0% dm] + —%-Jﬂi,'sh Wt do
n
-]

.@ b3
o

= 2 J R;" sin ot do
x
L]

since

Therefore, [17b] holds even when Ry; (¢) #0.

If R;;¢ and R;® are known, it is not difficult to determine
whether or not Rj; (®0) = 0. Equation [23] gives R;;{c°) in
terms of R;;¢.

Alse

R; (=) = lim —:— J R;;® sin ot doo

=

°
— lim 2 JR ¢ 8inwt
= — | Ry do
t—o° x ®

-]

= R;(0) =lim @R 125]
oo

using a well known theorem in Fourier transform theory (Refe-
rence 5, page 12).

When the matrix of impulse response functions is known,
our first objective of finding a representation of the ship re-
sponse which is free of frequency dependence isachieved. These
functions, which we shall collectively call the impulse response
matrix, can in principle be determined experimentally.

Equations of Motion

The transient response of a ship has been considered by
Haskind®), who attempted an explicit solution of the boundary
value probiem. This, we shall not try, as we are concerned
only with finding an appropriate form for the equations of
motion to use as a basis for the interpretation ¢f experimental
results. We do not agree with certain of Haskind'’s hypotheses,
and our resulting equations differ from his in several important
respects.

Golovato”) carried out an experimental investigation of the
declining oscillation motion in pitch. However, Golovato
was not aware of the equivalence between the transient
and steady state responses which we have just discussed,
so he attempted only to match the coefficients derived from
the transient experiment, at the frequency of the declining
oscillation, with those from & forced oscillation experi-
ment at this frequency. He was handicapped because of the
anomalous behavior of the curve of declining amplitudes. For
a simple harmonic oscillator, this curve is a straight line when
plotted on semi-logarithmie paper. His curves departed radi-
cally from such a pattern. He recognized that this implied that
the mathematical model was faulty, and attempted, with some
success, to fit his results with forms based on Haskind’s study.

More recently, Tasai®) has performed declining oscillation
experiments in heave, using two dimensional forms. His results
are not significantly different from those of Golovato. He
matched his results at the measured frequency with Ursell's
theoretical results for forced oscillation. The agreement is
quite good.

Case I — No Forward Speed

Let the ship be floating at rest in still water. We use a
aystem of coordinates (§;, %o, L3), fixed in space, with origin
in the free surface above the center of gravity of the ship.

At time t = 0, we suppose the ship to be given an impulsive
displacement Ax; in the j» mode. The time history of this im-
pulse is not significant, but for purposes of visnalization, it
may be considered to consist of a movement at a large, uni-
form, velocity v; for a small time At, with the motion termi-
nated abruptly at the end of this time interval. Then

Ax; = v At .

During the impulse, the flow will have a velocity potential
which is proportional to the instantaneous impulsive velocity
of the ship. It may, therefore, be written vjp;, where ¥ is 8
normalized potential for impulsive flow. y; will satisfy the can-
ditions:

P;=0 on L3=0 [26]
—awllan =3 0on S 27

where 8 =n-j i=1,L23
- (28]

=rXn-ij_g
S = surface of the ship

i=4,56

n = outwardly directed unit normat
i; = unit vector in j'* direction

r = position vector with respect to c. g. of ship .

It is well known®) that the above problem is equivalent to that
obtained by reflecting S in {g = 0 and taking the surface con-
dition over the refiection to be the negative of that over S. The
solution to the Neumann problem for the flow outside this com-
posite surface is also the solution to the given problem in the
lower half-space. For non-pathological surfaces, the solution
exists, and in fact can be computed by means of modern, high-
speed equipment.t?)

During the impulse, the free surface will be elevated by an
amount

any = —y g = 2y (29]
atg dts
After the impulse, this elevation will dissipate in a radiating
disturbance of the free surface, until ultimately the flnid is
again at rest in the neighborhood of the ship. Let the velocity
potential of this decaying wave motion be @ {t) Ax;. It must
satisfy the initial conditions

P 8.t 83,00 =0 (s0]
d 9 a
an Ax;?‘:L=gAﬂj=—532—Axion§3=0
or a% (;lv gﬂ: o) =—g a‘l’j leth o) [3]]
ot oty
Afterward, it satisfies the usual free surface condition
o g

and the boundary condition on S

3

—=0. 33

3n (33)

‘We may take this to hold on the original position of S, only
introducing errors of higher order in Ax;. This is a classical
problem of the Cauchy-Poisson type, and there exists an exten-
sive literature on the subject. With condition [33], it is more
difficult, by an order of magnitude, than the Neumann pro-
blem. We assume that it has a solution.




Now let the ship undergo an arbitrary smali motion in the
j" mode, x; (). To the first order, the velocity potential of the
resulting Aow will be simply

t
€ =iy + @ (t—7) % (v) dr. (34]

It is evident that the boundary condition on S is satisfied on
the equilibrium position of S, as the first term provides the
proper normal velocity and 8g;/3n = 0 on this boundary. But
also, the value of 38 /9n an the actual position of S will only
differ from its value on S by terms of second and higher order
in x; and its derivatives, 5o we may consider that [34] holds
on the actual position of the hull.

To verify that the free surface condition is satisfied, first
note that

20  d%; dx; 9p;(0)
—— + @ (0) —+ 4+ —— %,
o drf Wt a0 dt + a T
t
B b T
By [26] and [30), on t3 = O this reduces to
t

do__ 3O  (Fee—u,
e 0 @ "'j_ s amd.

t
Also, 38 _ i o; J Bgt—n %; (1) dv.

Substituting these in the free surface condition

2, .
30 12 oy (20 20)

a Pt & A
t
3% 3%).
2% e imde=0 35
+j( et g 3, x(t)dr [35}

by [31} and [32]. Thus, this condition is also satisfied, and ©
is the required potential.

The formula [34] is a hydrodynamic analog of {1]. It is quite
general, and can, for instance, be used to find the velocity
potential due to a sinusoidal oscillation with arbitrary fre-
quency. It is, of course, necessary to know the function g; (1),
and this presents unpleasant difficalties. In this study we are
content that @ (t) exists, and these difficulties do not concern
us.

Of more importance than the velocity potential is the force
acting on the body. The dynamic pressure in our linearized
model is simply

_.3
P Bt
t
o0 P _ gy + @ (0% + IM—_') %; (1) dt
0 ]}
d o
=% + J -%- % (v) dr. (36

=00

The net hydrodynamic force (or moment) acting on-the hull
in the k® mode is then given by

_Flk = J~p8kdﬂ

13
=x‘QS‘w'skdﬂ'i'qj‘skdaj‘_aﬂg-—_t)x‘(t)dt
. t

= %;my + pj % (1) dtj.a;ﬂ-(—al:l) 8 do
t

[
= ii n;y, + j‘ Kjk (te—1) *‘ {t) dx [37]
where my =@ f Y; s do (38]
8
Kip(@=¢ j ——a‘g:‘) sy do. (391

We can now write the equations of motion of the ship which
is subjected to an arbitrary set of exciting forces, {fi m}.
These will be

[ 1
p [(m,- aik + m,-k) 5(, + Cjx X;j + Ixik t—v) i’ (x) dtl = ‘k t)
i=1 —c0 [40]
where

m; = inertia of the ship i the j* mode

¢;ux; = hydrostatic force in the k™ mode, due to displace-
ment x; in the j mode
8;, = Kronecker delta (3, = 1if j =k, = 0if jFk).

Case 1l — Ship Undesway

The case of the ship experiencing small oscillations about
a reference position of mean uniform velocity is much more
complex. A pair of functions, y; and @j, no longer suffices,
although the pattern of our analysis will be similar to that
followed in Case L.

We use a fixed reference system, with tg = 0 on the free
surface and with the ¢.g. of the ship at §; = 0 at time t = 0.
We suppose the ship to be moving with a uniform velocity Vin
the §; direction.

Consider the Cauchy-Poisson problem defined by [30}, (31],
[32], and [33], except that now [33] is to hold on the moving
surface S. This problem has a solution ; (4, Se» §s 1, V) which
is, of course, identical with the @; of Cese I whea V=0.
Using this @; and the y; obtained in Cese I, we may write the
velocity potential for steady motion,

t
0=V ti—Vitatd + fp(nt—xdr  [41]

where
o (r,t—1) = @ (L—Vr, g, L. t—1, V).

That this satisfies the boundary condition on S is evident, as
Vy, provides the necessary instantaneous normal velocities,
and 3¢;/8n = 0 on S for all x. The free surface condition is
also satisfied, as may be verified by direct evaluation, as in
Case L.

The velocity potential for the flow generated by the ship
moving with constant velocity, after an impulsive start at time

Z€ro, 1S
%
0=Vt —Vtialy +°Iq>,(r.:—r1 dv]  [(42]

The free surface and ship surface conditions are satisfied as
before. The surface elevation att = 0 is

1 36 v oy .
220 v L e0f=0
s o ]‘:8;“ kit ]




as required, and the initial conditions are met. Therefore, this
must be the stated poteatial.

We shall need the steady motion velocity potential for the
case in which the ship is displaced by Ax, from its reference
position. We could, of course, consider the displaced ship as
a completely new hull and write down a potential similar to
[41), with new functions ¥, and @,. Instead, we determine the
corrections to the Y, and @,, discussed above, which are
necessary to satisfy the new boundary conditions. We wish a
y; such that

Y+ Ax;P; =0o0n §3=0 143)
vwhich implies that
Y;=0 onlty=0 [43a]

Also
—aa (P + Ax;Py;) =n '-i: on S (displaced)  [44]
n

or
Ax; %iq =; -,: — a_w‘_ on S (displaced) (44a]
n

In three cases, solutions are immediately available. Iftj=1
3 ;
P Gl_Axh%v "Ps) = wl_"Axl "5‘;’% +o0 (Ax,)
1

is a solution of [43] and [44) since in this case we have simple
translation. Therefore

e
Py = — —awf- . [45a)
1
Similarly
e
e = —a—‘;’;— : [45b]

For j = 8, there is no such simple solution. Noting that the
right side of [44a] is zero on S {original), it is only necessary
to find its change when S is displaced. Then

A a*y,
Axg—— = —Bxg——
? on » SndYg
or Ca] —-— S . (46}
on Ondts

If j = 6, the displacement is simply a rotation in yaw. The
translation of a yawed body is equivalent to simnltaneoustrans-
lations parallel and perpendicular to the body axis. Therefore,
the solution to [43] and [44] is

Py (6 + tedxg, $g—T1 Axg, Tg) ~—
AXB\PZ Gl + ggAva ;2_§l Axﬂv Ps)

S _a& + ‘l’ﬁ)
g0 (&N

= A 9 __
B+ xs( ta at, e
o,
= — —_— .
W= ts acl [ 5 P

It j = 4, or 5, the first term of [44a] becomes

[47]

(n + Ax; (ij_gxn)} -1, .
The second term is

_%‘l’_x = : -V, onS (displaced}
n

which may be written, using values of -;1 and Vv evaluted
on S (original),
— [0+ Axy (ij_sx0)] - [V + Bx; G_gxr - V) Vil

If we drop terms of higher order in Ax; and use [27), con-
dition [44a] reduces to

a:: = "i-sx:-il—[ii-sxﬂ V0 (jsxr- V) Vil
or
4 > (=3¢ _ T3w a2 P
= - —_— iy + T TS
% n-{ i 3 ate Ee 9ndt, dndt,
(48a)
and
a“l’]ﬁ Sl bod awl - a‘l’x) 8’191 a’w‘
=g—|nf ig——i,— |+t a— -0
a0 |M\ e, T e/ andt, 8ndts
(48b]

Conditions [43a] und [44a] are sufficient to determine ;.
Strictly, [44a] holds on S (displaced), but we only introduce
errors of order (Ax;)? if we take the ship surface condition to
hold on the original S. Similarly, (46] and [48] can be applied
on the reference pasition of S.

To 1,; corresponds a @y;, with

o9y g Ay
o ot
and with conditions corresponding to [30], [32], and [33] hold-
ing. Again we 1ake the ship surface condition to hold on the
reference position of S.

fortg=10,t=0 (49]

We need yet one more pair of functions. The normal deri-
vative 9¢,/9n will differ from zero on S (displaced) to the
first order in Ax;. To correct it, we define a function which
satisfies the conditions

t
Ax; G =— -i J @, (t,t—1) dt on S (displaced)
on on
% (50]
and Yo =0onf =0 (51)

As we do not intend to exhibit solutions for yy;, we shall not
reduce the right side. We also need a g, with

39, Ny
ol =g 52
ot & otg 2]

and the other appropriate conditions also holding.

We now have all the pieces needed to write the velocity
potential for the flow about the ship when displaced by Ax;
from its reference position. It will be

t
© =V {[y +_j' @ (v,t—1) dt]

t
+ Ax; [y + S oy (nt—T) ]

¢
+ A%y [9o; + J @3 (. t—7) dtl}

V(g + Bx;9y)
provide the necessary normal velocity in the displaced position.
The normal velocities due to

[58]

The terms

t
VAx; 5 and V [ @, {7, t—1) dt

cancel, and none-of the other terms contributes normal
velocities of first order in Ax;. Therefore, the ship surface
condition is satisfied in the displaced position. Further, each
peir of terms in bradkets satisfies the free surface condition,
as may be verified by direct evaluation. .

We also have all the pieces needed to assemble the potential
for the flow generated by a ship experiencing small oscillations
{x; (1) }- It will be

3

©=V{iv + f o (r,t—71) d1]

s t
+!}‘..1[x,- Yy + S oy (tt—1 x5 (1) dv]




g t
+’21[x, Yo; + § 9oy (3 t—1) %; (v) d}}

[ 14
+jzl[!'c,- ¥ + fop; (nt—1) % (1) dv] (54]

The ship surface condition is satisfied as before, except now
the term Z%; y; provides the additional components required
for the oscillatory velocities. And again, the bracketed pairs
of terms satisfy the free surface condition.

The dynamic pressure at any point in the fluid is given

F-2-glrpe(i )

3v;
+ i‘ Py — V==
G

t
+v | [Beutmr—n , Bey(nt (m——t)] x; (v de
at ot

t

+ Ja_"’l__“"_‘) & (v) dt}
ot

t
M,y (S (nt—1)
—viav d 55
= J =Y g (551

There are two convolution integrals in [55], one involving
the oscillatory displacement and one involving the oscillatory
velocity. These may be reduced to one by means of an inte-
gration by parts. We can go either way, but there is some
advantage in defining

%o

.L[q;ﬁ (mt—1) + @y (L t—1)] dv = &) (t—1,) [56]

80 that

J Iaq’" a%’] =% 57]
ot

] ]

=-afa':ﬁx,(t)—j‘a¢%t_ni, (1) de
- t
9%; (0) 9% (t—1)
3;1 ot

- —vx‘ ij (t) dr. [58]

-0

Thes significance of this function ®; can he seen by rewriting
the potential for the uniform flow with the body deflected
{Equation [53]). It becomes

t.
Vi{wy+ _.wa (v, t—1) dv + Ax ((Wy; + ¥o;) + D5 (0)]}. (59]

Equation [55] now reduces to

L___’Z {x]-.p, + %; (-.p,, + Y, — aag,)
1

—xJV’—— 1 + o5 + F;(0))
3%,

t
+J‘(8rp, x,t—1) v
ot

t
v,y J——a"" Gt=T 4. 60]
3'91 St i

3% (t—71) )i, @) dv }
ot

We are concerned with the oscillatory value of the hydro-
dynamic force, but not steady components. The last term [59}
does not involve the {x;}. However, when we integrate the
pressure over S, the fact that S is changing its position in a
steady flow field implies that even this term contributes to the
oscillatory pressure. These pressures will be functions of the
displacement only.

Integrating the pressure over the surface of the ship, we
can write the equations of motion

8
D [lmy b + myp) %5 + by %; + e

i=
t
+ _L Ky (t—1) x; (1) dv] = £, () 161]
where m; and my; are as defined in [40] and (38}, and
)
by, = @V J(w + g — -lp’-) s do (62]
at

¢j X; = Total hydrodynamic and hydrostatic force in the
k't mode, due to displacement x; in the j'5 mode.

Kj(t—1) = J(a% (ta':_t) -V %%, (att— ﬁ) sy do. [63]

There are symmetries which reduce the number of coeffi-
cients. For instance

my, = Qj‘wﬂkdﬂ
B8
Oy
=—p| ¢y da.
J‘ ‘an
8
If we consider the space enclosed by S, the free surface, and an

infinite hemisphere, we can apply Green’s theorem, and we
find

mik=—9‘[%%d0=lﬂu- (64)

Further, if we consider the transverse symmetry of the ship,
the matrix {m; } reduces to

my; o mg © my; ©
[ mes o mg o mgg
-] Mg © Mmgg O mzgs o 65
{my} o mg o mu o (65]
Mms O Mz © Mz o

° mg o mg o mgg _|
Evidently, the matrix {b;,} is of the same form, except that
in general by, #by;. The matrix cjy is even simpler &s surge
and sway displacements provide no restoring forces, hydro-
static or hydrodynamic.

Therefore
] o [+] [+] [+] o
o o o o o o
=l ¢cm © Cig O cgg o© 66
{euck o g O €4 O 46 tsel
C51 o Cs3 o 55 o

o Cgg © Gy © Cgp
The miatrix {Kjy (t)} is of the same form as {by,}.

e



Equations [61], though similar in form to those developed
by Haskind, differ from his in several essentials. Haskind
found no hydrodynamic force proportional to the displacement,
nor did he find the components of b; due to ¢; and ¢,;. He
also found that byg = byg = 0, and by; = — bns. The presence
of 1, in the definition of by, makes it unlikely that such rela-
tions hold here. Further, his kernel in the convolution integral
must differ from that found here. The reason for these diffe-
rences is that Haskind neglected terms in satisfying the boun-
dary condition on the displaced S which are of first order in x;.

With equation [61], we have advanced a long way toward
the second objective of this paper. The dynamics of the bedy
have been separated from the dynamics of the fluid. Further,
the hydrodynamic effects have been separated into well defined
components, each of which can be found (in principle) from
the solution of a Neumann problem or a Cauchy-Poisson pro-
blem. Specifically, we draw the conclusions:

1. The equaticns of motion are universally valid within the
range of validity of our assumption of linearity. That is,
any excitation, periodic or non-periodic, continuous or
discontinuous, is permissible, just so it results in small
displacements from a condition of uniform forward velo-
city. The case of motion with a negative restoring force,
or at least the early history of such motion, is not ex-

~ cluded.

2. The inertial properties of the finid are reflected in the
products my %;. The coefficients are independent of
frequency and of the past history of the motion, so they
are legitimate added masses. Further, they are inde-
pendent of forward velocity.

3. There is an effect proportional to %; which accounts for
some of the damping. This effect vanishes when the
mean forward speed is zero.

4. There is a hydrodynamic “restoring” force {it may be
negative). It is equal to the difference between the hydro-
dynamic forces acting on the ship- due to the steady
flow in the equilibruim position and in the deflected posi-
tion.

5. The effect of past history is embedded in a convolution
integral over %; (1). For sinusoidal motions, this integral
will ordinarily have components both in phase with the
motion and 90° out of phase. The latter component con-
tributes to the damping.

Hydrodynamics of the Impulse Response Function

We now have two systems of relations between the excitation
and the response of the ship: the impulse response relations,
[2], and the equations of motion, [61). The former are of grea-
ter value in describing the response to a given excitation,
while the latter are useful in analyzing the nature of the re-
sponse. Both systems hold for small escillatory motions, so
there are relations between them. We shall examine these.

First, let us start with the equations of motion and derive
the functions {R;;(1)}. Suppuse a ship, moving at constant
forward velocity, to be subjected to a unit impulse in the
it* mode at time t = 0. During the impulse, the equations of
motion reduce to

8
my ik +121m,k R’ = f{ bik

where By, is the Kronedker delta. Suppose the impulse acts
during time At.
Then, since ij A= Ai’ = Ru (+ 0)
[

we have my Ry (+ 0) +IE my Ry, (+ 0) = 8. 167
=1

As i and j range independently from 1 to 6, we have 36 equa-
tions relating the two sets, {my;} and {R;; (0)}. ¥ the equa-

[ 3
‘or ’Elc,k I Ry () dr= 8y

tions of motion are known, equations [67] fix the initial condi-
tions from which the impulse response functions can be deter-
mined. Conversely, if the impulse response functions are
known, these equations yield the apparent masses.
Immediately after the impulse. we have

x;=0(t)

#=%0t0f

i’ = *i (0) + 0(!)

<0
T @%0t—1de=0().

Therefore, considering only zero order terms in t. the equa-
tions of motion yield:

8
my Ry (+0) +sz[mm R;(+0) + by R;;(+0)1 =0  [68)

which relates the coefficients {b;,} to the accelerations
{Ry(+0)}.

Now suppose the ship to be acted upon by a constant unit
force in the ith mode (we assume a positive restoring force to
exist in this mode). Then, after equilibruim is reached,

8
Ec,kx, = bm
Jal

and x; = TRU (x) dt
N o

[69)

In modes without a positive restoring force there is difficulty
as there is no guarantee that all of the coupling coefficients
are necessarily zero. Thus, cg Xg, the sway force due to a yaw
angle xg, will not ordinarily be zero, or even negligible. We
ghall return to this point a little later.

If we rewrite [61] in the form

6 ¢
’zl S K @ Ry g—1) dr = [70)
sl

[
——sz(m’ aik + m,-k) RiE (I) + b]k R;j (I) + Cjk Ru (l)]

we have a set of 36 equations which can either be regarded
as a set of simultaneous integral equations for the kernels
{Kyx (1)}, or a set of simultaneous integro-differential equa-
tions for the impulse response functions {Ry; (1)}.

We have already seen (equation {16)) that if

f; (t) = cos wt
then
X; )= Riie coswt + R;ia sin wt

Substitating these values in the equations of motion, we get

]
— = {[(m; Bjx + myy) ©F Ry® — by 0Ry® — e Ry
j=1

—_ (Rﬁs Kik° + Rﬁ‘ Kjk')] cos ot
+ [(m, 631‘ + m;k) o® Ru' —_— bik (!JRu°— Cix Ru'
—_—w (Rh-' Kik""‘ Ruc Kjk‘)] sin ml} = 81k cos ot )
For any given frequency, this is an identity, so the net
coefficients of cos wt and sin Wt must be zero. This gives us
72 equations xelating the transforms {R;°, Ry} with the
traneforms {Ky° Kp?}-
s
o (Ry Kp® + Ry Kpt)
i=1 '

We have (71a}

8
= 6“‘ +121[(m5 ﬁjk + mik) o? R;f— bjk @ R;j"— S5k Rh"]
8
and —m3 (Riic K,-k" —_ Ru' K.jk') .
j=1

L]
= wiEl[(m, bik + m,k) w? R“' + b;km Ru°——¢5k Ru']' [7“!]



or, equivalently
G
l2'-1{[(““: oy + my) @ — e —w K" Ry
— (b’g + Kﬂf) (1} Ru'} = —8g [72a)
I {(bj + Kp) o Ry¢
+ [(m, ajk + mjk) wt —cn—us Kjg'] Ru'} =0 [72b]
Thus, instead of the integral and integro-differential equations

relating {R;;} with {K;,}, Equation (70), we have systems of
linear equations relating their transforms.

Equations [72] are particularly revealing. If we were to
arbitrarily set the K¢ and K;" to be zero, these are precisely
the equations we would get between the frequency response
functions, R;;® and R;® and the usual Irequency dependent
coefficients. Thus, it is clear how frequency dependency of the
K;x¢ and K;,® is forced onto these coefficients in the conven-
tional representation.

The transforms of {Ry;} also yield useful variants of the
relations already given. For instance, if we let = 0, we have

[}
jzl.cjk Ri;© (0) = 8y (73)
a more gencral form of [69].

Also, noting that Ry (9 ='—2— r o Ryy* (@) cos ot do
X Jo

and Ry =—- 2 I ©? R;; () cos wt dw
T Jo
we have Ru (0) = ij” wRu" do [74&]
T Jo
Ry0)=— 2 r o? Ryt dw (74b)
T Jo
Therefore, [67] and [68] may be written
] [
2 ((m; by, + myy) J o Ryt dw) = — 8y (75)
jul ° 2
and
1] [-3 w
;5 [(m; 8jx + mj) J 0 Ry®do —by foR;tdw] =0  [76)
- o (]

Conclusion

In the foregoing, we.have presented two mathematical
models for representing the response characteristics of a ship.
The equations of motion are more general, as they apply to
the initial stages of an unstable motion. Where the two
systems are equally valid, we have relations which permit us
to pass (at least in principle} from either system to the other.

The impulse response function is certainly the better
representation for computing responses. It integrates all
factors, mechanical, hydrostatic, and hydrodynamic, in the mast
efficient manner possible for computation. However, for this
very reason, it is a poor analytical‘tool for explaining why the
ship responds the way it does or how the response will be
affected if any change in conditions occurs. For instance,
models are ordinarily tested with restraints in certain modes.
A .restraint in any mode will affect the impulse response
function in any coupled mode. Since the ship is free in all
modes, it is evidently improper to use these response functions
to predict full-scale behavior unless they are corrected for the
effect of such restraints.

The hydrodynamic equations do not suffer from this dis-
advantage. Known restraints are readily includable and their
effects determinable. Or a chenge in mass distribution can be

9.

treated independently of the hydrodynamics. It is not uncorna-
mon in model testing to have “incompatiblc™ parasitic inertias
in the diflerent modes. Thus, the towing gear may contribute
a different mass in surge from that in heave. By means of the
equations of motion, the cflect of these inertias upon the
motions can be analyzed. Thus, the equations of motion pro-
vide a more powerful analytic tool for etudying the relation-
ship of the response to the parameters governing that response.

We can conclude, then, that these two representations com-
plement each other; the one for response calculation, the other
for response analysis. In fact, if it is truly practicable to pass
from one representation to the other, several possibilities
present themselves:

a) Model experiments may be designed to obtain maximum
accuracy rather than maximum realism. Hydrodynamic
effeets should be emphasized in the design since other
effects are separately determinable. Thus, one should test
at small gyradius in order that the effect of the inertial
properties of the body itself will be minimized.

b) Restraints are permissible if their character is fully known.
Thus, rather than directly find the impulse response
matrix, in its complete generality, more elementary experi-
ments may be conducted to determine specific terms in the
cquations of motion. We may restrict onrselves to one,
two, or three degrees of freedom and obtrin results which
are completely valid when interpreted by means of the
equations of motion.

¢) The recurring difficulty of handling modes in which the
the restoring force is zero or negative can be easily-over-
come. It is clear that an accurate experimental investi-
gation of these modes would uncover practical difficulties
analogous to the theoretical ones we have discussed. How-
ever, the prablem can easily be solved by imposing known
restraints (i. e. springs) which will restore positive stability.
The effect of these restraints is readily incindable in the
equations of motion, it can be removed by calculation, and
the correct impulse response, free of restraint, can be

determined. (Vorgetragen am 25. Januar 1962)
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