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The in vivo measurement of replication fork
velocity and pausing by lag-time analysis

Dean Huang 1, Anna E. Johnson 2,3, Brandon S. Sim1, Teresa W. Lo 1,
Houra Merrikh 2,3 & Paul A. Wiggins 1,4,5

An important step towards understanding the mechanistic basis of the central
dogma is the quantitative characterization of the dynamics of nucleic-acid-
bound molecular motors in the context of the living cell. To capture these
dynamics, we develop lag-time analysis, a method for measuring in vivo
dynamics. Using this approach, we provide quantitative locus-specific mea-
surements of fork velocity, in units of kilobases per second, as well as repli-
some pause durations, somewith the precision of seconds. Themeasured fork
velocity is observed to be both locus and time dependent, even in wild-type
cells. In this work, we quantitatively characterize known phenomena, detect
brief, locus-specific pauses at ribosomal DNA loci in wild-type cells, and
observe temporal fork velocity oscillations in three highly-divergent bacterial
species.

At a single-molecule scale, all cellular processes are both highly sto-
chastic aswell as subject to a crowded cellular environmentwhere they
typically compete with a large number of potentially antagonistic
processes that share the same substrate1,2. In spite of these challenges,
essential processes must be robust at a cellular scale to facilitate effi-
cient cellular proliferation. Understanding how these processes are
regulated to achieve robustness remains an important and outstanding
biological question3–9. However, a central challenge in investigating
these questions is the quantitative characterization of the activity of
enzymes in the context of the living cell. For instance, although single-
molecule assays can resolve the pausing of molecular motors on
nucleic-acid substrates in the context of in vitro measurements10,11,
performing analogous measurements in the physiologically-relevant
environment of the cell poses a severe challenge to the existing
methodologies12.

In this paper, we develop an approach, lag-time analysis, that
facilitates the quantitative characterization of dynamics, with resolu-
tion of seconds, in the context of the living cell. The approach exploits
exponential growth as the stopwatch to capture dynamics in expo-
nentially proliferating cellular cultures13 and unlike competing
approaches, it can circumvent the difficulties and potential artifacts

introduced by cell synchronization14 or fluorescent labeling. Lag-time
analysis exploits the same data as marker-frequency analysis, but it
directly measures the locus-specific fork velocity, in units of kilobases
per second, and the duration of replisome pauses in seconds. Lag-time
analysis facilitates detailed comparisons to be made, not just between
different loci in a single cell, but between wild-type and mutant cells
as well as between bacterial species. Unlike a recent competing ana-
lysis, no detailed stochastic models or simulations are employed15. We
apply this approach to analyze three model bacterial systems:
Bacillus subtilis, Vibrio cholerae, and Escherichia coli. In B. subtilis, we
analyze transcription-induced replication antagonism which is the
main determinant of replisome dynamics in a set of mutants with
retrograde (reverse-oriented) fork motion. An analysis of V. cholerae
provides evidence that fork number is an important determinant of
fork velocity, but also provides clear evidence that fork velocity is time
dependent. To explore this time-dependence, we analyze the fork
velocity in E. coli which provides strong evidence for temporally
oscillating fork velocity, consistent with a recent report15. Finally, we
demonstrate that these oscillations are observed in all three organ-
isms. In summary, the observed phenomena demonstrate the central
importance of characterizing central dogma processes in the context
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of the living cell, where their activity is regulated andmodulated by the
cellular environment.

Results
The bacterial cell cycle
The bacterial cell cycle is divided into three periods16,17: The B period is
analogous to the G1 phase of the eukaryotic cell cycle, corresponding
to the period between cell birth and replication initiation. TheCperiod
is analogous to the S phase (and earlyM phase) in which the genome is
replicated and simultaneously and sequentially segregated18. The D
period is analogous to a combination of phases G2 and late-M, corre-
sponding to a period of time between replication termination and cell
division, including the process of septation (i.e., cytokinesis).

The demographics of cell-cycle periods of exponentially growing
bacterial cells were first quantitatively modeled by Cooper and
Helmstetter in an influential paper19 and then refined by multiple
authors20–22. In the Methods Section, we generalize these models
to demonstrate that marker-frequency analysis quantitatively
measures the cell-cycle replication dynamics. The key results are
summarized below.

Lag-time analysis
Our strategy will be to use exponential growth as the stopwatch with
which we resolve cell-cycle dynamics. In short, cells with greater cell-
cycle progression (i.e., age) are depleted in the population, equivalent

to an independent, exponentially proliferating species that lags new-
born cells by a time equal to its age13 (see Fig. 1 for a schematic illus-
tration of the approach). Lag-time analysis is the measurement of this
time lag. In principle, this approach can be applied to characterize the
dynamics of any biological molecules or complexes; however, for
concreteness, we will focus on replication dynamics. This process is of
great biological interest and next-generation sequencing provides a
powerful tool for digital, as well as genome-wide, quantitation of the
number of genomic loci.

In marker-frequency experiments, the number of each sequence
N(ℓ) in a steady-state, asynchronously growing population is deter-
mined bymapping next-generation-sequencing reads to the reference
genome. This marker frequency can be reinterpreted as a measure-
ment of the lag time τ(ℓ):

τð‘Þ= 1
kG

ln
N0

Nð‘Þ , ð1Þ

where N(ℓ) is the observed number of the locus at genomic position ℓ,
N0 is the observed number of the origin in the culture, and kG is the
growth rate. This relation can be understood as a consequence of the
exponential growth law13.

In a deterministically timed model, the measured lag time would
be equal to the replication time relative to initiation. In reality, the
timing of all processes in the cell cycle is stochastic. We previously

Fig. 1 | Lag-time analysis. a Sample preparation. An asynchronous culture in
steady-state exponential growth is harvested at time t = t0. b Quantitation of
demographics. Cell abundance is quantified. For analyzing replication dynamics,
cell quantitation is performed by next-generation sequencing. c Measurement of
lag time. Thedottedblack line represents the culture at t = t0. Cells with greater cell-
cycle progression (i.e., age) are depleted relative tonewborncells. For each cell age,
the relative abundancedetermines the lag time.Their abundance is equivalent to an

exponentially proliferating species that lags newborn cells by a time equal to its
age. For instance, the nine-o'clock cell is at a relative abundance of 0.59 with a lag
time of 3/4ths the mass-doubling time T. Schematically, start from the observed
number of nine-o'clock cells, and follow that lineage horizontally (back in time)
until reaching the newborn cell, born at t = t0 − τ (blue dotted line). For a stochastic
cell cycle, lag time measures the exponential mean of the stochastic time,
Equation (2).
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showed that the measured lag time is related to the distribution of
durations in single cells by the exponential mean13:

τi � � 1
kG

lnEt expð�kGtÞ, ð2Þ

where Et is the expectation over stochastic time t with distribu-
tion t ~ pi( ⋅ ).

Determination of replisome-pause durations
Replisome-pause durations or the lag time difference between the
replication of any two loci can be computed using the difference of lag
times between the two loci:

Δτij � τj � τi =
1
kG

ln
Nð‘iÞ
Nð‘jÞ

: ð3Þ

We emphasize that the observed difference in lag time is the expo-
nential mean of the stochastic time difference, which has important
consequences for slow processes.

Determination of the fork velocity
For fast processes, like single-nucleotide incorporation, the exponen-
tial mean leads to a negligible correction (seeMethods); therefore, the

fork velocity has a simple interpretation: it is the slope of the genomic
position versus lag-time curve:

vð‘Þ � d‘
dτ

=
kG

αð‘Þ , ð4Þ

or equivalently it is the ratio of the growth rate to the log-slope:

αð‘Þ � � d
d‘

lnNð‘Þ, ð5Þ

which can be directly determined from the marker frequency.

Lag-time analysis reveals V. cholerae replication dynamics
To explore the application of lag-time analysis to characterize repli-
cation dynamics, we begin our analysis in the bacterial model system
Vibrio cholerae, which harbors two chromosomes: Chromosome 1
(Chr1) is 2.9MbandChromosome2 (Chr2) is 1.1Mb. Theorigin ofChr1,
oriC1, fires first and roughly the first half of replication is completed
before the replication-initiator-RctB-binding-site crtS is replicated,
triggering Chr2 initiation at oriC223–25. Chr1 and Chr2 then replicate
concurrently for the rest of the C period (see Fig. 2a).

To demonstrate the power of lag-time analysis, we compute the
marker frequency, lag time, and fork velocities. To measure pause

Fig. 2 | Replication fork dynamics in V. cholerae. a Chromosome organization
in V. cholerae. V. cholerae harbors two chromosomes Chr1 and Chr2. oriC2 initiates
shortly after the crtS sequence is replicated on the right arm of Chr1. Data color
represents chromosome identity (1 or 2) and arm (R or L) and is consistent
throughout the panels. bMarker frequency for V. cholerae grown on LB. Repetitive
sequences that cannot be mapped result in gaps. c Fork velocity is locus-
dependent. The fork velocity is shown as a function of genomic position with an
error region. Statistically significant differences in the fork velocity are observed
between loci. There is significant bilateral (i.e., mirror) symmetry around the origin.

Data are presented as mean values ± standard error of the mean (SEM). d A visual
representation of the relation between the log-marker-frequency and lag-time
plots: Fold at the origin and rotate. e Lag-time analysis. The replication forks start at
the origin at lag time zero and then accelerate and decelerate synchronously, as the
forksmove away from the origin. The consistency in armposition is amanifestation
of bilateral symmetry. f Fork velocity as a function of lag time. In addition to
bilateral symmetry, after Chr2 initiates, all four forks show roughly consistent
velocities. Data are presented as mean values ± SEM.
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times and replication velocities, we generate a piecewise linear
model with a resolution set by the Akaike Information Criterion
(AIC). The AIC-optimal model for fast growth (in LB) had 39 knots,
spaced by 100 kb, generating 38 measurements of locus velocity
across the two chromosomes. The replication dynamics for growth in
LB is shown in Fig. 2. For tabulated velocities, see Supplemen-
tary Data 1.

The measurement of the duration of fast processes
We focus first on the duration of time between crtS replication and the
initiation of oriC2. Fluorescence microscopy imaging reveals that this
wait time is very short26, but it is very difficult to quantify since, the
precise timing of the replication of the crtS sequence is difficult to
determine by fluorescence imaging; however, this is a natural appli-
cation for lag-time analysis. To measure the difference in lag time
between crtS replication and oriC2 replication, we use Equation (3) to
compute the replication time difference from the relative copy num-
bers. For this analysis, we generate a piecewise linearmodel with knots
at the crtS and oriC2 loci. The measured lag time is

Δτpause = 3:5 ±0:1min , ð6Þ

a pause duration which is clearly resolved in the lag-time plot shown
in Fig. 2e.

The fork velocity is locus dependent
It is qualitatively clear from the fork-distance-versus-time plot (Fig. 2e)
that the fork velocity is locus dependent, since the trajectory is not
straight. To test this question statistically, we compare the 39-knot
model to the null hypothesis (constant fork velocity), which is rejected
with a p-value of p≪ 10−30 and therefore the data cannot be described
by a single fork velocity (see Table 1). The resulting velocity profiles are
shown in Fig. 2c, f.

Bilateral symmetry supports a time-dependent mechanism
Our understanding of the replication process motivated two general
classes of mechanisms: (i) time-dependent and (ii) locus-dependent
mechanisms. Time-dependent mechanisms, like a dNTP-limited repli-
cation rate, affect all forks uniformly and therefore loci equidistant
from the origin should have identical fork velocities:

vð‘Þ= vð�‘Þ, ð7Þ

where ℓ is the genetic position relative to the origin. In contrast, in a
locus-dependent mechanism, like replication-conflict-induced slow-
downs, the slow regions are expected to be randomly distributed over
the chromosome. In this scenario we expect to see no bilateral
symmetry between arms (see Methods).

A bilateral symmetry between the arms is clearly evident in the
data (themirror symmetry about the origin in Fig. 2b, c and ismanifest
in the lag-time analysis as the coincidence between the left and right
arm trajectories and velocities in Fig. 2e, f. To quantitate this sym-
metry, we divide the variance of the fork velocity into symmetric and
antisymmetric contributions (see Supplementary Method 4). A time-
dependent mechanism would generate a fS = 100% symmetric var-
iance, whereas a locus-dependent mechanism would be expected to
generate equal symmetric and antisymmetric variance contributions
(fS = 50%). V. cholerae Chr1 and Chr2 have fS = 76% symmetry, con-
sistent with a time-dependent mechanism playing a dominant but not
exclusive role in determining the fork velocity (see Table 1).

The replisome pauses briefly at rDNA in B. subtilis
To explore the possibility that locus-dependent mechanisms could
play a dominant role in determining the fork velocity profile, we next
characterized the fork dynamics in the context of replication conflicts,
where the antagonism between active transcription and replication,
have been reported to stall the replisome by a locus-specific
mechanism9,27. In B. subtilis, there are seven highly transcribed rDNA
loci on the right arm and only a single locus of the left arm. Consistent
with the notion of rDNA-induced pausing, the ter locus is positioned
asymmetrically on the genome, at 172° rather than 180°, leading the
right arm of the chromosome to be shorter than the left arm (see
Fig. 3a). In spite of the difference in length, both arms terminate
roughly synchronously, implying that the average fork velocity is lower
on the right arm, consistent with putative fork pausing at the rDNA
loci. Are these conflict-induced pauses present in wild-type cells where
the replication and transcription are co-directional? We have pre-
viously reported evidence based on single-molecule imaging that they
are12, but there is as of yet no other unambiguous supporting evidence.

To detect putative short pauses at the rDNA loci in wild-type
B. subtilis, a low-noise dataset was essential. We therefore examined a
number of different datasets, including our own, to search for a
dataset with the lowest statistical and systematic noise. A marker-
frequency dataset for a nearly wild-type strain growing on minimal
media was identified for which the noise level was extremely low (see
Supplementary Method 3B). The lag-time analysis is shown in Fig. 3b.
Replication pauses should result in discrete steps in the lag time;
however, no clearly defined steps are visible in the lag-time plot. The
pauses are either absent or too small to be clearly visible without
statistical analysis.

To achieve optimal statistical resolution, we used the AIC model-
selection framework28,29 on four competing hypotheses: In Model 1,
fork velocities are constant and equal on both arms with no pauses. In
Model 2, fork velocities are constant but unequal on the left and right
arms with no pauses. InModel 3, fork velocities are constant and equal
on the left and right arms with equal-duration pauses at each rDNA

Table 1 | Fork number and velocities under different growth conditions

Fork statistics Statistical significance

Organism Growth condition Doubling time: C period: Fork number: Velocity mean: std: Symmetry: p-value:
T (min) C (min) NF v (kb s−1) σv (kb s−1) fS p

E. coli LB 19 30 3.8 1.3 0.19 84% ≪10−30

M9 69 46 1.2 0.85 0.12 59% 6 × 10−12

V. cholerae LB 22 31 4.3 0.82 0.27 76% ≪10−30

M9 50 32 1.5 0.84 0.28 70% ≪10−30

B. subtilis rrnIHG S7 64 42 0.82 1.1 0.68 50% ≪10−30

MOPS+CA 44 40 1.2 0.86 0.45 45% ≪10−30

MOPS 50 41 1.1 0.99 0.52 57% ≪10−30

Increasing fork number by increasingcellmetabolismdoes not consistently reduce fork velocity. Fork velocities in fast growth arehigher in E. coli and lower inV. cholerae. The statistical significance
column shows the p-value for the null hypothesis of constant fork velocity (likelihood ratio test). For more details on how these values are calculated, see Supplementary Methods 4–6.
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locus. In Model 4, fork velocities are constant and unequal on the left
and right arms with equal-duration pauses at each rDNA locus. AIC
selected Model 3 (equal arm velocities with rDNA pauses) and a pause
duration of:

Δτpause = 17 ±8 s , ð8Þ

is observed. The pausemodels were strongly supported over the non-
pause models (ΔAIC23 = 4.3 and ΔAIC43 = 9.4). Therefore, statistical
analysis supports the existence of short slowdowns (i.e., pauses) at the
rDNA, even if these features are not directly observable without
statistical analysis. In higher-noise datasets, the statistical inference
was ambiguous.

Strong, head-on conflicts lead to long pauses
Although we have just demonstrated that endogenous co-directional
conflicts are detected statistically, they do not lead to a clear unam-
biguous signature. In contrast, strong, exogenous head-on conflicts in
which the replisome and transcriptional machinery move in opposite
directions can lead to particularly potent conflicts and even cell
death3–9,30. The ability to engineer conflicts at specific loci facilitates
the use of lag-time analysis for measuring the duration of the replica-
tion pauses.

To measure the pause durations due to head-on conflicts, we
analyze the marker frequency from a strain, rrnIHG(inv), generated by
Srivatsan and coworkers with three rDNA genes (rrnIHG) inverted so
that they are transcribed in the head-on orientation. Marker-frequency
datasets were reported for this strain in two growth conditions:

minimal supplemented with casamino acids, in which the strain grows
at an intermediate growth rate, and unsupplemented minimal media,
in which the strain grows at a slow growth rate31. (Mutant cells cannot
proliferate in rich media, presumably because the transcription con-
flicts are so severe31.) In both slow and intermediate growth conditions,
a clearly resolved step at the head-on locus is observed in the marker-
frequency and lag-time analysis (Fig. 3b), exactly analogous to the
simulated pause (see Methods).

To determine the pause durations in the two growth conditions,
we again consider a model with an unknown pause duration (at the
inverted rDNA locus) and constant but unequal fork velocities on the
left and right arms. The observed lag-time pauses are

Δτpause =
3:3 ±0:7min (slow)

9:7 ±0:9min (intermediate)

�
, ð9Þ

for the slow and intermediate growth rates, respectively.
Although lag-time analysis reports a precise pause duration, it is

important to remember that the observed lag time corresponds to the
exponential mean of the stochastic state lifetime, Equation (2),
including cells that arrest and therefore never complete the replication
process. Equation (18) accounts for the pause generated by this
arrested cell fraction. Srivatsan and coworkers report that 10% of the
cells are arrested in intermediate growth, which accounts for 8.3min of
the lag time, leaving an estimated pause time of Δτpause = 1.4 ± 0.9min
for non-arrested cells, which is roughly consistent with the pause time
observed in slow growth conditions.

Fig. 3 | B. subtilis fork dynamics and transcriptional conflicts. a Chromosomal
structure for wild-type and mutant B. subtilis strains. The ter region in wild-type
B. subtilis is positioned at 172°, rather than 180°, making the right arm shorter than
the left. In rrnIHG(inv), the rrnIHG locus is inverted so that it is transcribed in a head-
on orientation with respect to replication. In 257°::oriC, the origin is moved to 257°,
resulting in a short left arm that terminates at the terminus and a long right arm that
replicates initially in the retrograde direction, before replicating the residuum of
the right arm in the antegrade orientation. Data color (blue or red) represents the
arm of the chromosome (R or L) and is consistent throughout the panels. Gray

segments represent replication in the retrograde direction. b Lag time in wild-type
cells. Replication on the right arm (red) is delayed relative to the left arm (blue) by
multiple endogenous co-directional rDNA loci. cHead-on conflicts lead to pausing.
The rrnIHG genes are inverted so that transcription of the rDNA locus is in the head-
on direction. A longer lag-time pause is observed at intermediate growth rates (CA,
purple) than slow growth (minimal, red). Fork velocities elsewhere are roughly
consistent. d Retrograde fork motion is slow. The retrograde fork motion in R is
slow compared to antegrade replication in A1. Late antegrademotion in A2 is faster
than early antegrade motion in A1. Source data are provided as a Source Data file.
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Slow retrograde replication in B. subtilis
Are all conflict-induced slowdowns consistent with long pauses at a
small number of rDNA loci? Wang et al. have previously engineered a
head-on strain, 257°::oriC, with less severe conflicts by moving oriC
down the left arm of the chromosome to 257°32 (see Fig. 3a). The
resulting strain has a very short left arm and a very long right arm, the
first third of which is replicated in the retrograde (i.e., reverse to wild-
type) orientation. This retrograde region contains only a single rDNA
locus. All other regions are replicated in the antegrade (i.e., endo-
genous) orientation.

Consistent with the analysis of Wang et al., we position knots to
divide the chromosome into three regions with three distinct
slopes: an early antegrade region A1 (the short left arm) with log-slope
αA1 = 0.34 ±0.01Mb−1, a retrograde region R with log-slope
αR =0.63 ± 0.01Mb−1 and a late antegrade region A2 with log-slope
αA2 = 0.26 ±0.01Mb−1, that replicates after the left arm terminates (see
Fig. 3c). Due to the higher percentage of head-on genes in the R region
compared with the A1 region, the conflict model predicts more rapid
replication in region A1 versus R. Consistent with this prediction, the
ratio of replication velocities is:

vA1=vR = 1:84±0:4, ð10Þ

revealing a strong replication-direction dependence. The slope
appears relatively constant, consistent with a model of uniformly-
distributed slow regions rather than a small number of long pauses as
observed in the reversal of the rDNA locus rrnIHG. Our quantitative
analysis is consistent with the interpretation of Wang et al.32.

Rapid late replication due to genomic asymmetry
This dataset has a striking feature that is not emphasized in previous
reports. Late antegrade fork velocity is faster than early antegrade
velocity:

vA2=vA1 = 1:29±0:05: ð11Þ

Although this effect is weaker than the replication-direction depen-
dence discussed above, Equation (10), its size is still comparable. An
analogous late-time speedup is seen in two other ectopic origin strains
(see the Supplementary Figs. 8 and 10).

One potential hypothesis is that a locus-dependent mechanism
slows the fork in the A1 region relative to the A2 region; however, no
velocity difference is evident in these regions in the wild-type cells
(Fig. 3b). Alternatively, one could hypothesize that there is some form
of communication between forks that leads to a slowdown in regionA1
due to the slowdown in region R; however, no coincident slowdown is
observed in rrnIHG(inv) at a position opposite the rrnIHG locus,
inconsistent with this hypothesis. Another possible hypothesis is that
late-time replication is always rapid; however, no significant speedup is
observed in either wild-type B. subtilis (Fig. 3a) or V. cholerae cells at
the end of the replication process (Fig. 3b and Fig. 2e). However, there
is one extremely important difference between 257°::oriC and thewild-
type strains: Due to the asymmetric positioning of the origin and
replication traps at the terminus (Fig. 3a), there is only a single active
replication fork as the A2 region is replicated. We therefore hypothe-
size that the fork velocity is inversely related to active fork number.

Fork number determines velocities in V. cholerae
Toexplore the effects of changes in the forknumber on fork velocity, it
is convenient to return to V. cholerae. In slow growth conditions, the
cells start the C period with a pair of replication forks, for which the
fork-number model predicts faster fork velocity, and finish the repli-
cation cycle with two pairs of forks, predicting slower fork velocity.

Although the structure of the velocity profile is more complex
than predicted by the fork-number model alone, the observed fork

velocity is broadly consistent with its predictions. If a mean fork
velocity is computed before and after oriC2 initiates, the ratio is:

vbefore=vafter = 1:46±0:02, ð12Þ

which is quantitatively consistent with the hypothesis that more forks
lead to a slowdown in replication and the size of the effect is com-
parable to what is observed in B. subtilis, Equation (11).

A mutant V. cholerae strain has been constructed that facilitates a
non-trivial test of the fork-number model: In the monochromosomal
strain MCH1, Chr2 is recombined into Chr1 at the terminus of Chr1,
resulting in a singlemonochromosome (Chr 1–2) (see Fig. 4a). Both the
wild-type and MCH1 strains have essentially identical sequence con-
tent, implying the locus-dependent model would predict identical
replication velocities; however, all replication in MCH1 occurs with
only a single set of forks whereas the wild-type strain replicates the
latter half of the C period with two pairs of forks, one pair on each
chromosome.

Themeasured fork velocities are shown in Fig. 4b and support the
fork-number model: MCH1 replicates the sequences after crtS at
roughly 1.6 times the fork velocity of the wild-type cells, consistent
with the fork-number model. Alternatively, we can consider the same
quantitation of fork velocity we considered above: The ratio of fork
velocities of loci replicated before crtS to those replicated afterwards:

vbefore=vafter = 1:11 ±0:03, ð13Þ

therefore only a very small slowdown is observed after crtS is repli-
cated in MCH1, even though exactly the same sequences are repli-
cated, again consistent with the fork-number model.

The fork velocity oscillates in E. coli
Although experiments in V. cholerae clearly support the fork-number
model, there is significant variability that cannot be explained by this
model alone. Are time-dependent variations in fork velocity also
observed in organisms that replicate a single chromosome? To answer
this question, we worked in the gram-negative model bacterium
Escherichia coli, which harbors a single 4.6 Mb chromosome. A large
collection of marker-frequency datasets have already been generated
for both rapid and slow growth conditions by the Rudolph lab33. As
with the B. subtilis marker-frequency datasets, we selected those that
had the lowest statistical and systematic noise (see the Supplementary
Methods 3B).

The fork velocities are shown in Fig. 5. As before, statistically
significant variation is observed in the fork velocity as a function of
position (see Table 1 and Supplementary Method 6). As discussed
above in the context of V. cholerae, we had initially hypothesized that
this variationmight be a consequence of rDNA position or some other
locus-dependent mechanism; however, there are three arguments
against this hypothesis: (i) The slow-velocity regions arenot coincident
with rDNA locations (Fig. 5a) or relative GC content (Supplementary
Fig. 1). (ii)Consistentwith the time-dependentmodel, 84% (and 59%)of
the observed variation in the fork velocity is symmetric for fast (and
slow) growth. (iii) We would expect that a locus-dependent model
would predict slow regions that are consistent between fast and slow
growth, which is not observed (see the purple arrows in Fig. 5a). We
therefore conclude that the dominant mechanism for determining the
fork velocity is a time-dependent mechanism, consistent with our
observations for V. cholerae.

Lag-time analysis is particularly informative with respect to the
mechanism of variation in the fork velocity: Although there is no
alignment in the velocity with respect to locus position (Fig. 5a), there
is clear alignment of the fork velocity variation with respect to lag time
(Fig. 5b), not only between the left and right arms of the chromosome,
but between slow and fast growth conditions. The oscillations do not
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align with respect to locus position (Fig. 5a) since the difference in
average fork velocity leads the slow and fast temporal periods to
correspond to different locus positions under slow and fast growth
conditions.

Fork-velocity oscillations are observed in three organisms
Temporal oscillations in the fork velocity are an unexpected phe-
nomenon. Are these features a systematic error with a single dataset?
First we note that these oscillations are present in two E. coli growth
conditions (LB and minimal). This phenomenon would be on sounder
footing if similar oscillations are observed in two evolutionarily distant
species: the gram-negative V. cholerae and gram-positive B. subtilis. If
this phenomenon is observed, to what extent are the oscillations of
similar character (e.g., phase, amplitude, and period)?

We compared the lag-time-dependent fork velocity for all three
species. In B. subtilis, we have already discussed a rDNA-induced
pausing on the right arm,which could complicate the interpretationof
the data. We therefore consider the fork velocity on just the left arm.
For E. coli and V. cholerae, we compute the average velocity as a
function of lag time between the two arms. Since the different
organisms and growth conditions have different mean fork velocities,
we compare the fork velocity relative to the overall mean. The results
are shown in Fig. 6 and Table 2.

All three organisms show oscillations with the same qualitative
features: Each fork velocity has roughly the same phase: The velocity
begins high, before decaying. The relative amplitudes, roughly 0.5

peak-to-peak, are all comparable with the largest-amplitude oscilla-
tions observed in V. cholerae and the smallest in E. coli. When the
relative velocities are compared, it is striking how much consistency
there is between growth conditions in E. coli and B. subtilis. Finally, the
period of oscillation is comparable but distinct in all three organisms,
ranging from 10 to 15min. The oscillation characteristics are sum-
marized in a table in Fig. 6 and Table 2.

Discussion
The focus of this paper is on the development of lag-time analysis,
which uses exponential growth as the timer to characterize replication
dynamics. Previous marker-frequency analyses have often reported a
log-slope (e.g., refs. 32,34), which is closely related to the fork velocity.
What new insights does the measurement of the fork velocity offer
over this closely related approach? The fork velocity approach has two
important advantages: (i) The first advantage is a conceptual one. The
underlying quantity of interest is velocity (or rate per base pair). This is
the quantity that is measured in vitro and is relevant in a mechanistic
model. In contrast, the log-slope is an emergent quantity that is only
relevant in the context of exponential growth. (ii) The second advan-
tage is concrete: Although log-slope measurements allow ratiometric
comparisons between fork velocity at different loci in the same data-
set, they cannot be used to make comparisons across datasets. Any
comparison of the log-slope between cells with different growth rate
(e.g., due to changes in growth conditions,mutations, species, etc.) are
meaningless. For instance, the log-slopes of the wild-type and MCH1

Fig. 4 | Reducing fork number increases fork velocity. a Themonochromosomal
strain MCH1 has a single chromosome (green) which was constructed by recom-
bining Chr2 (orange) into the terminus of Chr1 (blue)55. Under slow growth con-
ditions the first part of the chromosome in both strains is replicated by a single pair
of forks. When the fork reaches the crtS sequence on the right arm, Chr2 is initiated
at oriC2 in the wild-type cells. All of Chr2 and the residuum of Chr1 replicate

simultaneously, resulting in two pairs of active forks. In contrast, all sequences in
MCH1 are replicated using a single pair of forks. Data color is consistent throughout
the panels. b In MCH1, where all sequences are replicated by a single pair of forks,
the fork velocity is faster than is observed in WT cells during the multifork region
(gray shaded regions represent sequences replicated after crtS). Data are presented
as mean values ± SEM.
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V. cholerae strains are very different even though the changes in the
fork velocity are small. Ourwide-ranging comparisons betweengrowth
conditions, mutants, and organisms demonstrate the power of
reporting fork velocity over the log-slope.

Although our focus has been on replication in bacterial cells, an
important question is to what extent our approach could be adapted
to eukaryotic cells. First, we emphasize that the lag-time analysis is
directly applicable without modification to the eukaryotic context. As
such, the timing of the replication of loci can be analyzed; however,
since the S phase is typically a smaller fraction of the cell cycle and the
genomes of eukaryotic cells are larger, deeper sequencing will be
required to achieve the same resolutionwedemonstrate in the context
of bacterial cells. One significant potential refinement to this approach
is the use of cell sorting (sort-seq) to enrich for replicating cells which
can greatly increase the signal-to-noise ratio35,36; however, this
approach appears to lead to significant flattening near early-firing
origins, as we have observed in other contexts (Supplementary
Method 3B), and therefore increasing sequencing depth is probably
the most promising approach for eukaryotic systems when quantita-
tive characterization is a priority (see Methods Equations (22) and (23)
for an estimate of resolution).

Although lag-time analysis can easily be extended to the eukar-
yotic context, the measurement of the fork velocity will require some
care. A critical assumption in our analysis is that replication forksmove
unidirectionally at any particular locus, i.e., it can be either rightward
or leftwardmoving but not both (see SupplementaryMethod 3I). Fork
traps prevent this bidirectionality inmany bacterial cells. For loci in the
terminus region, although the replication timing can be determined
with high precision, the bidirectionality of the fork movement pre-
vents the measurement of fork velocities in these regions. This is a
more important limitation in eukaryotic cells where the number of
origins ismuch greater; however, if regions of the chromosome can be
foundwhere forkmovement is unidirectional, e.g., sufficiently close to
early-firing origins, fork velocity measurements could be made in
eukaryotic cells. For instance, these conditions appear to be met for a
significant fraction of the Saccharomyces cerevisiae genome36. With

Fig. 6 | Fork-velocity oscillations. a Temporal velocity oscillations are observed in
three bacterial species: E. coli (Ec), B. subtilis (Bs), and V. cholerae (Vc). The fork
velocity starts high before decaying rapidly and then recovering. Data are pre-
sented as mean values ± SEM. b Oscillation characteristics. The definition of the
phase, amplitude, and period of the fork velocity oscillation.

Table 2 | Velocity oscillation characteristics for different
bacterial species and growth conditions

Organism Growth
condition

Period
(min)

Phase
(degrees)

Relative
amplitude

E. coli Fast (LB) 15 −78° 18%

Slow (M9) 12 −45° 18%

V. cholerae Fast (LB) 12 −81° 31%

Slow (M9) 10 −39° 36%

B. subtilis M9+CA 17 −110° 26%

M9 15 −150° 30%

The oscillatory characteristics are broadly consistent both between conditions and species.

Fig. 5 | Observed oscillations are consistent with a temporal mechanism.
a Velocity oscillations with respect to position in E. coli. We compare fork velocities
as a function of genomic position (with respect to oriC) under rapid (LB) and slow
(minimalmedia--MM) growth conditions.Motivated by conflict-inducedpauses,we
have annotated the rDNA positions; however, slow velocities are not consistently
coincident with rDNA loci. Regions with high fork velocities are not consistent
between rapid and slow growth. E.g., see the purple arrows. Data are presented as
mean values ± SEM. b Velocity oscillations with respect to lag time in E. coli. The
velocity profileshave significantbilateral symmetry: the right and left armvelocities
oscillate up and down together. Furthermore, not only are the oscillations con-
sistent between left and right arms, they are also consistent between rapid (LB) and
slow growth (minimal media--MM). E.g., see the purple arrows. Data are presented
as mean values ± SEM.
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significant increases in sequencing depth, we expect analogous repli-
cation phenomenology, including pausing and locus- and time-
dependent fork velocities, will be observed in eukaryotic systems
using lag-time analysis.

Aswe prepared thismanuscript, we became awareof a competing
group which also uses marker-frequency analysis to test a specific
hypothesis: the fork velocity is oscillatory in E. coli15, consistent with
our own observations. Although our reports share some conclusions,
this competing approach requires detailed models for the cell cycle
and the fork velocity, along with explicit stochastic simulations. We
demonstrate an approach to measure fork velocities independent of
model assumptions or detailed hypotheses for the fork velocity,
without the need for numerical simulation and complete with the
ability to perform an explicit and tractable error analysis.

Although our initial investigations were dependent on explicit
numerical simulations of stochastic models, the use of lag-time ana-
lysis not only circumvents the need to perform these numerical
simulations, but demonstrates that stochastic models are equivalent
to deterministic models as well as providing a framework to under-
stand the effects of stochasticity on the growthof populations through
the use of the exponential mean, Equation (2)13. This significant sim-
plification will make lag-time analysis both widely applicable as well as
accessible to other investigators who lack specialized analytical skills
and modeling expertise.

Ourmeasurements of the replication velocity reveal that there are
multiple important determinants that result in complex velocity pro-
files. Previous work had already demonstrated that increases (or
decreases) in dNTP pool levels lead to concomitant decreases (or
increases) in the C period duration, consistent with a dNTP-limited
model of the replication velocity37–40. Our data are broadly consistent
with these previous results, but in a subcellular context: (i) The fork-
number model, in which fork velocities decrease as the number of
active forks increase, is clearly consistent with a mechanism in which
the nucleotide pool levels, although highly regulated41, cannot com-
pletely compensate for the increased incorporation rate associated
withmultiple forks. (ii) The observationof the fork velocity oscillations
is also consistent with an analogous failure of the regulatory response
to compensate, this time temporally. The initial fall in the fork velocity
is consistent with a model in which dNTP levels initially fall as repli-
cation initiates and nucleotides begin to be incorporated into the
genome. Reduction in the dNTP levels causes a regulatory response to
increase dNTP synthesis by ribonucleotide reductase41, but the finite
response time of the network could lead to dynamic overshoot in the
regulatory feedback, leading to oscillations42. Ref. 15 has also argued
that this oscillating-dNTP-level model would lead to time-dependent
oscillations in the mutation rate which are consistent with the origin-
mirror-symmetric distribution of the mutation observed in E. coli.
However, this interesting phenomenon and this hypothesized
mechanism will require further investigation.

A key clue to the potential significance of the fork-velocity oscil-
lations comes from their observation, not only in E. coli, but also in
B. subtilis and V. cholerae, three highly divergent species, as well as
their observation under multiple growth conditions. Although it has
long been assumed that homeostatic regulation keeps key cellular
metabolites in a relatively narrow range, our observations, as well as
the recent reports of oscillations in other key nucleotides in bacteria
(e.g., ATP in E. coli43), suggest that keymetabolites are in fact subject to
significant temporal oscillations even in the context of steady-state
log-phase growth. These observations, if their ubiquity is supported by
futurework, may require a significant revision of our understanding of
the metabolic environment of the cell.

Retrograde fork motion, where the fork moves in the opposite
direction from wild-type cells, lead to the largest changes in fork
velocity observed. To what extent is the observed slowdown a

consequence of a few long-duration pauses versus a region-wide
slowdown? In regions which exclude the rDNA, the effect appears well
distributed. However, it is important to note that the genomic reso-
lution of lag-time analysis is still much too low to resolve individual
transcriptional units. We anticipate that with increased sequencing
depth as well as improvements in sample preparation, this approach
could detect genomic structure in the fork velocity at the resolution of
individual transcriptional units. Although we did analyze a number of
mutants with retrograde fork movement in V. cholerae and E. coli
(analysis not shown), the competing effect of increased fork number as
well as the genomic instability of these strainsmade these experiments
difficult to interpret quantitatively, since fork number and direction
were both affected in these strains32,44. We concluded qualitatively that
retrograde replication direction appears not to play as large a role in
these gram-negative bacteria as it does in gram-positive B. subtilits,
consistent with previous evidence31,32,45–47. However, we expect lag-
time analysis could be used to characterize even small effects of the
retrograde fork orientation in more-carefully engineered strains, ana-
logous to those that we analyzed in the context of B. subtilis31,32.

Previous reports31,32, including our own12,48–51, had reported long-
duration replication-conflict induced pauses, especially in mutant
strains where the orientation of rDNA31 or other highly transcribed
genes48 are inverted to give rise to a head-on conflict between repli-
cation and transcription. The contribution of lag-time analysis in this
context is multifold: First, we provide a quantitative number in the
context of the very-short-duration pauses for co-directional tran-
scription in wild-type cells. This analysis supports a long-standing
hypothesis that the right arm of the B. subtilis chromosome is shorter
than the left arm to compensate for pausing at the rDNA loci that arm
predominately located on this arm.

We also report quantitative measurements for the longer pauses
that results from head-on conflicts in mutants where highly tran-
scribed genes are inverted. Our analysis gives us the ability to quanti-
tatively differentiate the contributions of fork pausing and arrest in the
analysis of the marker frequency, which was previously impossible.
Our measurement of a timescale of minutes is consistent with our
previous in vivo single-molecule measurements in which we report
transcription-dependent disassembly of the core replisome12. Could
the observed fork-velocity oscillations be misinterpreted as pauses?
The observed lag-timeoffset between the two arms (e.g., Fig. 3b) is not
predicted by fork-velocity oscillations.

In this paper, we introduce a method for quantitively character-
izing cellular dynamics by lag-time analysis. Although more broadly
applicable, we focus our analysis on the characterization of replication
dynamics using next-generation sequencing to quantitate DNA locus
copy number genome-wide. The approach has the ability to make
precise, even at the resolution of seconds, measurements of time dif-
ferences and pause durations, as well as the ability to quantitatively
measure fork velocities in vivo in physiological units of kb s−1, at
genomic resolutions of roughly 100 kb. Importantly, unlike marker-
frequency analysis, our approach allows direct quantitative compar-
isons to bemade between growth conditions,mutant strains, and even
different organisms. The resulting measurements of replication
dynamics reveal complex phenomenology, including temporal oscil-
lations in the fork velocity aswell as evidence formultiplemechanisms
that determine the fork velocity. The lag-time analysis has great
potential for application beyond bacterial systems as well as the
potential to significantly increase in resolution and sensitivity as
sequencing depth and sample preparation improve.

Methods
Strains used in this study
Detailed information about the strains used in this study are included
in Supplementary Table 1.
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Introduction to marker-frequency analysis. Our focus will be on
marker-frequency analysis, which measures the total number of a
genetic locus in an asynchronous population. The model was gen-
eralized to predict the marker frequency N(ℓ) of a locus a genomic
distance ℓ away from the origin20–22:

Nð‘Þ=N0 e
�α∣‘∣, ð14Þ

where N0 is the number of origins, which grows exponentially in time
with the rate of mass doubling of the culture, kG. Since the origin is
replicatedfirst, the number of origins is always largest compared to the
numbers of other loci. Quantitatively, the copy number is predicted to
decay exponentially with log-slope:

α = � d
d‘

lnNð‘Þ= kG=v, ð15Þ

where kG is the population growth rate and v is the fork velocity,
typically expressed in units of kilobases per second. To derive this
result, two critical assumptions were made: (i) the timing of the cell
cycle is deterministic and (ii) the fork velocity is constant19,20.

Initially, our naïve expectation was that the interplay between the
significant stochasticity of the cell-cycle timingwith the asynchronicity
of the culture would prevent marker-frequency analysis from being
used as a quantitative tool for characterizing cell-cycle dynamics. For
instance, significant stochasticity is observed in the duration of the B
period52 (i.e., the duration of time between cell birth and the initiation
of replication). Does this stochasticity lead to a failure of the log-slope
relation, Equation (15)?

Stochastic simulations support the log-slope relation. To explore
the role of stochasticity and a locus-dependent fork velocity in shaping
the marker frequency, we simulated the cell cycle using a stochastic
simulation. Our aim was not to perform a simulation whose mechan-
istic details were correct, but rather to study how strong violations of
the Cooper-Helmstetter assumptions, in particular how stochasticity,
as strong or stronger than that observed, influenced the observed
marker frequency and the log-slope relation, Equation (15). In short, we
used a Gillespie simulation53 where the B period duration and the
lifetime of replisome nucleotide incorporation steps are exponentially
distributed, and we added regions of the genome where the incor-
poration rate was fast as well as a single slow step on one arm. See
Fig. 7a and Supplementary Notes 1–6 for a detailed description of the
model, as well asmovies of themarker frequency approaching steady-
state growth, starting from a single-cell progenitor (Supplementary
Movies 1 and 2).

To our initial surprise, the stochasticity of themodel hadno effect
on the predicted log-slope of the locus copy number (see Fig. 7b). In
spite of the stochastic duration of the B period and the locus-depen-
dence, the marker frequency still decays exponentially with the same
decay length locally, i.e.,:

αð‘Þ � � d
d‘

lnNð‘Þ= kG=vð‘Þ, ð16Þ

where kGwas the empirically determined growth rate in the simulation
and v(ℓ) was the local fork velocity at the locus with position ℓ.

We hypothesized that this result might be a special case of
choosing an exponential lifetime distribution, since this is consistent
with a stochastic realization of chemical kinetics. To test this
hypothesis, we simulated several different distributions, including a
uniform distribution, for the duration of the B period and the step-
ping lifetime for the replisome (as well as simulating multifork
replication). In each case, the local log-slope relation held, Equation
(16), even as the growth rate and fork velocities changed with the

changes in the underlying simulated growth dynamics. We therefore
hypothesized that Equation (16) was a universal law of cell-cycle
dynamics and independent of Cooper and Helmstetter’s original
assumptions.

The exponential-mean duration. Motivated by this empirical evi-
dence, we exactly computed the population demography in a class of
stochastically timed cell models13. In short, we showed that there is an
exact correspondence between these stochastically timedmodels and
deterministically timed models in exponential growth. The relation-
ship between the corresponding deterministic lifetime τi of a state i
and the underlying distribution pi in the stochastic model is the
exponential mean, Equation (2)13. The exponential mean biases the
mean towards short times, the growth rate kG determines the strength
of this bias, and the biological mechanism for this bias is due to the

Fig. 7 | Analysis of simulated data. a A schematic of the simulated chromosome.
Replication initiates at the origin, pauses at a locus (red octagon) on the left arm
and the velocity is increased on the lower left arm (green). b Simulated marker
frequency obeys the log-slope law. The stochastic simulation generates a marker-
frequency curve (blue). The model is stochastic in the timing of replication initia-
tion as well as the fork dynamics and it includes two regions (blue and green) with
different fork velocities as well as a pause with a stochastic lifetime (see the Ter-
minus 4 model in the Supplementary Notes). In spite of the stochasticity, it obeys
the log-slope law locally, Equation (16). Furthermore, the inferred lag-time pause
(4.9min) is predicted by the exponential mean, Equation (2). c Tradeoff between
genomic resolution and velocity precision. As the spacing between knots decrea-
ses, increasing the genomic resolution, the error in the velocity measurement
increases. These plots are generated with n = 500 simulated data points that are
independently Gaussian-distributed about their means. The mean values corre-
spond to a model with 16 genomic segments that each have different fork velo-
cities. Data are presented as mean values ± SEM.
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enrichment of young cells relative to old cells in an exponentially
growing culture13.

To understand the consequences of this result, we consider two
special cases of this exponential mean. For processes with lifetimes
short compared to the doubling time, Equation (2), can be Taylor
expanded to show that the exponential mean is:

τ ≈μt �
1
2
kGσ

2
t + :::, ð17Þ

the regular arithmetic mean μt with a leading-order correction
proportional to the product of the growth rate and variance σ2

t . In
the context of single-nucleotide incorporation, this correction is on
order one-part-in-a-million and therefore can be ignored. As a
consequence, Equation (16), corresponding to the transitions between
states with short-lifetimes, is unaffected by the stochasticity, exactly as
we observed in our simulations.

Another important case to consider is the strong disorder limit, in
which a small fraction of the population ϵ stochastically arrests, i.e.,
with lifetime ∞, while the other individuals have exponential-mean
lifetime τ0. Using the definition in Equation (2), it is straightforward to
show that the deterministic lifetime is:

τ = τ0 � T log2ð1� ϵÞ≈τ0 +
ϵ

ln 2
T , ð18Þ

where T is the population doubling time and the second equality is an
approximation for small ϵ. The exponential-meanduration is extended
by the arrest, but remains finite. Therefore, an arrest of a subpopula-
tion is indistinguishable from a longer duration pause in an
exponentially proliferating population (see ref. 13).

Marker-frequency demography. For a stochastic model with locus-
dependent fork velocity, we showed that Equations (14) and (15) gen-
eralize to

Nð‘Þ=N0 e
�kGτð‘Þ, ð19Þ

wherewewill call τ(ℓ) the lag timeof a locus at position ℓ, which is equal
to the sum of the differential lag times for each sequential step:

τj =
Xj�1

i =0

δτi, ð20Þ

where δτi is the differential lag time for state i or the exponential mean
of the state lifetime13. In the continuum limit, it is more convenient to
represent this sum as an integral:

τð‘iÞ=
Z ‘i

0
d‘

1
vð‘Þ , ð21Þ

where the fork velocity is defined: v(ℓi) ≡ 1 bp/δτi. To demonstrate
that the generalized stochastic model predicts the log-slope
relation, Equation (16), the log-slope can be derived by substituting
Equation (21) into Equation (19), as was observed in the stochastic
simulations, demonstrating the universality of Equation (4). We note
that Wang and coworkers had previously derived an equivalent
expression using the deterministic framework of the Cooper-
Helmstetter model in the Material and Methods Section of ref. 31.

Stochasticity has a minimal effect on the marker frequency. We
initially had hypothesized that stochasticity should affect the marker
frequency. As explained above, it is the rapidity of base incorporation
that explainswhy stochasticity is dispensable in this context. The same
argument does not apply to the B period which is comparable to the

duration of the cell cycle. However, for the marker frequency, it is lag-
time differences between the replication times of loci that is deter-
minative, and therefore the lag time of the B period cancels from these
lag-timedifferences. Although it ismostly irrelevant for understanding
wild-type cell dynamics, stochasticity and an arrested subpopulation
will play an important role inonephenomenonwe analyze: replication-
conflict induced pauses.

Time resolution. Due to the large number of reads achievable in next-
generation sequencing, the time resolution will be high in carefully
designed analyses. The number of reads is subject to counting or
Poisson noise. It is therefore straightforward to estimate the experi-
mental uncertainty in the lag time due to finite read number:

στj
= k�1

G
1ffiffiffiffiffi
Nj

q = 1 s � 6× 106

Nj

 !1=2

, ð22Þ

where we have used a read number inspired by the replication-conflict
pausing example. This estimate suggests that under standard condi-
tions, time measurements with an uncertainty of seconds are possible
using this approach.

Fork-velocity resolution. To compute the slope in Equation (4), the
log-marker-frequency is fit to a piecewise linear function with
equal spacing between knots (see Fig. 7b). There is an important
tradeoff between genomic resolution (i.e., the genomic distance
between knots) and fork velocity precision (i.e., the uncertainty in
velocity measurement): Increasing the genomic distance between
knots reduces the genomic resolution but also reduces the
uncertainty in the velocity measurement. We therefore consider a
series of models with increasing genomic resolution and use the
Akaike Information Criterion (AIC) to select the optimal model28,29

(see Supplementary Methods 3J). This approach balances the
desire to resolve features by increasing the genomic resolution
with the loss of velocity precision.

Given a knot spacing, it is straightforward to estimate the relative
error:

σv

v
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n ðΔ‘Þ3

s
v
kG

≈0:1 � 1:5
n

� �1=2 100kb
Δ‘

� �3=2

, ð23Þ

where n is the read depth in reads per base and Δℓ is the spacing
between knots in basepairs. Therefore, for a canonical next-
generation-sequencing experiment, we can expect to achieve roughly
10% error in the fork velocity for 100 kb genomic resolution. Note that
in our error analysis, we have included only the error fromcell number
N, not the error from the uncertainty in the cell-cycle duration, which
covaries between loci in a particular experiment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing datasets generated during the current study are
available from the NCBI Sequence Read Archive with the BioProject
accession code PRJNA919081. The data from Galli et al.34 and Midgley-
Smith et al.54 are both available from the European Nucleotide Archive
(ENA), with the accession codes PRJEB28538 and PRJEB25595, respec-
tively. The digitized data from Wang et al.32 and Srivatsan et al.31 are
available in the Source Data file. More detailed information about data
availability is provided in Supplementary Table 2. Source data are
provided with this paper.
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Code availability
MATLAB scripts written for this study are available on the GitHub
repository and on reasonable request.
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