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Just over a decade ago, Weinbium and St. Denis1 presented a compre-

hensive review of the state of knowledge at the end of what we may call

the "classicalt' period in research on seakeeping. Soon after, St. Denis

and Pierson3 opened the "modern" period (some would prefer to call it

the "statistical" period) The studies of the former period were pri-

marily concerned with sinusoidal responses to sinusoidal waves, but the

introduction of spectral techniques opened the door for the discusion of

responses to random waves, both. long and short crested. The construction

of the spectral theory on regular wave theory as a foundation deligbted

us all,, as it presented an apparent justification for the admittedly

artificial studies of the "classical"pperiod.

The activity during this last decade has been spectacular, with fiv-e

major and many minor facilities for seakeeping research being opened.

Hundreds of models have been tested, many full scale trials have been run,

and there has even been some real growth in our knowledge of the subject.

In particular, the spectral tool has been sharpened and tempered by the

mpricistS, and the analysts have made important advances with the rather

frightful boundary value problem. In fact, we have all been forging ahead

so rapidly, that we appear to have forgotten that we are wearing a shoe

which doesn't quite fit. The occasional pain from a misplaced toe is

ignored in our general enthusiasm for progress.

The "shoe" to which I refer is our inathei4tical model, the.forced

representation of the ship response by a system of secd order differential

equations. The shoe is.squeezed on, with no regard for the shape of the

foot. The inadequacy of the shoe is evident in the distortions it must

take if it is to be worn at all. I am referring, of course, to the fre-

quency dependent coefficients which permit the mathematical model to fit

the physical model, (if the excitation is purely sinusoidal, that is).

1Refereâces are listed on page'37

I. INTRODUCTION



But what happens when we dont have a well defined frequency? The

mathematical model becomes almost meaningless. True, a Fourier analysis

of -the exciting force (or encountered wave) permits the modeltô be

retained, but physical realit is almost lost-in the infinit' of equations

req.iired to represent the motion. The all important intuition of the engineer Ic

heavily encumbered with this grotesque baggage.

Let us consider this mathematical model briefly, and restrict ourselves

to a single degree of freedom. To becompletely fair, iet.us consider a

pure, sinusoidal oscilation. The forcing function (if the sytem is linear)

will be sinusoidal, and can be b4ken into two components, one in phase with

the displacement and one 900 out of phase. We further divide the in-phase

component into a. restoring force, proportional to the displacement, and a

remainder. The latter, we call the inertial force, and treat it-as if it

were proportional to the instantaneous acceleration. The out of phase

component, which provides all the damping, we treat as if it were proportional

to the instantaneous velocity.

We can now write an equation, which has the appearance of a differential

equation, relating these various quantities:

+ b(w)cc + c.(w)x- F sin w(t-i-)

But a differential equation is supposed to relate the instantaneous values
of the function-iàvoigêd. If the periodic motl.on continues, this condition
ssatisfied.Of, course, it could just as well be satisfied by the-equation

bk + (c-auP)x = f(t)

or, more generally

(a+d) + bx + (cZIuP)x = f(t)

where d is arbitrary. These are all.equally valid models. One of them

sto be preferred only if it truly relates the displacement and its first



and second derivatives to the excitation. But suppose f(t) were to suddenly

be doubled. Would the instantaneous acceleration be given by.

2f(t)-b.(W)*-C (w)x 9x=
a(w)

in general, no Or suppose the amplitude of the oscillation to be suddenly

increased. Would the out of phase component of f(t), inediately after

the change, beequai to b*? Again, in general, no Thus, at best, b(w)

must be considered as a sort of "apparent" damping coefficient, a(w) is

an "apparent1' apparent mass, and the physical significance of both is

obscure. When the oscillation consists Of several coupled modes, the

so-called coupling coefficients are equally confused and confusing.

If one restricts hImself to a phenomenologiCal investigation of how

a given ship behaves in a given wave system, these difficulties do not

concern us. We simply measure responses to known waves. Most of the work

overtlie past decade has been of this nature, and much of it has been

exceilent However, sooner or later, we are required to consider not "what,t'

but "why," and a mOre analytical technique is demanded. The phenomenological

study can tell us the effect of a change in ship loading on seakeeping

qualities only afterwe have measured it; there is no basis for quantitative

prediction given the results for one gyradius. And tie effect of achange

in form i presented as an isolated result, unrelated and unrelatable to the

geometric parameters involved. We are driven to the use of the ôdél discussed

above,itl an attempt to clarify the relation of cause and effect. However;

such a poor mirror of reality is of little value, and in fact can do mitch

hàt.

I am not the firstto raise this issue. .

The difficulties are well

known, and a number of writers have discussed them. in particular, Tick

has vigorouslY argued against our usual practice, and has. proposed a model

which is very close to the one which will be exhibited here. His case is

based solely upon the general characteristics of linear systems, while we

Shall take advantage of the principles of hydrodynamiS to tie the model

to the phenomena.. More recently, Davis4 has proposed a rational approach

from the point of view of statistics. This is suggestive, particularly

3



since it was the spectral theory of statistics which at first gave weight

to the investigation of responses to periodic waves.

Briefly, the specific objectives of this paper are:

Th exhibit a model. which permits the representation of the

response of a ship (in ix degrees of freedom) to an

arbitrary forcing function. (with excitation in all six modes).

The model. will not involve frequency dependent.parameters.

to separate the various factors governing the response into

clearly identifible units, the effect of each to be separately

determinable. Thus the effect of gyradius will be separable

from added mass. The added mass will be related only to

inertial forces and moments. The nature of the damping force

will be exhibited. The effect of coupling will be d'rivable,

and the effect of "tuning" upon coupling will e determinable.

In this paper we shall not consider the complementary prollem. of the

relation of the exciting .force to the incident wave sstem. This probem

is equally basic, and when ithas been adequetely treated, we will begin

to have a satisfactory framework for the interpretation of our empirical

studies.

4



THE IMPULSE RESPONSE FUNCTION

The basic tool whicI. will be used in this study is an elemcrtary one.,

widely used in other fields, and well known to all engineers; the imuIse

response function. It is difficult to understand jts neglect in our field.

Perhaps as Tick suggests, it is because waves look sinusoidal.

For any stable linear system, if R(t), the response to a unit impulse,

is known, then the response of the system to an arbitrary otce

=
(t-'r)f(T)dT

or

x(t) = R(1)f(t-T)dT
'Jo .

The only asSimptiofl required (aside from convergence) is linearity. El th -

present context this is, of course, a very strong assumption, and the purtests

will argue that it implies a thin ship or the equivalent? However all

experimental data indicate that the assumption is a good working approximation

for small to moderate oscillations of real ships fos We shall hyothesize

that.the assumption holds absolutely. V

Let Ci = 6) be displ4cements in the sx modes of response:

x1 = surge (positive forward)

= sway (positive to port) V

x = heave (positive upward)

x4 roll (positive, deck tO starboard)

= pitch (positive, bow downward)

x6 = yaw (positive, bow to port)

5

Let R..(t) be the response in mode j to a uni-t impulse a

Note that R..() does not necessarily equal zero, though
13

which is not unstable, it will ordinarily be finite. In

f(t) is

c

[I]

[

L

t t 0 in mode i..

in a dampe4 system:

modes without a



Thus, the matrix. IR .(t)I completely characterises the response of the ship.
.1

4-?__ -to an arbitrary excitation.

,ILI A i-e
Before we go on, let us onsider the relation Of these functions to

the usual coefficients. First consider the case where the modes are

uncoupled. Let

'f(t) = F cos(Wt + e) (3]

where s' a phase angle whose value will be assigned later.

R(T) cos[(t-T))4T

= F[cos(wt4) cos uyrdr

-i- sin (wt) $ R sin WTdT]

= [jc. w) cos wt.) + (w) sin (wt+cj)] (41

where

(w) = S0 COS'WT4T [..5a]

and

(u)
= Rk. (i) sin w'rdi

6

restoring force (sway, surge, and yaw) the impulse response will asymptot-

ically approach some va]ue. For other modes, Ri() = 0'.

If the [f(t)}are a set of arbitrary forcing functions, the corresponding

responses are

(t) R.)f..(t-T)dT 2)



are the Fourier cosine and sine transforms of R. (t). We shall call
11

these transforms the frequency response functions., We make the further

reduct ion

x(t) = F. [(RC. + R. sin .). cos wt
I 11 1

Taking

=tan 1] ii

Also

x(t) = F.[(RY.)2 + R)2P cos wt
) 11

f (t)

cos wt - sin wt)
F. c cc,i [8]

i - [(R)2 + (R)2]2

Now consider the usual representation

a.. + b.. + c.x. = f(t)1]. 11 11 1
[9]

Using the x and f. from [7] and [8], it is easily seen that

+ (Re. .

RC in c.) sin wt]
11 l 1]

1
a. = 7 L 1 (RC

)
+ (RS

)
ii ii

R11

R11

= w[(R) +

[lob]

Jos2 £2?YZ_
we have

tLt -"A J

.j
[10 a]
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iT

Amore useful relationship is obtained by setting = 0 in (4]:

x(t) ....

= (w). cos wt + Ri (w sin
i

Thus Ri and Ri ae the amplitudes of the in-phase and out-of-phase

components of the response to a unit amplitude forcing function of frequency

w. The impulse response fUnction s related to these functions by

R(T) $.Rj (w) COswT:d

1(j (w) sin ur. 'dw 112]

C Susing. the Fourier inversion formulas' Note that and R are uniquely
related.. If one is ktown, then by [12] and [5] the other is determined.

Equation [11] can also be written

x (t)

Where

R(w)tan=
cR(w)

ThuS, the response fdl'lows the excitation by the phase tan(R /RC) and
has thi amplitude [ (Ri)2 + '(R) 1. .

,

The response for a given frequency, as determined by the pair of

functions R R
C or alternatively, the pair [(R8 )2 +

tan - (R/R), is a mapping in the frequency domain of the unit response

function, which is defined in the time domain,. As equations' [4] and [11].
permit us to pass from either domain to the other, the two representation,

are completely.'equivalent'. Viewed in' this way, the frequency response

funct:ion is a meaningful, useful,' cOncept. It is only when we try to

atTibute 'a deeper meaning to it, by imbedding it 'in a false time..,domain

model,. that We create confusion.

+ (R)2] cos [wt - e(w] [13]

[14]



23 Now consider the more genera1,cOuPlLe system, with excitations in a

singlemode of the same form as given in Equation [3]. Then

x(t) = F[RJ cos (wt +
sin (wt +

[15]

If we consider the usual repreSeTttati0n

+ bjkij + Cjkxj) =

where fk(t) = 0 for k i, we can develop a system of equations in the

unknownS, aikl bik. (The cik are assumed known from static measurements.)

All 72 of these unknowns are present, in principles except where modes are

uncoupled. To determine them, it is necessarY to consider the responses to

excitations in each of the modes, separatelY. We then have enough equations,

if we separate the in-phase and out_of-phase components, to determine the

coefficients. We have no need for them here, so we defer further discussion

until we have an analogous problem. It is only significant to note that

they can, in principle be determined from the set of impulse response

functionS, and therefore they contain no information which is not derivable

from these functions.

Setting = 0 in [15), we have the system

= cos wt + siit wt

Thus, R and R5 are the amplitudes of the in-phase and out-of-phase

3
responses in the j mode to unit amplitude excitation in the i mode.

As before,

and

11

..z\ RC coswtdwa1(t) ii

\ R sinwtdw
=1.rlo .1.i

= + (R)21 cos (wt-e3)

9

[16)

6

[18)



Where

tan RSJ/RJ
[19]

We have passed Over the question of convergence of the integrals in

Equations [2] and [5]. Consistent with our hypothesis of linearity, we

shall asste Jf(t)J is bounded. There will then be no difficulty unless

JJ'R1(T)d'I does not exist. Unfortunately, in three modes there are no

restoring forces (or.else they are negative), and evidently some care is

needed in treating these cases.,, A negative restoring force implies an

unstable system, whichwould be beyond the scope of this analysis. However,

the case in which ápproaéhes some non-zerO but finite limit can be

treated. The divergence of the integrals can be overcome, if we arbitrarily

assign a value to x(0) We can formally write

x(t) = R(t-T)f(T) dT ) R(-T)f(T) dr+

or

(t) (T)fi(tT) d

+ £ [a(tT) - R.(T)]f(-T) dT + Xj(0) [20]

The second integral converges, .so this expression provides a usable

definition of x(t). Now let f(t) = cos wt. After an integration by

parts, We have

x(t) Sin w(-T) dT

£ [R(tT) - R1 (fl cos u dT + (q)

Our only concern is with the oscillatory compànents of Xj. These are

easily determined by considering the asymptotic form of the above expression

as t becomes.large. R(tT) . and the second integral becomes

constant. If we set

10



then

liin
5x(0) = o

LR(tT)

a

x(t) =;

- Ri(T)J COS wtd

()
= j 'J

cos wt sin wt)

where Ri and are the sine and cosine transforms of R.(t). We know

that x (t) is sinusoidal, with frequency w. Therefore, this expression

holds, not only, for large t, but for all t.

If we define

R1 =_R/w [22a]

R = [22b1

then [16] still holds. Note however, that and Ri are no longer trans-

forms of Rij because these do not exist. Nevertheless, an inversion is

sill possible. Consider

I

[R ('r) - R()] cos w1 dT
1#0 ii

= - [Ri(T)_Rjj(a)I sin (UT - ! R (T) sin wr dT
0 W'O jj

= - =

That is, Ri is the cosine transform of [Ri(t) Rij()] and

Rij(t) = R1() + SO R cos wt dw

Letting t equal zero,

RC dwR(a)
= rr'o ij

11

[21]

[23]



so

Ru (t) =
5

R (cos wt - 1) dw

When R(o) = 0, this reduces to [17a].

Similarly,

[a(T) R(cD)] sin wi- di

I
= -R (CD) /w + 30 Ru COS WT dr

= [Rc - R (CD)]/w
ii ii

Ruj(t) = R(CD) [R18
]

sin WT dw

CD

R(CD) [1
2

S
sin wi

dw 1 cR sin wi dw=
0 W J W'10 ij

CD

sinwtdw
1T 0 ij

since

LCD sin wt
w

dw =

12

IT

2

Therefore, E17b] holds even when 0.

If R1 and Ri are known, it is not difficult to determine whether or

not R(CD) = 0. Equation [23] gives R&) in terms of R

[24]

CD

0

and



Also

Tb

Urn 2j R5 sinwtdwR(cx')
11 0 jj

c1 -

urn al as SflUtdw
t-'°rr'o ij w

1 im
=

= (O- 0
wR

using a well known theorem in Fourier transform theory (Reference 5, page 12).

2.5 When the matrix of impulse response functions is known, our first

objective of finding a representation of the ship response which is free

of frequency dependence is achieved. These functions, which we shall

collectively call the impulse response matrix, can in principle be determined

experimentally.. We shall discuss such an experiment, but we defer these

remarks until we have made some progress toward our second objective.

13
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EQUATIONS OF MOTION

/ The transient response of a ship has been considered by Haskind,b who

attempted an explicit solution of the. boundary value problem. This ,' we

shall not try, as we are concerned only with finding an appropriate form

for the equations of motion to use as 'a basis for the interpretation of

experimental results. We do not agree with certain of Haskind's hypotheses,

and. our resulting equations differ from, his in several important respects.

Our approach is quite different, depending much more upon physical argument

than upon mathematical. analysis.. '' '.
. . ...

Golovato7 carried out an experimental investigation; of the declining

oscillation, motion in pitch.. We shall see later that this is equivalent

to measuring the response. ,to an impulse However, Golôvato was not aware

of the equivalence between the transtent and Steady state responses which

we have. just. discussed,. so he attempted only to match. the coefficients

derived from the transient expe;.iment at the frequency of the declining

oscillation, with those front a forced oscillation experiment at this

frequency. He was handicapped because of the anomalous behavior of the

curve of declining amplitudes. For 'a simple harmonic' oscillator, this

curve isa straight line when plotted on semi-logarithmic paper. His

curves departed. radically from Such a pattern. Re recognized that this

implied, that the mathematical model was faulty,. and attempted.; with some

success, to fit his results. with forms based on Haskind's study.

More recently, Tasai8 has performed declining oscillation' experiments

in heave., using two dimensional fOrms. His results are not significantly

different from those of Gblovato. He matched his results at the 'measured

frequency with. Ursell's theoretical results for forced oscillation. The

agreement is quite good..

Just as the response of' a stable, linear, dynamic system to an arbitrary

force' can be. given in terms.of the dynamic response to an impulsive force,

the response. of our' hydrodyiiamic system can be stated in terms of the hydro-

dynamic response to an' impulsive displacement. 3efore we demonstrate this

14'



.1

principle in the most general case, let.us.verifyit in the simplest case

j, 2CA$E I NO FORWARD SPEED

Let-the ship be. fipating at rest in st.l water. We use a. system of

coordinates .(, ., ),fixed in space, with origin i the free surface

above the center..of graytty of.the .. ,.

At time t = 0, we suppose the ship to be given an impulsive displace-

ment in the
1th

mode, throug the displacement c1. Th time history .of

this impulse is not significant, but. for purposes of visualzatiofl, it may

be considered tconsiSt of a movement at a large, uniform, velocity V1 for

a small timet, ith the motion terminated abruptly at the end of this

time interval. Then. ,.

AX1 v1At.

During the impulse, the flow will have a velocity potential which is

proportional 'to the instataneOUs impulsive

therefore, be written where is a

flow.. will satisfy the .condtions

t#P

d& /(4_..4_ cs---'. on Ca

'i

.

4tOw 4i /n

15

= 5j on

velocity of the ship. It may,

normalized potential for impulsive

b1 jd3 )

= 0 [.26]

where

Si =
' T i..= 1, 2,.3

=r a 1j3 [.281

S [27]



S = surface of the ship

= outwardly directed unit normal
-. th
i = unit vector in j direction

= position vector with respect to c.g. of ship

It is well known8 that the above problem is equivalent to that obtained by

reflecting S in = 0, and taking the surface condition over the reflection

to be the negative of that over S. The solution to the Neuman problem for

the flow outside this ste surface is also the solution to the given

problem in the lower half-space. For non-pathological Surfaces, the

solution exists, and in fact can be computed by means of modern, high-speed

equipment.1°

During the impulse, the free surface will be elevated by an amount

= - v t = -

16

[29]

t.f
After the impulse, this elevation will'dissipate in a radiating disturbance

of the free surface, until ultimately the fluid is again at rest in the

neighborhood of the ship. Let the velocity potential of this decaying wave

motion. be qj(t)xj. It must satisfy the initial conditions

[30]

and

Xj = = -g & on = 0

or

q1(Ci,,O,to)
= -g

C3
[311



Afterward, it satisfies the usual free surface condition,

2 +g =0

and the boundary condition on S,

an

We may take this to hold on the original position of S, introducing errors
of higher order in only. This is a classical problem of the Cauchy-
Poisson type, and there exists an extensive literature on the subject. With

condition [331, it is more difficult, by an order of magnitude, than the
Neumann problem. Nevertheless, it has a well defined solution.

th- Now let the ship undergo an arbitrary small motion in the j mode,

x(t). To the first order, the velocity potential of the resulting flow

will be simply
t\

=
[34]

It is evident that the boundary condition on S is satisfied on the equilibrium
position of S, as the first term provides the proper normal velocity and

= 0 on this boundary. But also, the value of t3/an on the actual
posLtion of S will only differ from its value on S by terms of second and
higher order in Xj and its derivatives, so we may consider that [34] holds

on the actual position of the hull.

To verify that the free surface condition is satisfied, first note
that

a2®
d* d* acp1(0)

= 4r + c(0) + at Xj

çt.
a2cp1(t-T)

+ dT

By [261 and [30], on = 0 this reduces to

17

[321

[331



Also,

or

cp(0)
xi +J

J at -

!_tSt cp1(t-T)

i.(r) dT- 3

Substituting these in the free surface condition

(

St ( a21
) *.() dT. = 0 [35]+ +g

by [311 and [32]. Thus, this condition is also satisfied, and 0 is the

required potential.

The formula [34] is a hydrodynamic analog of [1]. It is quite general,

and can for instance, be used to find the velocity potential due to a

sinusoidal oscillation with arbitrary frequency. It is, of course, necessary

to know the function cp(t)1 and this presents unpleasant difficulties. In

this study we are content that cp(t) exists, and these difficulties do not

concern us.

Of more importance than the velocity potential is the force acting on

the body. The dynamic pressure, in our linearized -model, is simply

p = p

t

p j j Pj(0)Ij + S-
ç1(t-T)

dT

acp.(t-T)

=
j$j + (T) dT [36]

tThe net hydrodynamic force (or moment)acting on the hull in the k mode

18

2ç Ct-i)
X(T) dT



is then given by

where

I-, ft
= £ d + p S d \

ç(tT)

s k "-

cp1(tT)

£00 *(T) d1 £ Skd

d

19

*j(r) dT

- ;rHrjN'

= inertia of the ship in the
th

mode
th

= hydrostatic force in the k mode, due to displace-
-' -' th

ment Xj in the .1 mode.

6jk
= Kroneker delta

8jk
= 1 if i = k, = 0 if j k)

t

=
m1 +

(t-'r) (T) dT [37]

where

mjk=PS*i skda [38]

(-z)

= do [39]

We can now write the equations of motion of the ship which is subjected

to an arbitrary set of exciting forces, [fk(t)3. These will be

6

[(mjôjkmjkj + Cj lcXJ + Kjk(tTxj( dT] = fk(t) [40]

= Xj mjk



CASE II - SHIP UNDERWAY

The case of the ship experiencing small oscillations about a reference

position of mean uniform velocity is much more complex. A pair of functions,

arid p, no longer suffices, although the pattern of ouranalysis will be

similar to that followed in Case I.

We use a fixed reference system, with = 0 on the free surface and

with the c.g. Of the Ship at = 0 at time t 0. We suppose the ship to

be moving with a uniformvelocityV in the direction.

Consider the Cauchy -. Poisson problem defined by [30], [31], [32], and

[331, except that now [33] is to hold on the moving surface S. This problem

has a solution cp1(C1,C2,,t,v) which is, of course, 1denical withthe Ccj

of Case I when V = 0. USing this
q'j

and the obtained in Case I, we may

write the velocity potential for steady motion,

where

V1(C1vt,C2,C3) + $T,t-T dT] [41]

= c (Ci-VT,C2 ,C3 ,t-T)

That this satisfies the boundary condition on S is evident, as Vi1 provides

the necessary instan;aneous normal velocities, and j/n =0 on S for' all.

. The free surface condition :s also satisfied.,'as may be verified by

direct evaluation,, as in Case I..

The velocity potential for tbe flow generated by the. ship moving with

constant velocity, after an impulsive start at time zero, is

v [ui (Cj-Vt,C S0 cp ('r,t-T) dl] [421

The free surface and ship surface conditions are satisfied as before. The

surface elevation at t = 0 is
'



or

*fj

j n
= i1 - on S (displaced)

In three cases, solutions are immediately available. If j = 1

4. (C.-txi ,12 ,iIia) = 4r-xi + O(x1)

is a solution of [431 and [441, since in this case we have simple translation.

Therefore

2].

[44]

[44a]

[45a]

[
=![..V.+,(O,O)]=O

as required, and the initial conditions are met. Therefore, this must be

the stated potential.

We shall need the steady motion velocity potential for the case in

which the ship is displaced by Xj from its reference position. We could,

of course, consider the displaàed ship as a completely new hull, and write

down a potential similar to [41], with new functions $ and q.. Instead,

we determine the corrections to the i and çj discussed above which ae

necessary to satisfy the new boundary conditions. We wish a such that

*1 + Xj = 0 on Ca = 0 [43]

which implies that

lj
= 0 [43a]

Also

- -
= n ij on S (displaced)



Similarly

or

so

II, - -y12-

For j = 3, there is no such simple solution. Noting that the right side

of [44a) is zero on S(original), it is only necessary to find its change

when S is displaced. Then

*i3

[45b]

*i3
- nC3 [46]

If j = 6, the displacement is simply a rotation in yaw. The trans-

lation of a yawed body is equivalent to simultaneous translations parallel

and perpendicular to the body axis. .Theref ore, the solution to [43] and

[44] is

-

( 4'

= *1 + - Ci + *2)
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sie = C - Ci + 1P [471

If .j = 4, or 5, the first term of [44a] becomes

(T3x)] ii

The second term is

= on S (displaced)



which may be written, using values of and 7* evaluated on S (original),

- t74ri+x1(i_3Xr.7)74?i)

If we drop terms of higher order in Lx and use 1:27], condition [44a]

reduces to

.4 -. -4 -4- ij_3 X fl i] [i3Xn.7*i+n(i_3X7)71Pil

or

and

r ,' si 2*i 2'Pi 1
= - [n.i - - T - Ci [48b]

Conditions [43a) and [44a] are sufficient to determine Strictly,

[a1 holds on S (displaced), but we only introduce errors of order (ax)2

if we take the ship surface condition to hold on the original S. Similarly,

[46] and [48) can be applied on the reference position of S.

To corresponds a with

=g forCs=0,t=0 [49]

and with conditions corresponding to [301, [32), and [33] holding. Again

we take the ship surface condition to hold on the reference position of S.

We need yet one more pair of functions. The normal derivative /rz

will differ from zero on S (displaced), to the first order in AX To

correct it, we define a function which satisfies the conditions

ol = _._j. cp(T,t-T) dT on S(displaced)
rt

[50]

4 r ( 1I1i a*1
= - I ana I
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and

4t 0 on C3=0oj

As we do not intend to exhibit solutions for P, we shall not reduce

the right side. We also need a
oj'

with

Poj
=

and the other appropriate conditions also holding.

We now have all the pieces needed to write the velocity potential for

the flow about the ship when displaced by from its reference position.

It will be

1(T,t-T) dT]8 = (T,tT) dT] + Ax

t

+ 'j {oj q,0(T,tT) dT]
}

The 'ms

v($j + AX1)

provide the necessary normaj. velocity in the displaced position. The normal

velocities due to

rt
v tx

oJ
and V)_a, (T,t-T) dT

cancel, and none of the other terms contribute normal velocities of first

order in &. Therefore, the. ship surface condition is satisfied in the

displaced position. Further, each pair of terms in brackets satisfies the

free surface condition, as may be verified by direct evaluation.

We also have all the pieces needed to assemble the potential for the

24
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flow generated by a ship experiencing small oscillatiorm[xj(t)3. It will be

= { [+ (,t-) dT] [Xjlj+$ dT]

t
dT]}

25

L j cp(Tt-T)*(T) [54]

The ship surface condition is satisfied as before, except now the term

provides the additional, components required for the oscillatory

velocities. And again, the bracketed pairs of terms satisfy the free

surface condition.

The dynamic pres.sure at any point in the fluid is given by

6

ol

j CiCi I]- _Y - x ___p - t

t Pcp1(TtT) (rtT)
] dT

(It cp1(T,tT)

}+ dT

1 1 cpx(T,tr)
V2 i_co t

dT) [55]

There are two convolution integrals in [55], one involving the

oscillatory displacement and one involving the oscillatory velocity. These

may be reduced to one by means of an integration by parts. We can go -

either way, but there is some advantage in defining



so that

CT0 1cpj1 cp41

L + -

r11 cp01 1 (0)
1

L+ J x(i-) dT
= x(t) J_ci,

O)

_$
(t_T)

='? Ci -

Equation [55] now reduces to

+ _.t"+ ( j oJ i)

x V2j oci

+S:(cP(Tt_T)
(t-'r)

- V ) j (.) dT}

C
1çt vpj(T,t-T)

dT)

are concerned with the oscillatory value of the hydrodynamic
not steady components. The last term [59] does not involve the
However, when we integrate the pressure over S, the fact that S

p

26

(i) dT

[60]

force, but
[XJ).
is changing

T

[cp(Tt-T) + cp(Tt-T)] dT = cZ(tT0) [56]

The significance of this function cD can be seen by rewriting the potential
f or the uniform flow with the body deflected (Equation [53)). It becomes

{ + (,t-) dT+&[ [59)

and

t

[57]

dT

[58j



its position in a steady flow field implies that even thi1s. term contributes

to the oscillatory pressure. These pressures will be functions of the

displacement, only.

Integrating the pressure over the surface of the ship., we can write

the equation of motion:

th
c1x4 = Total hydrodynamic and hydrostatic force in the k mode,

JL%J th
due to displacement in the .J mode.

Kjk(t_T) =
C( acp.(r,tr)

at

There are symmetries which reduce the number of coefficients. For

instance

m.k = P .Sk d

C
= -p Itj - do

If we consider the space enclosed by S, the free surface, and an infinite

hemisphere, we can apply Greent s theorem, and we find

mJk=-PS
!i.

an
do =

Further, if we consider the transverse symmetry of the ship, the matrix

27

a.(t-T) \\

-v [63]

[.64]

il
[(mJoJk+mjkj + bjk*j + CjkXj

+ K(t-T) *j(T) dT] = fk(t) [61]

where m. and m
k
are as defined in [40] and [381, and

.3 j

S5 ($ljoj ) 5k
d [621= pV



Evidently, the matrix [bik) is of the same form, except that in general

bik # bkj. The matrix cik is even simpler, as surge and sway displacements

provide no restoring forces, hydrostatic or hydrodynamic.

Therefore

The nlatrix[kJk(t)) is of the same form as [bik)

Equations [61], though similar in form to these developed by Haskind,

aaskind found no hydrodynamic force proportional to the displacement, nor

did he find the components of b due to and He also found that

b33 = b = 0, and b = - b. The presence of in the definition of

bik makes it unlikely that such relations hold here. Further, his kernal

in the convolution integral must differ from that found here. The reason

for these differences is that Haskind neglected terms in satisfying the

oundary condition on the displaced S which are of 4rst order in Xj.

With equation [61], we have advanced a long way toward the second

objective of this paper. The dynamics of the body have been separated from

the dynamics of the fluid. Further, the hydrodynamic effects have been
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[Cik) =

0

0

C31

0

c51

0

0

0

0

C43

o

C82

0

0

C33

0

c53

0

0

0

0

C44

0

C64

0

0

C35

0
c55

0

0

0

0

C46

0

C68 [66]

jk3 reduces to

[miki =

m11

o

i

o

'115i

O

0

0

1fl42

0

11152

11113

0

fl15

0

11153

0

0

fl4
0

11144

0

11154

11115

0

D15

0

fl15

0

0

0

111

0

[651



separated into separate, well defined, components, each of which can be

found (in principle) from the solution of a Neumann problem or a Cauchy -

Poisson problem. Specifically, we draw the conclusions:

The equations of motion are universally valid, within the

range of validity of our assumption of linearity. That is

any excitation, periodic or non-periodic, continuous or

discontinuous, is permissible, just so it results in small

displacements from a condition of uniform forward velocity.

The case of motion with a negative restoring force, or at

least the early history of such motion, is not excluded.

The inertial properties of the fluid are reflected in the

products m.kx.. The coefficients are independent of frequency

and of the past history of the motion, so they are legitimate

added masses. Further, they are independent of forward velocity.

There is an effect proportional to which accounts for some

of the damping. This effect 'anishes when the mean forward

speed is zero.
)

There is a hydrodynamic "restoring" force (it may be negative).

It is equal to the difference between the hydrodynamic forces

acting on the ship due to the steady flow in the equilibruim

position and the deflected position

The effect of past history is embedded in a convolution

integral over *(t). For sinusoidal motions, this integral

will ordinarily have components both in phase with the motion

and 900 out of phase. The latter component contributes to

the damping.
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L71. HYDRODYNAMICS OF THE IMPULSE RESPONSE FUNCTION

We now have two systems of relations between the excitationand the

response of the ship, the impulse response relations, [2], and the equa-

tions of motion, [61]. The former are of greater value in describing the

response to a given excitation, while the latter are useful in analysing

the nature of the response. Both systems hold for small oscillatory mo-

tions, so there are relations between them. We shall examine these.

First, let us start with the equations of motion, and derive the

functions fR (t)i. Suppose a ship, moving at constant forward velocity,

to be subjected to a unit impulse in the I mode at time t = 0. During

the impulse, the equations of motion reduce to

k = i 6ii

where 8k is the Kroneker delta. Suppose the impulse acts during time

tt.

Then, since

c. t=b*.=R (+0)
3 3 y

we have

6

"k Rik (+ 0) +m R (+ 0)
8ikjk ij

As i and j range independently from 1 to 6, we have 36 equations relating

the two sets, fmI and [R..(0)1. If the equations of motion are known,

equations [671 fix the initial conditions from which the impulse response

functions can be determined. Conversely, if the impulse response func-

tions are known, these equations yield the apparent masses.

Immediately after the impulse, we have

[67]
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and

= 0(t)

= x (0) + 0(t)
3 j

x. = (0) + 0(t)
3 j

K(T)*(t_T) dT = 0(t)
0

Therefore, considering only zero order terms in t, the equations of motion

yield:

R() +1[mik.cJ() + bik R1(+0)] = 0 [68]

which relates the coefficients [b.k} to the accelerations [R(+0).

Now suppose the. ship to acted upon by a constant unit force in the

jth mode (we assume a positive restoring force to exist in this mode).

Then, after equilibruim is reached,
6

Y = 6ik

jl

= SORij (r)dT

or

6

R(T) dT
= 6ik [69]

j=l

In modes without a positive restoring force there is difficulty, as there

is no guarantee that all of the coupling coefficients are necessarily zero.

Thus, c x
,
the sway force due to a yaw angle x6 will not ordinarily be

zero, or even negligible. We shall return to this point a little later.
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If we rewrite [61] in the form

6t
$iccr) R1. (t-T)dT

= [70]
j=l 6

- [mj 6jk + mjk) i(t) + bjkRjj(t) + Cjk1jj(t)]

j=l

we have a Bet of 36 equations which can either be regarded as a set of

simultaneous integral equations for the kernals fICjk(T)} or a set of

simultaneous integro-differential equations for the impulse response

functions, fR(t)3.

We have already seen (equation [16]) that if

f1(t) = COB (Vt

then

xj(t) = R COB Wt + R sin (Vt

Substituting these values in the equations of motion, we get

+ mjk)UPRIJ - bik WRjJ - cjRjj

cu(R K + R K)] (Vt

+ [mj 8jk + mJk)uPRi - bik T. - Cik R

- w (R - R1 K)] sin

= 8ik
COB (Vt
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Por any given frequency, this is an identity, so the net coefficients of
cos wt and sin wt must be zero. This gives us 72 equations relating the
transforms IRi., R1.3 with the transforms

Kjk}.

We have,

or, equivalently,

6

{[c 6Jk+mjk)W_cjk_wKfk]R

C S

- (bik + Kjk)w Rij} = 6ik

S C C B
cn)(R Kik + Kik)

6
C

= 6ik
[(mj 8Jk + mk)aR - bJkw R - Cik Rj]

j=l
6r-i C C S S

- w' (R Kik - R1 Kik)/- ij
j=l

6

= w jk + mjk)ciP R + b U) R
C - cjkRijjk ij

j=l

Y{bJk+ K) U) Rjj

+ [mj 6jk + mjk)U? - Cjk_ K;klRij} = 0 [72bJ

Thus, instead of the integral and integro-differential equations relating

[R) with [KjkI Equation [70],we have systems of linear equations relating

their transforms.

The transforms of [RJ also yield useful variants of the relations
already given. For instance, if we let U) = 0, we have

[71a1

[71b]

[7 2a]
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and

we have

= 4Cw R1 dw

i(0) =- _LJ °? RC dw
TI o

and

6
Cj R(0)

= 6ik

.1=1

a more general form of 169].

Also, noting that

* (t)
= __.j' W R (w) cos wt dw

.1 ir0 ii

(t) =- uP
iT Jo

R(W) COB wt dw

Therefore, [67] and (68] may be written

6

8jk + mjk)5 w R dw]

[m 8jk +
j=1

rr
- T °ik
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(74a]

[74b]

[75]

[76]

0
Rj dw - bjk$w R dW] = 0



'5 CONCLUSION

In the foregoing, we have presented two mathematical models for rep-

resenting the response characteristics of ship. The equations of motion

are more general, as they apply to the initial stages of an unstable motion.

Where the two systems are equally valid, we have relations which permit us

to pass (at least in principle) from either system to the other.

The impulse response function is certainly the better representation

for computing responses. It integrates all factors, mechanical, hydro-

static, and hydrodynamic, in the most efficient manner possible for corn-

utation. However, for this very reason, it is a poor analytical tool

for explaining why the ship responds the way it does, or how the response

will be affected if any change in conditions occurs. For instance, models

are ordinarily tested with restraints in certain modes. A restraint in

any mode will affect the impulse response function in ay coupled mode.

Since the ship Is free in all modes, itis evidently imprto use these

response functiotto predict full scale behavior, unless they are corrected

for the effect of such restraints.

The hydrodynamic equations do not suffer from this disadvantage.

Known restraints are readily includable, and their effects determinable.

Or a change in mass distribution can be treated independently of the

hydrodynamics. It is not uncommon in model testing to have "incompatiblet'

parasitic inertias in the different modes. Thus, the towing gear may con-

tribute a different mass in surge from that in heave. By means of the

equations of motion, the effect of these inertias upon the motions can be

analyzed. Thus, the equations of motion provide a more powerfulanalytical

tool for studying the relationship of the response to the parameters

governing that response.

We can conclude, then, that these two representations complement each

other; the one for response calculation, the other for response analysis.

In fact, if it is truly practicable to pass from one representation to the

other, several possibilities present themselves:
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a) Model experiments may be designed to obtain maximum accuracy,

rather than max1miim realism. Hydrodynamic effects should be

emphasized in the design, since other effects are separately

determinable. Thus, one.should test at small gyradius, in

order that the effect of the inertial properties of the body

itself will be minimized.

Restraints are permissible, if their character is fully known.

Thus, rather than directly find the impulse response matrix,

in its complete generality, more elementary experiments may be

conducted to determine specific terms in the equations of

motion. One may restrict himself to one, two, or three degrees

of freedom, and obtain results which are completely valid, when

interpreted by means of the equations of motion.

The recurring difficulty of handling modes in which the

restoring force is zero or negative can be easily overcome.

It is clear that an accurate experimental investigation of

these modes would uncover practical difficulties analogous

to the theoretical ones we have discussed. However, the

problem can easily be solved by imposing known restraints

(i.e. springs) which will restore positive stability. The

effect of these restraints is readily includable in the

equations of motion, it can be removed by calculation, and

the correct impulse response, free of restraint, can be

determined.
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ABSTRACT

'' After a review of the deficiencies of the usual equat.ions of motion for an

oscillating ship, two new representations are given. One makes use of the impulse

response function and depends only upon the system being linear. The response is

given as a convolution integral over the past history of the exciting force with the

impulse response function appearing as the kernel. The second representation is

based upon a hydrodynarnic study, and new forms for the equations of motion are

exhibited. The equations resemble the usual equations, with the addition of con-

volution integrals over the past history of the velocity. However, the coefficients

in these new equations are independent of frequency, as are the kernel functions

in the convolution integrals. Both representations are quite general and apply to

transient motions as well as periodic. The relations between the two representa-

tions are given. The treatment considers six degrees of freedom, with linear

coupling between the various modes.
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The Impulse Response Function and Ship Motions
W. E. Cuinmina

Introduction
Just over a decade ago, Weinbium and St. Denis) presented

a comprehensive review of the -state of knowledge at the end
of what we may call the "classical" period in reaeardt on sea-
keeping. Soon after, St. Denis and Pierson2) opened the
"modern" period (some would prefer to call it the "statistical"
period). The studies of the former period were primarily con-
cerned with sinusoidal responses to sinusoidal waves, but the
introduction of speceral tediniques opened the door for the
discussion of responses to random waves, both long and short
crested. The construction of the spectral theory on regular
ways they as a foundation delighted us all, asit presented
an apparent justification for the admittedly attificial studies
of the "ilassical" period.

The activity during this last decade has been spectacular,
with five major and many minor facilities for seakeeping re-
seardi being opened. Hundreds of models have been tested,
many full scale trials have been run, and there has even been
some real growth in our knowledge of the subject. In particu-
lar, the spectral tool has been sharpened and tempered by the
empiricists, and the analysts have made important advances
with the rather frightful boundary value problem. In fact, we
have aU been forging ahead so rapidly that we appear to have
forgotten that we are wearing a shoe whidi doesn't quite fit.
The occasional pain from a misplaced toe is ignored in our
general enthusiasm for progress.

The "shoe" to whidi refer is our mathematical mode], the
forced representation of the ship response by a system of
second order differential equations. The shoe is squeesed on,
with no regard for the shape of the foot. The inadequacy of
the shoe is evident in the distortions it must take if it is to be
worn at all. I am referring, of course, to the frequency de-
pendent coefficients whith permit the mathematical model to
fit the physical model (if the excitation is purely sinusoidal,
that ía).

But what happens when we don't have a well defined
frequency? The mathematical model becomes almost meaning-
less. True, a Fourier analysis of the exciting force (or encoun-
tered wave) permits the model to he retained, but physical
reality is almost lost in the inflaLty of equations required to
represent the motion.

Let us consider this mathematical model briefly, and restrict
ourselves to a single degree of freedom. To be completely fair,
let us consider a pure, sinusoidal oscillation. The forcing func-
tion (if the systemic linear) will be sinusoidal, and can be
broken into two components, one in phase with the displace-
ment and one 90° out of phase. We further divide the in-phase
component into a restoring force, proportional to the displace-
ment, and a remainder. The latter we call the inertial force,
and treat it as U it were proportional to the instantaneous

1) References are listed at tim end of the paper

acceleration. The out-of-phase component, whith provides all
the damping, we treat as if it were proportional to the in-
stantaneous velocity.

We can now write an equation, whidt has the appearance of
a differential equation, relating these various quantities:

a(w) +b(w)± + c(to)x F08in(un+ a).
But a differential equation is supposed to relate the instan-
taneous values of the functions involved. If the periodic
motion continues, this condition is satisfied. Of course, it could
just as well be satisfied by the equation

ha + (c - an2) x = f (t)
or more generally

(a±d)+b*+(c+dw2)x=i(t)
where d is arbitrary. These are all equally valid models. One
of them isto be preferred only if it truly relates the displace-
ment and its first and second derivatives to the excitation in
some more general way. But suppose f (t) were to be.auddenly
doubled. Would the instantaneous acceleration be given by

2f(t)b()ic(w)x
a (to)

In general, no! Or suppose the amplitude of the oscillation to
be suddenly increased. Would the out of phase component of
f(t), immediately after the diange, be equal to ha? Again, in
genera], no. Thus, at best, b (to) must be considered as a sort
of "apparent" damping coefficient, a (to) as an "apparent"
apparent mass, and the physical significance of both is
obscure. When the osi4lInHn consists of several coupled
modes, the so-called coupling coefficients axe equally con-
fused and confusing.

If we restrict ourselves to a phenoinenological investigation
of how a given ship behaves in a given wave system, these dif-
ficulties do not concern us. We simply measure responses to
known waves. Moat of the work over the past decade has been
of this nature, end much of it has been excellent. However,
sooner or later, we are required to consider not "whet" but
"why," and a more analytical technique is demanded. The
phenomenological study can tell us the effect of a change in
ship loading on seakeeping qualities only after we have mea-
sured it; there is no basis for quantitative prediction given
th results for one gyradius. And the effect of a change in form
is presented as an isolated result, unrelated and unrelatable
to the geometric parameters involved. We are driven to the
use of the model discussed above in an attempt to clarify the
relation of cause and effect. But audi a poor mirror of reality
is of little value, and in fact can do much harm.

I am not the first to raise this issue. The difficulties are well
known and a number of writers have discussed them. In parti-
cular, 'fleha) has vigorously argued against our usual practice
and has proposed a model which is very close to the one which
will be exhibited here. His case is based solely upon the gene-
ral characteristics of linear systems, while'we shall take ad



vantage of the principles of hydrodynamics to tic the model
to the phenomena. More recently, Davis) has proposed a ratio-
nal approach from the point of view of statistics. This is sug-
gestive, particularly since it was the spectral theory of stati-
stics which first gave weight to the investigation of responses
to periodic waves.

Briefly, the specific objectives of this paper are:
To exhibit a model which permits the representation of
the response of a ship (in six degree of freedom) to
an arbitrary forcing function (with excitation in all six
modes). The model will not involve frequency dependent
parameters.
To separate the various factors governing the response
into clearly identifiable units, the effect of eadi to be
separately determinable. Thus the effect of gyradius will
be separable from added mass. The added mass will be
related only to inertial forces and moments. The nature
of the damping force will be exhibited. The effect of
coupling will be derivable and the effect of "tuning"
upon coupling will be determinable.

In this paper we shall not consider the complementary pro-
blezn of the relation of the exciting force to the incident wave
system. This problem is equally basic, and when it has been
adequately treated, we will begin to have a satisfactory frame-
work for the interpretation of our empirical studies.

The Impulse Response Function
The basic tool which will be used in this study is an elemen-

tary one, widely used in other fields and well known to all
engineers: the impulse response function. It is difficult to
understand its neglect in our field. Perhaps as Tick suggests,
it is because waves look sinusoidal.

For any stable linear system, if R (t), the response to a unit
impulse, is known, then the response of the system to an arbi-
trary force f (r) is

t
x (t) = j' R (t - v) I (c) dv

-
or (1)

x (t) = fR (r) f (t - v) dv.

The only assumption required (aside from convergence) is
linearity. In the present context this is, of course, aery strong
assumption, and the purists will argue that it implies a thin
ship or the equivalent. However all experimental data indicate
that the assumption is a good working approximation for small
to moderate oscillations of real ship forms. We shall hypo-
thesize that the assumption holds absolutely.

Let Xj, (I = 1,...., 6) be displacements in the aix modes
of response:

= surge (positive forward)
x2 = sway (positive to port)

= heave (positive upward)
x4 = roll (positive, deck to starboard)
x5 = pitch (positive, bow downward)
Xe yaw (positive, bow to port)

Let Rij (t) be tho response In mode j to a unit impulse at t = (1
in mode L Note that R1 (00) does not necessarily equal zero,
though in a damped system which is not unstable, it will ordi-
narily be finite. In modes without a restoring force (sway,
surge, and yaw), the impulse response will asymptotically
approach some value. For other modes, R (00) = 0.

If the {fi (r)} are an arbitrary set for forcing functions, the
corresponding responses are

2

Before we go on, let us consider the relation of these func-
tions to the usual coefficients. First consider the case where
the modes arc uncoupled. Let

fi(t) = Ficos(wt + ci) (3]

where ci is a phase angle whose value will be assigned later.

xt(t) = Ft j'Rii(e) cos(w(tt) + e)d't

= F1 [cos (WI + Ct) S Rn cos wvdc
0

+ sin (en + ci) j'Rt sin covdv]

= Fi (R11c (Ii)) cos (wt + et) + Ru! (w) sin (on + es))
(4]

where

where5 = ____

Rite (m) = $ R (v) cos ortdr (5a]

Ru5 ((0) = SR (e) sin wvdt [5b)

are the Fourier cosine and sine transforms of (t). We shall
call these transforms the frequency response functions. We
make the further reduction

x(t) = F1[(R110cosE1 + R115sine1) coatst
+ (R115 cos c, - R11' cos Li) sin ofl]

Taking tan B1 = Rn5/Ri,C (6]

we have x1 (t) = F1 [(R)2 + R11c)!J'/5 cos cat. [7]

Also
f (t)

F1 (R11t cos cut R116 sin cat)
(8)

((R1j)2 + (R11C)n]'/S

Now consider the usual representation
a11 + b1; + c1; = f1(t) - [91

Using the x1 and f1 from (7] and [8], it.Is easily seen that
I R-. 1

a1 = i/wI c1 "
I liOn)

[ (R)t + (R11)5j

IlOb]
0) [(R11c)! + (R.1')2)

A more useful relationship is obtained by setting e1 =0
in (4):

= R(o) cos cot + Rjj(w) sincot - (11]

Thus R,c and Ru5 are the amplitudes of the in-phase and out-
of-phase components of the response to a unit amplitude forc-
ing function of frequency ca. The impulse response function
is related to these functions by

2('R (v) - 1 R1(u) coscar de
0

__$Rii5(O3)5in(01CdO) [12]

using the Fourier inversion formulas. Not that R11 c and R116
are uniquely related. If one is known, then by [[2] and [51,
the other is determined.

Equation [11) can also be written

R112 + (Rj1)91' cos (cat - a1 (cc)] (13]

tan E =
Re5 (w)

[14)
R110(co)xj (t) = $ R11 (r)fi (I - v) dc. [2)

i1 0
Thus, the matrix {R (t)} completely characterizes the response Thus, the response follows the excitation by the phase
of the ship to an arbitrary excitation, tan4 BIR,j') and has the amplitude ((R,,0)S + (R0)2]".



The response for a given frequency, as determined by the
pair of functions R.c, or alternatively, the pair [(R1)2 +
(R)5J", tan4 (R,1/R1c), is a mapping in the frequency do-
main of the unit response function, whidi is defined in the
time domain. As equations 141 and [11] permit us to pass from
either domain to the other, the two representations are com-
pletely equivalent. Viewed in this way, the frequency response
function is a meaningful, useful concept- It is only when we
try to attribute a deeper meaning to it, by imbedding it in a
false time domain model., that we create confusion.

Now consider the more general, coupled system, with exci-
tations in a single mode of the same form as given in equation
131. Then

xj (t) = F1 [R3 cos (cot + e1) + R,5 sin (cot + a1)). (15)
If we consider the usual representation

a
(a1 + bjkij +C3kXJ) =

and

I '
where k (t) 0 for k # i, we can develop a system of equa-
tions in the unknowns, sJI, b - (The 0jk are assumed known
from static measurements.) All 72 of these unknowns are
present, in principle, except where modes are uncoupled. To
determine them, it is necessary to consider the responses to
excitations in each of the modes separately. We then have
enough equations, if we separate the in.phase and out-of-phase
components, to determine the coefficients. We have no need
for them here, so we defer further discussion until we face
a closely related problem. It is only significant to note that
they can, in principle, be determined from the set of impulse
response functions, and therefore they contain no information
which is not derivable from these functions.

Setting E 0 in (15), we have the system
x1(t) Rjj COBcot + R38 sin cot. (16)

Thus, R1 and R115 are the amplitudes of the in-phase and
out.of-phase responses in the j mode to unit amplitude ex-
citation in the th mode. As before,

R11 (t) = 1.. R.11C cos Cot dts

=
R5sincotdw

= [(Rc)z + (R1B)9'hl cos (cot - a)

where tanej =
We have passed over the question of convergence of the inie-

grals in equations [21 and [51- Consistent with our hypothesis
of linearity, we shall assume f1 (t) us bounded. There will then

be no difficulty unless flR13 ( dt does not existS Unfortunate-

ly, in three modes there are no restoring forces (or else they are
negative), and evidently some care is needed in treating these
cases. A negative restoring force implies an unstable system.
which would be beyond the scope of this analysis. However,
the case in which R11 approaches some non-zero but finite limit
can be treated. The divergence of the integrals can be over-
come if we arbitrarily assign a value to x, (0). We formally
write

t 0
xj(t) = fR11 (t_t) f1(t) dtSRu (.c) f1 (-c) dz+xj (0)

°'xj (t) = $R11 (-a) f1 (tt) d

3

+ $[R1 (t + t) Ru (t)] f() dt + xj (0.) (20]

The second integral converges, so this expression provides a
usable definition of xj Ct). Now let f, (t) = cos cot. After an inte-
gration 1,y parts, we have

; (t) = 1/co 5 1L (t) siflW(tT) dr

+ 5 [R1 (t + a) - Ru (a)) cot we dt + ; (0).

Our only concern is with the oscillatory components of x1.
These are easily determined by considering the asymptotic form
of the above expression as t becomes large. Ru (t+t)+Rjj(00),
and the second integral becomes constant. if we set

x1 (0) = - jRjj (t + a) Ru (t)] cos cot dc

then

Xj (t) = -.! (kf cos cot + Rjcsinwt) (21]

where ItJ and are the sine and cosine transforms of
u (t). We know that x (t) is sinusoidal, with frequency U).

Therefore, this expression holds not only for large t but for
all t

If we define
Re = - [22a)

(22b1

then [16] still holds. Note however, that Rue and R,f are no
longer transforms of R1 because these do not exist. Neverthe-
less, an inversion is still possible. Consider

j'[Rjj (*R(°°))cos wtda

=Rjj(a)_Ru(00)Isinwtl_--- kij(t)sinoYedt
0) C

0

Ru0.
That is, R110 is the cosine transform of (R1 (t) Ru (00)] and

R11(t} = R11(co) + - .$Rticcoswtdw

Letting equal zero,

-

(23]

so Ru(t) = _L$Rif(coswt_1)dw [24]

When R,1 (00) = 0, this reduces to [17a).

Similarly,

35 [Ru (-a) - Ru (00)] sin err d-a

= R11 (00)1w + $ ucos Wt dt
0)

0
= (1111C_..R,j(oO)]/w

and

R(t) = Ru(00) + _L$[Rs Ruoo)1
sin cot dco

0)
0

[ha)

(17b1

(18]



R(oc)[1_!-$!!!- d.o} +_!_$R1aintstdw

0 0

__ $ R1f sin WI dw

since

I 5jul01 It
I dw-Jw 2

0

Therefore, (iTh) holds even when R1 (00) '/' 0.
If R1c and R111 are known, it is not difficult to determine
whether or not R11 (00) = 0. Equation [23) gives R (00) in
terms of R,10.
Also

= lim __$Ri?1sinwtdw

2 1 since- dw= urn
t-0o 2t) W

C
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Case 1 No Forward Speed
Let the ship be floating at rest in 8till waler. We use a

system of coordinates (ta, tp, ), fixed in space, with origin
in the free surface above the center of gravity of the ship.

At time t = 0, we suppose the ship to be given an impulsive
displacement ax1 in the Jill mode. The time history of this ito-
pulse is not significant, but for purposes of visualization, it
may be considered to Consist of a movement at a large, uni
form, velocity v3 for a small time t, with the motion terini
nated abruptly at the end of this time interval. Then

= v1 at..
During the impulse, the flow will have a velocity potential

which is proportional to the instantaneous impulsive velocity
of the ship. It may, therefore, be written vj1j, where aPj is a
normalized potential for impulsive flow. ap will satisfy the con-
ditions:

on =0 (261

aap/an = s on S (21]

where s = n i1 j = 1, 2,3
(28)j4,5,6

S = surface of the ship

n outwardly directed unit normal

= unit vector in Jill direction

r = position vector with respect to c. g. of ship.

It is well known) that the above problem is equivalent to that
obtained by reflecting S in 0 and taking the surface con-
dition over the reflection to be the negative of that over S. The
solution to the Neumann problem for the flow outside this com-
posite surface is also the solution to the given problem in the
lower half-apace. For non-pathological surfaces, the. solution
exists, and in fact can be computed by means of modern, high.
speed equipment'°)

During the impulse, the free surface will be elevated by an
amount

at3

= ax1. (291

After the impulse, this elevation will dissipate in a radiating
disturbance of the free surface, until ultimately the fluid is
again at rest in the neighborhood of the ship. Let the velocity
potential of this decaying wave motion be qt (t) axj. It must
satisfy the initial conditions

t1,t2,t3,O)O (30)

and gij _sj!-1xi ont 0

or api(t1,,o)
(311

8t st_s

Afterward, it satisfies the usual free surface condition

L--g!!L=O. (32)
8t 8t

and the boundary condition on S

(33]=
an

We may take this to hold on the original position of S, only
introducing errors of higher order in x3. This is a classical
problem of the Caudty.Poisson type, and there exists an exten-
sive literature on the subject. With condition (33], it is more
difficult, by an order of magnitude, than the Neumann pro-
blem. We assume that it has a solution.

C

= ftc (0) = hm (25]

using a well known theorem in Fourier transform theory (Refe.
rence 5, page 12).

en the matrix of impulse response functions is known,
our first objective of finding a representation of the ship re-
sponse whidi is free of frequency dependence is achieved. These
functions, which we shall collectively call the impulse response
matrix, can in principle be determined experimentally.

Equations of Motion
The transient response of a ship has been considered by

Haskindt), who attempted an explicit solution of the boundary
value problem. This, we shall not try, as we are concerned
only with finding an appropriate form for the equations of
motion to use as a basis for the interpretation qf experimental
results. We do not agree with certain of Haskind's hypotheses,
and our resulting equations differ from his in several important
respects.

Golovato') carried out an experimental investigation of the
declining oscillation motion in pitch. However, Golovato
was not aware of the equivalence between the transient
and steady state responses which we have just discussed,
so he attenipted only to match the coefficients derived from
the transient experiment, at the frequency of the declining
oscillation, witb those from a forced oscillation experi.
meat at this frequency. Re was handicapped because of the
anomalous behavior of the curve of declining amplitudes. For
a simple harmonic oscillator, this curYe is a straight line when
plotted on semi-logarithmic paper. His curves departed radi.
caily from soda a pattern. Re recognized that this implied that
the mathematical model was faulty, and attempted, with some
success, to fit his results with forms based on Haskind's study.

More recently, Tasa?) has performed declining oscillation
experiments in heave, using two dimensional forms. His results
are not significantly different from those of Golovato. He
matched his results at the measured frequency with Ursell's
theoretical results for forced oscillation. The agreement is
quite good.



Now let the ship undergo an arbitrary small motion in the
1th mode, xj (I). To the first order, the velocity potential of the
resulting flow will be simply

0 = *ip +Jqij (tx) i (c) dv. (34)

It is evident that the boundary condition on S is satisfied on
the equilibrium position of S, as the first term provides the
proper normal velocity and &jI an 0 on this boundary. But
also, the value of ae / an on the actual position of S will only
differ from its value on S by terms of second and higher order
in xj and its derivatives, so we may consider that (34) holds
on the actual position of the hull.

To verily that ihe free surface condition is satisfied, first
note that

ae d2*, di, aw.(0)

3t2 dtt dt 3t

32q,(t_t)

J 3t'

By (261 and (30], on t,3 0 this reduces to

ae 3cj(0)
+

at J at

Also, ae 3tp
+ (! (tv) (T) dt.

a j a

Substituting these in the free surface condition

ae
+ g (i9) + g

at a3 \ a at,
S

J
(!!i + x (v) dx = 0+ at! at3,

by (31] and [32]. Thus, this condition is also satisfied, and 0
is the required potential.

The formul [34] is a hydrodynantic analog of [1). it is quite
generaL and can, for instance, be used to find the velocity
potential due to a sinusoidal oscillation with arbitrary fre-
quency. It is, of course, necessary to know the function Wj (t),
and this presents unpleasant difficulties. In this study we are
content that q (t) exists, and these difficulties do not concern
us-

Of more importance than the velocity potential is the force
acting on the body. The dynamic pressure in our linearized
model is simply

ae
p =

or = ijap + ç1 (0) i + J
at

*, (c) dr

-00

= + S
&cp (cv)

*j (t) dv. [36)

-00

The net hydrodynainic force (or moment) acting onthe hull
in the kth mode is then given by

Fji JPskda

[35!

5

where
qi (t,t-t) = qi1 (tVv,ts,ts,tt,V) -

That this satisfies the boundary condition on S is evident, as
'lip1 provides the necessary instantaneous normal velocities,
and 8ç/ n = 0 on S for all v. The free surface condition is
also satisfied, as may be verified by direct evaluation, as in
Case I.

The velocity potential for the flow generated by the ship
moving with constant velocity, after an impulsive start at time
zero, is

S V [api (t1 - Vt, tqJ + q (v,t - r) dc] [42]

The free surface and ship surface conditions are,satisfied as
before. The surface elevation at = 0 is

p- .- = --- V - + 'Pt (0,0)1 =0
[ g 9t s° g J

I

ij (r) dv= e ç.1P2s1da + Q$skdo$
a,1(tx)

at
8 8

(t-t)
at

-00

= x,mk [371

where mJk (. i(J5JdU [38)

8

Kik (x) p j 9t
5k do.

r a,1
[391

We can now write the equations of motion of the ship whida
is subjected to an arbitrary set of excising forces, {fk (t)).
These will he
6 t
I [(mi 6jk + mit) Ij + c55 x + JKk(tr) ij (t) dv) = fk(t}jI - [40)

where
= inertia of the ship in the th mode

ct x hydrostatic force in the kth mode, due to displace-
ment x1 in the Jth mode

ôjk = Kronedcer delta (ö I if j It, 0 if j # It).

Case 11 Ship Underway
The case of the ship experiencing small oscillations about

a reference position of mean uniform velocity is ninth more
complex. A pair of functions, ip1 and ç, no longer suffices,
although the pattern of our analysis will be similar to that
followed in Case I.

We use a fixed reference system, with t3 = 0 on the free
surface and with the c.g. of the ship at t = 0 at time t 0.
We suppose the ship to be moving with a uniform velocity V in
the t1 direction

Consider the Cauday-Poisson problem defined by [30], [31),
(32], and (33), except that now [33) is to hold on the moving
surface S. This problem has a solution qi (t1 . t, t,V) whidi
is, of course, identical with the p of Case I when V = 0.
Using this çj and the ap obtained in Case I, we may write the
velocity potential for steady motion,

9 = V [ (t - Vt, , ) ±qi (v, t - c) dv] [41]



as required, and the initial conditions are met. Therefore, this
must be the stated potential.

We shall need the steady motion velocity potential for the
case in whidi the ship is displaced by Axj from its reference
position. We could, of course, consider the displaced ship as
a completely new hull an4 write down a potential similar to
141], with new functions i and ç. Instead, we determine the
corrections to the and ,i. discussed above, which are
necessary to satisfy the new boundary conditions. We wish a

'l'ij such that
I,i + AxjllIij = 0

which implies that on t0 [43a]

Aim

8n
('Pt + Ax1 'Vii) = n on S (displaced) [44)

or

Axj n 11 - on S (displaced) [44a

In three cases, solutions are immediately available. If j = I

'Vi (ti - Ax, 1P2, p) = - Ax1 + 0 (Ax1)

is a solution of [431 and [44] since in this case we have simple

translation. Therefore

(45a]

Similarly

outsO 1431

('ct(r.L_r)dr on S (displaced)
an

[50)

and 1p0=0on0 [51]

As we do not intend to exhibit solutions for 10j, we shall not
reduce the right side. We also need a with

at
and the other appropriate conditions also holding.

We now have all the pieces needed to write the velocity
(46] potential for the flow about the ship when displaced by Ax1

from its reference position. It will be

8 V {[wi + Sq,j (;Lx) dx]

[45b]

For j 3, there is no audi simple solution. Noting that the
right side of [44a) is zero on S (original), it is only necessary

to find its change when S is displaced. Then

Ax3 - Ax3___---
anat2

or ap3 a
an anat2

If j = 6, the displacement is simply a rotation in yaw. The
translation of a yawed body is equivalent to simultaneous trans-
lations parallel and perpendicular to the body axis. Therefore,

the solution to [43) and [441 is

'Pt (t1 + t2Ax,tjAxs,ts)
Axe'Vs(ti +tsAxe,tstiAxo,Ps)

[47]

att at2
If j = 4, or 5, the first term of [44a] becomes

En + Axj (ijXn))
The second term is

- = n ViP1 on S (displaced)
a11

which may be written, using values of n and Vip evaluted

on S (original),

-; + Ax (i1 3xnfl (V'Vi + Ax1 (ij_3xrV)V'Vi]
1.1 we drop terms of higher order in Ax, and use (27], con-

dition [44a] reduces to

6

a

+ Axj ('Pu + Sq'u, (;tT)]

+ Ax1 I'P0i + qu0j (r, t - t) dr)) [53]

Theterms V(ip+Ax1'V1j)
provide the necessary normal velocity in the displaced position.
The normal velocities due to

V Axj and VJ p (r,tt) dx

cancel, and none - of the other terms contributes normal
velocities of first order in Ax,. Therefore, the ship surface
condition is satisfied in the displaced position. Further, each
pair of terms in brackets satisfies the free surface condition,
as may be verified by direct evaluation.

We also have all the pieces needed to assemble the potential
for the flow generated by a ship experiencing small oscillations
{xj (t)}. ItwiH be

8 = v{tip1 +Sq (t,tx)dx]
a

+[x iP +j'q (n,tx)x1(t) dx]

[52]

a11 _.'ç7ip (i.3xr-V) V'PtI
an

or
ap14_ 1-.. (aiii1 rawi\ a1_{fl\i2j 2i) t2j

(48a]

and

- F- I' a'V1 a1\ 3'Pi a1'j
[48b1

Conditions (43a] mid [44a1 are sufficient to determine ipj
Strictly, [44a] holds on S (displaced), but we only introduce
errors of order (Ax,)2 if we take the ship spriace condition to
hold on the original S. Similarly, (461 and (48] can be applied
on the reference position of S.

To 'Pij corresponds a qi.,, with

.!!L - g for t3 = 0, t = 0 (49)

and with conditions corresponding to (301, [32], and (33] hold-
ing. Again we take the ship surface condition to hold on the
reference position of S.

We need yet one more pair of functions. The normal den-
vative a1 Ian will differ from zero on S (displaced) to the
first order in Axj. To correct it, we define a function which
satisfies the conditions

t



.11

94's (0)
xj (t)

S
8j (t - r)

- a

I
(0) - . a1 (t -

a1 J a

The significance of this function l'j can be seen by rewriting
the potential for die uniform flow with the body deflected
(Equation [53]). It becomes

V { ip + 5qi (r, tt) dv + £xj [('Pu + 'Pej) + 'I (0)]). (59)

Equation [55] now reduces to

D = + x,V + -
at1 /

- xj V .--- [ip + ip,, + (0)]
at1

= -Vxj

+v

+1(53 lP0j + $p (t, t - tj Xj (t) dv])

C I

+ Sc1 (r,tv) (t) dv] (54]
i_I -

The ship 5urface condition is satisfied as before, except now
the term i provides the additional components required
for the oscillatory velocities. And again, the bradceted pairs
of terms satisfy the free surface condition.

The dynamic pressure at any point in the fluid is given
by

= - ± { v cp + p0) - x V(!±li. +

+ Ij fltj - xV

a,11 (v,tt) a,03 (;t_v)l
+

at
jx(r)dt

atII
x (v) dv}+ S

3p

dv_ytL + vJ'tat1

There are two convolution integrals in (55], one involving
the oscillatory displacement and one involving the oscillatory
velocity. These may be reduced to one by means of an inte-
gration by parts. We can go either way, but there is some
advantage in defining

0

.1 [Pu (v,tv) + Poi (c, tc)) dr = j (tv0 [56]

so that
to

I !!L.!3i dv"
j & at at

and

. x (r) dv -
at at]

xj (c) dr

Xj (v) dv.

[55]

7

C/ac3(v,tv) az1(I) )±t)dt
}j a at

-
I

+vS- dv.
at1 at

We are concerned with the oscillatory value of the hydro-
dynamic force, but not steady components. The last term [59]
does not involve the {x3}. However, when we integrate the
pressure over S, the fact that S is dianging its position in a
steady flow field implies that even this term contributes to the
oscillatory pressure. These pressures will be functions of the
displacement only.

Integrating the pressure over the surface of the ship, we
can write the equations of motion

Z [(mjöjk+mjI,J itj +bJk*J+cJkxj
i-i

+ S Kik (tr) Ij (v) dr] = 1k (t) 161]

where m3 and mJk are as defined in [40) and [38], and
Cl= QVJ (,1],1 + IPOI_IE_) 5k do

8

ClkXi Total hydrodynaunic and hydrostatic force in the
kth mode, due to displacement x3 in the mode.

Kjk(tr)
$
(3 : v (I_I))

do. [63]

There are symmetries which reduce the number of coeffi-
cients. For instance

m3k Q$llJlskda

= _Q$
8

If we consider the apace enclosed by S, the free surface, and an
infinite hemisphere, we can apply Green's theorem, and we
find

m3kp ('pdar=mtj.
an

S

Further, if we consider the transverse symmetry of the ship,
the matrix {mJk} reduces to

{cjk} =

Evidently, the matrix (bik) is of the same form, except that
in general b # b. The matrix cp is even simpler as surge
and away displacements provide no resLoring forces, hydro-
static or hydrodynamic.

Therefore

-

o 0 0 0 0 0
o 0 0 0 0 0
C81 0 C53 0 Cm 0
o C42 0 C44 0 C45

C51 0 0 ce 0
0 C62 0 C4 0

The thatrix (Kik (t)) is of the same form as (bik) -

(60]

[62]

[64]

[661

{m}
0

0

o
mss 0
o
m42 0

m51 o m53 0 flt35 0
0 ni52 0 m 0

m4 0

o m15 0
m24 0 'j
o m53 0 [65]



Equations (611, though similar in form to those developed
by Haskind, differ from his in several essentials. Haskind
found no hydrodynamic force proportional to the displacement,
nor did he find the components of b1 due to 1j and ij. He
also found that b53 = bse = 0, and bss - bat. Thepresence
of pj in the definition of bjt makes it unlikely that such rela-
tions hold here. Further, his kernel in the convolution integral
must differ from that found here. The reason for these diffe-
rences is that Haskind neglected terms in satisfying the boun-
dary condition on the displaced S which are of firet order in x1.

With equation [61], we have advanced a long way toward
the second objective of this paper. The dynamics of the body
have been separated from the dynamics of the fluid. Further,
the hydrodynamic effects have been separated into well defined
components, each of whidi can be found (in principle) from
the solution of a Neumann problem or a Cauthy-Poisson pro-
blem. Specifically, we draw the conclusions:

The equations of motion are universally valid within the
range of validity of our assumption of linearity. That is,
any excitation, periodic or non-periodic, continuous or
discontinuous, is permissible, just so it results in small
displacements from a condition of uniform forward velo-
city. The case of motion with a negative restoring force.
or at least the early history of such motion, is not ex-
cluded.
The inertial properties of the fluid are reflected in the
products mit j. The coefficients are independent of
frequency and of the pasthistory of the motion, so they
are legitimate added masses. Further, they are inde-
pendent of forward velocity.
There is an effect proportional to f which accounts for
some of the damping. This effect vanishes when the
mean forward speed is zero.
There is a hydrodynantic "restoring" force (it may be
negative). It is equal to the difference between the hydro-
dynamic forces acting on the ship due to the steady
flow in the equilibruhn position and in the deflected posi-
tion.
The effect of past history is embedded in a convolution
integral over x (t). For sinusoidal motions, this integral
will ordinarily have components both in phase with the
motion and 90° out of phase. The latter component con-
tributes to the damping.

Hydrodynamics of the Impulse Response Function
We now have two systems of relations between the excitation

and the response of the ship: the impulse response relations,
[2), and the equations of motion, [61). The former are of grea-
ter value in describing the response to a given excitation,
while the latter axe useful in analyzing the nature of the re-
sponse. Both systems hold for small oscillatory motions, so
there are relations between them. We shall examine these.

First, let us Stan with the equations of motion and derive
the functions {Rj1 (t)). Suppose a ship, moving at constant
forward velocity, to be subjected to a unit impulse in the
ith mode at time t = 0. During the impulse, the equations of
motion reduce t

S

mk Xk + I m 5j
i-I

where is the Kr9nedcer delta Suppose the impulse acts
during time At.

ii At = (+ 0)Then, since

mk(+ 0) +lmjkltIJ (+ 0) = [67)we have

As i and j range independently from ito 6, we have 36 equa-
tions relating the two sets, {m,j} and {k (0)} If the equa-
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tions of motion are known, equations (671 fix the initial condi-
tions from which the impulse response functions can be deter-
mined. Conversely, if the impulse response functions ore
known, these equations yield the apparent masses.

Immediately after the impulse, we have
= 0(t)

(0) (t)
= I (0) + 0(t)

lKu(11i(tt) d = 0(t).

Therefore, considering only zero order terms in t. the equa-
tions of motion yield:

mk R,-t(+ 0) + limit Ru(+ 0) + bjt jj(+ 0)) = 0 168)

which relates the coefficients {b} to the accelerations
(ltu(+0)).

Now suppose the ship to be acted upon by a constant unit
force in the th mode (we assume a positive restoring force to
exist in this mode). Then, alter equilibruim is reached,

I"'
and x1= SRts (v) dv

0r I cit .f R11 (v) dw = 8 [69)
11 0

In modes without a positive restoring force there is difficulty
as there is no guarantee that all of the coupling coefficients
are necessarily zero. Thus, cto x6, the sway force due to a yaw
angle xe-will not ordinarily be zero, or even negligible. We
shall return to this point a Little later.

If we rewrite [61] in the formStI $ K1 (r) 1t: (tt) dc = (70)
11 a

.l[(mj flit + m) 1tj (c) + bJ (I) + c Rtj (t)]

we have a set of 36 equations which can either be regarded
as a set of simultaneous integral equations for the kernels

{K (t)), or a Set of simultaneous integro-differential equa-
tions for the impulse response functions {R (t)}.

We have already seen (equation [16)) that if
f, (t) = ens tot

then
xj (t) Rccoson + R;j' sin tot

Substituting these values in the equations of motion, we get
6

(((mi fl + mit) mzRuc_bjtcoRus_CjkRtf
1-i- to (Rt15 K,t° + R., Kit')) cos tot

+ ((mj 8jk +mjt)w!Rti'_bitwRu°_cikRu
(0 (JtO Ku' RCKjt')l sin un} 8, ens tot

For any given frequency, this is an identity, so the net
coefficients of cos tot and sin cot must be zero. This gives us
72 equations relating the transforms {R1°, Rue) with the
transforms {K510, K1).

We have colcR4? K3 + Ru° Kj8) (71a]

= +I((znj fip + m3k) co R° bit 03 RU'Ct

and (Rj10K1t°Rjj'Kt5)

= coIL(mj 5jk + mp,J to2 R18 + b1 wR° cit Ru'] [71b)



or, equivalently

I {[(m 6jk + mik) w2 - cit - w Ka'] Rue

172a]

I {b + Kite) O)R,
+ ((m1 6jk + mik) w cw K1'j R'} = 0 (72b]

Thus, instead of the integral and integro-differeniial equations
relating {R13} with (K3}, Equation (70], we have systems of
linear equations relating their transforms.

Equations [721 are particularly revealing. If we were to
arbitrarily set the Kite and Kpf to be zero, these are precisely
the equations we would get between the frequency response
functions, R11e and Ri? and the usual frequency dependent
coefficients. Thus, it is clear how frequency dependency of the
Kike and Kit' is forced Onto these coefficients in the conven-
tional representation.

The transforms of {R31} also yield useful variants of the
relations already given. For instance, if we let a, 0, we have

Ic Rc (0) = ¼ (73)

Conclusion
In the foregoing, we - have presented two mathematical

models for representing the response diaracteristica of a ship.
The equations of motion are more general, as they apply to
the initial stages of an uiiatable motion. Where the two
systems are equally valid, we have relations wlidi permit us
to pass (at least in principle) from either system to the other.

The impulse response function is certainly the better
representation for computing responses. It integrates all
factors, medianical, hydrostatic, and hydrodynamic, in the most
efficient manner possible for computation. However, for this
very reason, it is a poor analyticaltool for explaining why the
ship responds the way it does or how the response will be
affected if any diange in conditions occurs. For instance,
models are ordinarily tested with restraints in certain modes.
A -restraint in any mode will affect the impulse response
function in any coupled mode. Since the ship is free in all
modes, it is evidently improper to use these response functions
to predict full-scale behavior unless they are corrected for the
effect of audi restraints.

The hydrodynamic equations do not suffer from this dis-
advantage. Known restraints are readily includable and their
effects determinable. Or a diange in mass distribution can be
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treated independently of the hydrodynamics. It is not uncom-
mon in model testing to have "incompatible" parasitic inerties
in the different modes. Thus, the towing gear may contribute
a different mass in surge from that in heave. By means of the
equations of motion, the effect of these inertias upon the
motions can be analyzed. Thus, the equations of motion pro-
vide a more powerful analytic tool for studying the relation-
ship of the response to the parameters governing that response.

We can conclude, then, that these two representations com-
plement eadi other; the one for response calculation, the other
for response analysis. In fact, if it is truly practicable to pass
from one representation to the other, several possibilities
present themselves:

Model experiments may be designed to obtain maximum
accuracy rather than maximum realism. Hydrodynantic
effects should be emphasized in the design since other
effects are separately determinable. Thus, one should test
at small gyradius in order that the effect of the inertial
properties of the body itself will be mninfmized.
Restraints are permissible if their diaracter is fully known.
Thus, rather than directly find the impulse response
matrix, in its complete generality, more elementary experi-
ments may be conducted to determine specific terms in the
equations of motion. We may restrict ourselves to one.
two, or three degrees of freedom and obtain results whidi
are completely valid when interpreted by means of the
equations of motion.
The recurring difficulty of handling modes in whidi the
the restoring force is zero or negative can be easilyover.
come. It Is clear that en accurate experimental investi-
gation of these modes would uncover practical difficulties
analogous to the theoretical ones we have discussed. How-
ever, the problem can easily be solved by imposing known
restraints (i.e. springs) whidi will restore positive stability.
The effect of these restraints is readily includable in the
equations of motion, it can be removed by calculation, and
the correct impulse response, free of restraint, can be
determined. (Vorgetragen am 25. Januar 1962)
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a more general form of [69].

Also, noting that k,(t) co R1f (w)

and Ru(t)'"'.
$

coR1jt(w}coswtdw
it

coa cot thu

[74al

[74b]

[75]

0 [76]

have !tjwe (0) -- R1f dw
it Jo

2 c°
it11 (0) -- 1 wRdwit J,

Therefore, (67) and [68] may be written
S

I [(mj bjk + mit) .1w R1" dw] = _2L ö,,
i-I o 2

and
B

I ((m1 b1 + mjk) ,f w2 R11 dw - bit Sw R,1 dwji_I 0 0


