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ABSTRACT

We develop a general method for determining the unbiased inclination distribution of the Kuiper belt
using only the inclination and latitude of discovery of known Kuiper belt objects (KBOs). These two
parameters are well determined for each discovered object, so we can use all 379 known KBOs (as of
2001 January 1)—without knowing the object’s precise orbit, area, detection efficiency, or the latitudinal
coverage of the survey that found the object—to determine the inclination distribution. We find that a
natural analytic form for the inclination distribution is a sine of the inclination multiplied by a Gaussian.
The inclination distribution of all KBOs is well fitted by sini multiplied by a sum of two Gaussians with
widths 2268 and 15° + 1°. For this inclination distribution, the Kuiper belt has an effective area of
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deg? and a FWHM of 12.5° + 3.5° in latitude. The inclination distribution of the different

dynamical classes appear different. The Plutinos are well fit by sini mulitplied by a single Gaussian of
width 1022*2:2 the classical KBOs cannot be fit to a single Gaussian but are well fit by sini multiplied
by the sum of two Gaussians of widths 29272 and 17° + 3°, and the scattered KBOs are poorly fit by
sin i multiplied by a single Gaussian of width 20° + 4°. The poor fit of the scattered objects is possibly a
result of limitations of the method in dealing with large eccentricities. The effective areas of the Plutinos,
classical KBOs, and scattered KBOs are 9300 + 1800, 6100 + 2100, and 17000 + 3000 deg?, respectively.
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The FWHMs are 23° + 5°, 628+

and 44° + 10°, respectively. In all cases, the inclinations of the

Kuiper belt objects appear larger than expected from dynamical simulations of possible perturbations.
Key words: Kuiper belt — solar system: formation

1. INTRODUCTION

The discovery of Kuiper belt objects (KBOs) with inclina-
tions as high as 30° demonstrates that the full latitudinal
extent of the Kuiper belt must be quite large. Understand-
ing the true extent of the inclination distribution of KBOs is
crucial to determining the total number of objects and the
amount of mass sequestered in the belt, and also for under-
standing the dynamical processes operating in the current
and past Kuiper belt. The distribution of observed KBO
inclinations is a highly unrepresentative measure of the
total Kuiper belt inclination distribution. Observations
near the ecliptic are strongly biased toward discovery of
low-inclination objects that spend the majority of their time
close to the ecliptic, while observations off the ecliptic have
zero probability of detecting objects with inclinations lower
than the observed ecliptic latitude. The most straightfor-
ward method for determining the inclination distribution of
the Kuiper belt would be to survey a range of ecliptic lati-
tudes and measure the density of KBOs at each latitude.
Unfortunately, such a dedicated survey with well-defined
detection efficiency takes large amounts of telescope time
and finds a limited number of objects, particularly at high
latitudes, where the number densities are likely low.

As a more efficient alternative to such a direct method, we
have developed a method for using every known KBO—
without knowing the object’s precise orbit, area, detection
efficiency, or the latitudinal coverage of the survey that dis-
covered the object—to construct the inclination distribu-
tion of the Kuiper belt. The method relies on the fact that
any KBO discovered can be considered an instantaneous
probe of the inclination distribution at the latitude that the
object is discovered. Thus, while the inclination of each
KBO discovered is strongly biased by the ecliptic latitude of
the observation, a disentanglement of the biases can allow
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us to reconstruct the true inclination distribution of the
Kuiper belt. We are therefore able to use all detected KBOs
to construct the distribution, greatly increasing the sta-
tistical meaningfulness of the distribution determined.

2. DEFINITIONS AND DERIVATIONS

The inclination distribution of the Kuiper belt is simply
defined as the total distribution of inclinations of all objects
in the belt. We use the phrase “total inclination distribu-
tion,” or fy(i), to refer to this distribution. Another important
distribution we discuss we refer to as the “ecliptic inclina-
tion distribution,” or f,(i), which is the distribution of incli-
nations of KBOs instantaneously crossing the ecliptic at
any time. As most KBO surveys target the ecliptic, the dis-
tribution of inclinations of the known KBOs (Fig. 1a) is
similar to the ecliptic inclination distribution. An even
better approximation to the ecliptic inclination distribution
is the inclination distribution of only the KBOs that were
discovered at a low-ecliptic latitude (Fig. 1b). Another
related quantity is the distribution of the number of KBOs
as a function of ecliptic latitude, which we will call the
latitudinal distribution, L(f) (note that this distribution
differs from the distribution of the surface density by a
factor of cos ).

The relationships between these three distributions are
easily derived for the case of purely circular orbits. The
complication of elliptical orbits does not qualitatively alter
the results and will be discussed later. For an object on a
circular orbit with inclination i, the fraction of its orbit that
the object is found at an ecliptic latitude less than or equal
to fis
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Fi1G. 1.—Inclination distribution of the known Kuiper belt. (@) The dis-
tribution of all 379 KBOs cataloged as of 2001 January 1. This distribution
is highly biased by the ecliptic latitude of the observations. (b) The distribu-
tion of 143 KBOs found at ecliptic latitudes lower than 0°5. The biases in
this sample are quantifiable and can be removed to determine the total
inclination distribution of the Kuiper belt. A fit to a sum of two Gaussians
is shown as the solid line.

(Note that we are implicitly assuming that the geocentric
latitude is equal to the heliocentric latitude. For distant
objects like KBOs, this approximation holds closely.)

The latitudinal distribution for a single object with a
single given inclination, L;, is then simply the derivative of
this cumulative distribution function:
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At the ecliptic, L; = 1/sin i. If a collection of objects is
found at the ecliptic with an ecliptic inclination distribution
of f,(i), the total inclination distribution can now be calcu-
lated by weighting each detection by the inverse of the
probability of finding that object at the ecliptic. Thus, we
find that
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Note that any physical total inclination distribution must
approach zero at an inclination of zero.

The latitudinal distribution is found by integrating equa-
tion (3) over the total inclination distribution:
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To demonstrate the differences between the total inclina-
tion distribution, the ecliptic inclination distribution, and
the latitudinal distribution, we will consider the hypotheti-
cal case of an isotropic distribution of objects. An isotropic
distribution can be constructed by placing objects at an
arbitrary location in space and allowing them to move in
equally arbitrary directions. For such a distribution, the
ecliptic inclination distribution is simple to determine: at
the ecliptic, like at all other points, the direction of motion
is arbitrary, thus the ecliptic inclination distribution is
uniform. An isotropic distribution has a latitudinal distribu-
tion proportional to the surface area at each latitude; equa-

tion (5) gives L(f) = cos f. Finally, we find that f,(i) = sin i,
as expected from the area of parameter space available to
each inclination.

3. METHOD

3.1. Data

The key to the determination of the Kuiper belt inclina-
tion distribution is to collect the inclination of each known
KBO and the heliocentric ecliptic latitude at the time of its
discovery. These quantities are two of the most robust pa-
rameters known for a KBO, even if the orbit is never pre-
cisely determined. Of objects recovered at a second oppo-
sition, the revised inclination has differed from the initial
inclination estimate by more than 3° only 4% of the time
(Fig. 2).

The Minor Planet Center! maintains a list of orbital ele-
ments and discovery dates of all known KBOs. The ecliptic
latitude at the time of discovery is determined by taking
these orbital elements and calculating the position of the
object at the time of discovery. The ecliptic latitude at time
of discovery versus inclination of the 344 objects cataloged
as of 2000 October 1 is shown in Figure 3. The distribution
of latitude versus inclination immediately shows the second
bias mentioned above: at a particular latitude, 8, no object
will ever be discovered with an inclination, i, such that
i < B. In addition to this obvious bias, one can also see from
the distribution that observations at a ecliptic latitude f are
biased toward finding objects with inclinations close to that
latitude, as is apparent from equation (1).

3.2. Approximation of the Ecliptic Inclination Distribution

The ecliptic inclination distribution, £,(i), is equal to the
inclination distribution of all objects that are crossing the
ecliptic at any moment. We can simply approximate f,(i) by
determining the inclination distribution of all objects that

! See cfa-www.harvard.edu/iau/Ephemerides/Distant/index.html.
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F1G. 2—Inclination vs. semimajor axis for the known Kuiper belt.
KBOs observed on only a single opposition are shown as diamonds. KBOs
observed over multiple oppositions are show as squares. The lines show
the inclination and semimajor axis initially reported for each multi-
opposition object. Most multiple opposition KBOs have inclinations
within a few degrees of the initially reported value. The different dynamical
classes appear to have different inclination distributions in this highly
biased plot. 2000 CR105, with a semimajor axis of 675 AU and an inclina-
tion of 2228, falls off the plot.
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F1G. 3.—Ecliptic latitude at time of discovery vs. inclination for 379
KBOs. Two biases are obvious: no object can be detected with an inclina-
tion lower than the latitude, and observations at all latitudes find more
objects with inclinations close to the latitude of observation.

were detected at the ecliptic. In practice, we will use all
objects found within 025 of the ecliptic. Figure 1b shows this
approximation of f,(i) for the 143 known KBOs discovered
near the ecliptic. This approximation of f,(i) is well fitted by
a sum of two Gaussians,

—i? —i?
fi) = a exp <ch> + (1 —a) exp <7‘§> ; (6)
where a = 0.89, o, = 2°7, and o, = 1372 (see Fig. 1b; note
that we do not normalize any of our distributions. To do so,
divide each by its integral from 0° to 180°). The total incli-
nation distribution, f(i), is simply found by multiplying this
equation by sini,

fi(i) = sin i|:a exp <%‘%> + (1 —a)exp (%)] , (1)

thus we have an initial estimate of the total inclination
distribution.

A Gaussian appears to be a natural functional form for
£.(i). We have performed Monte Carlo simulations of multi-
ple perturbations in an initially zero inclination disk and
find that f,(i) is perfectly fitted by such a distribution, with
the width related to the number and magnitude of the indi-
vidual perturbations. In addition, the distribution of incli-
nations of the known asteroids also appears to be
moderately well fitted by a single Gaussian functional form.
Such a distribution has several interesting functional
properties: the distribution of vertical ecliptic crossing
velocities, H(v,), is equal to f,(i) multiplied by sin i, or

—gin2i __’2
H(v,) = sin” i exp ( 202> s (8)
which for the small values of i typical of most KBOs is
functionally equivalent to a Maxwellian velocity distribu-
tion. For large values of o, the distribution approaches an
isotropic distribution. For all these reasons, we deem sini
multiplied by a Gaussian to be the simplest natural func-
tional form for the total inclination distribution. Note again
that any total inclination distribution must approach zero
at zero inclination. That the Kuiper belt inclination dis-
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tribution is fit by a sum of two Gaussians, rather than by a
single Gaussian, suggests the existence of at least two classes
of objects with distinct dynamical histories.

The approximation of f,(i) determined above, while useful
for getting a general feeling for the shape, is not ideal. Only
143 of the 379 known objects are used, so statistics are not
as good as if all objects could be used. In particular, the
number of objects at high inclination is small because of the
biases. If we were to divide the known objects into different
dynamical classes, the numbers would be even smaller and
the results would be correspondingly poorer. In addition,
small problems are caused by the fact that the objects used
for the distribution are not precisely at the ecliptic. The
number of objects with inclinations less than about 075
should actually be higher, but we are biased against them.
For these reasons, we have developed a more general
method of determining the inclination distribution that
allows us to use all the data available.

3.3. Calculation of the Total Inclination Distribution

No immediately obvious method exists to invert f,(i)
directly using all the data. We resort instead to solving the
forward problem; we take a series of hypothetical distribu-
tions and determine the probability that the observed
objects could have been drawn from such distributions.
From these probabilities, we can then determine the best fit
of the hypothetical distributions, along with ranges of
acceptable solutions.

To determine the probability that the observed objects
could be drawn from a hypothetical inclination distribu-
tion, we first calculate, for each of N known KBOs, the
probability that object j, discovered at latitude f;, would
have an inclination of the observed inclination i; or lower,
which is given by

Py = r S0) di
B

; (sin? i' — sin® B)!/2

/2 f;(l’) , -1
| el o

If the hypothetical distribution is close to the true distribu-
tion, the collection of values of Py for all objects should be
evenly distributed between 0 and 1. (This point is imme-
diately obvious by considering the problem in reverse; if
one wanted to perform a Monte Carlo simulation of incli-
nations of KBOs chosen from a particular distribution, one
would choose random numbers evenly distributed between
0 and 1 and assign an inclination equal to the inclination at
which the probability of finding that inclination or lower is
equal to the random number. We instead know the inclina-
tion and find the random number that would have had to
be chosen to get that inclination.) We now need to apply a
statistical test to determine if the numbers are evenly dis-
tributed. A familiar statistical test is the x? test. We could
perform this test by binning the values of Py into, e.g., 0.1
wide bins and determining the probability that the number
of values in those bins could have been chosen from a
uniform sample. A good fit, in this case, would be one in
which the y2 test cannot rule out the hypothetical distribu-
tion with a high degree of confidence. A more powerful
statistical test for this particular case is the Kolmogorov-
Smirnov (K-S) goodness-of-fit test, which is designed to test
continuous distributions (such as the values of Py) without
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losing information by binning (Press et al. 1992). The K-S
test is simple to implement. The statistic D is calculated by
comparing the sorted values of Py with the expected cumu-
lative distribution function S(x), which in our case is simply
a set of evenly spaced numbers between 0 and 1 or S(x) =
Jj/N,so

D = max | P, — j/N|. (10)

In practice, we use the Kuiper modification of the K-S test
to correct the problem of the otherwise unequal weighting
of Py (Press et al. 1992).

Just as in a y? test, the D\/N statistic, where N is the
number of objects in the sample, is calibrated to determine
the probability that the hypothesis that the values of Py
were drawn from a uniform sample can be rejected. We
empirically calibrate D\/N by creating 100,000 realizations
of random numbers uniformly distributed between 0 and 1
and calculating the probability of obtaining a particular
value of D./N when we know that the distribution is
uniform (Fig. 4).

Unfortunately, while the integrals in equation (9) must be
finite, we have been unable to find a numerical integration
scheme that allows us to accurately integrate through the
singularity at the outer limit. In practice, we therefore calcu-
late the values of Py through a Monte Carlo simulation.
For a given hypothetical inclination distribution, we ran-
domly choose 10° inclinations from the distribution and
distribute the objects randomly within circular orbits. For
each real known KBO with inclination i, we then calculate
P, by constructing an empirical inclination distribution of
Monte Carlo objects within 025 in latitude of the discovery
position of the known object and then determining the
probability that an object at the discovered latitude will
have an inclination of i or lower.

As an example, we construct a distribution of KBOs
using sini multiplied by the sum of Gaussians for f(i) that
we found above and compare it with the distribution of
known KBOs. The distribution of the values of Py are
shown in Figure 5a, along with the expected distribution for
a randomly distributed values (straight line). The K-S test
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Fi1G. 4—Calibration of the D./N statistic for the K-S test. The plot
shows the probability that the K-S test will yield a value of D\/N or higher
when comparing two uniform distributions. The 1, 2, and 3 ¢ lines show
the values at which the probability of exceeding D\/]TIl is 15.9%, 2.3%, and
0.1%, respectively.
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F1G. 5—Calculation of the Kuiper variant of the K-S test. Here D is
simply the sum of the largest positive and negative excursions of the sorted
values of Py away from the straight line. (@) Using the sum of Gaussians
found for f(i) gives a fit that can be rejected at the 99.998% confidence
level, but a search of nearby parameter space yields a sum of Gaussian fits
that can only be rejected at a 25% confidence level (b) and is thus a
statistically acceptable fit.

concludes that even though the f,(t) fit looks moderately
good, the probability that the values of Py could have been
chosen from a uniform distribution—and thus that the
observed KBOs could have been chosen from this inclina-
tion distribution—is only 0.002%. We can therefore reject
this distribution at the 99.998% confidence level. A search
of nearby parameter space finds best-fitted values of
a=0.83, 6, = 226, and o, = 15° that can only be rejected
at the 25% confidence level and thus are a statistically good
fit to the data. For such a distribution, almost 3 times as
many objects are in the broad part of the distribution as are
in the narrow part.

4. ANALYSIS

The known Kuiper belt objects naturally fall into three
dynamical classes (Jewitt & Luu 2000): the resonant KBOs
locked into orbital resonance with Neptune, the classical
KBOs in lower eccentricity orbits beyond 40 AU, and the
scattered KBOs with high eccentricity and large semimajor
axes. A plot of inclination versus semimajor axis of all the
known objects suggests that the different KBO dynamical
classes have different inclination distributions (Fig. 2). We
therefore analyze these different classes separately.

The separation between the dynamical classes is best seen
in a plot of semimajor axis versus eccentricity (Fig. 6). The
most obvious class is the Plutinos with semimajor axes of
about 39 AU in 3:2 resonance with Neptune. Other reso-
nant objects include the objects clustered at 48 AU, which
are in a 2:1 resonance with Neptune. Outside of 50 AU
appears another obvious class, the scattered KBOs, which
mostly have high eccentricities and perihelia between 30
and 40 AU. In addition to objects with these perihelia, two
eccentric objects appear with even closer perihelia, 2000
EE173 with a perihelion of 22 AU and 1999 TD10 at 12
AU. These two objects appear to fit in more naturally with
the nearer Centaurs, so we will exclude them as members of
the scattered objects. The absence or presence of these
objects does not affect any of the final results. Scattered
objects need not have semimajor axes beyond 50 AU.
Several objects between 40 and 50 AU appear at distinctly
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higher eccentricity than the remainder of the population,
and have perihelia in the same range as the scattered KBOs.
We include these in our listing of the scattered objects.
Again, this inclusion does not affect final results. The
remaining objects distributed between 40 and 48 AU in low
eccentricity orbits are the classical KBOs.

4.1. Resonant KBOs

Of the resonant KBOs, only the Plutinos have a large
enough known population to allow sufficient statistics to
try to determine the inclination distribution. As a first
approximation of the ecliptic inclination distribution, we
look at the distribution of the 20 Plutinos found at latitudes
less than 075 (Fig. 7). This distribution can be fitted by a
single Gaussian with o = 7°4. We therefore try a single-
Gaussian fit multiplied by sini for the total inclination dis-
tribution and perform our full Monte Carlo method. Figure
8 shows the value of the D./N statistic of the K-S test,
along with the confidence levels. The best-fit value, along

eccentricity
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F16. 6.—Eccentricity vs. semimajor axis for the known Kuiper belt.
2000 CR105, with a semimajor axis of 675 AU and an eccentricity of 0.94,
falls off the plot. The two solid lines show the parameter space for which
the perihelion distance of the object ranges between 30.9 and 39.5 AU. The
objects with zero eccentricity have poorly determined orbits that are
assumed to be circular.
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N
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F1G. 7.—Inclination distribution of 20 Plutinos found at latitudes lower
than 0°5. The solid line shows the best single-Gaussian fit to the data, with
o ="T7%4.
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with 1 o confidence bounds, gives a Gaussian width of ¢ =
1022*2:3, in close agreement with our estimate from the
observed ecliptic inclination distribution. The 1 ¢ error bars
give the values with which we can reject the distribution at
the 1 o (84.1%) confidence level.

Given such an inclination distribution, we can now calcu-
late the ecliptic inclination and latitudinal distributions for
the best-fit model, along with the 1 o extremes (Fig. 9).
From the latitudinal distributions, we find that the total
number of Plutinos is given by the density at the ecliptic
multiplied by 8600 + 1800 or, alternatively, the effective
area of sky covered by the Plutinos is 9300 + 1800 deg?,
and the full width at half-maximum (FWHM) of the appar-
ent distribution of Plutinos in the sky is 23° + 5°.

4.2. Classical KBOs

We estimate the ecliptic inclination distribution of the
classical KBOs using the 111 objects found within 0°5 of the
ecliptic. A single Gaussian is a poor fit to the data (Fig. 10).
A much better fit can be found from a sum of two Gaussians
with a =090, o, = 2°2, and o, = 8°8. This distribution
appears different from that of the resonant KBOs. The K-S
test can also be used to calculate the probability that these
two sets of inclinations were drawn from the same distribu-
tion. The value of the D./N statistic from this test is 1.68,
which suggests that we can reject the hypothesis that the
two distributions are drawn from the same intrinsic dis-
tribution at a 93.4% confidence level. While this probability
is sufficiently high to rule out the hypothesis that the incli-
nation distributions are the same at the 1 ¢ level, we cannot
be any more confident than that. Nonetheless, we deem this
rejection level sufficiently significant, and we will treat the
classical objects separately.

As with the Plutinos, we first try to fit the inclination
distribution of the classical KBOs with a single Gaussian
multiplied by sine distribution. The full method shows that
even the best-fit value of ¢ = 5°2 can be ruled out at the
greater than 99.999% confidence level. Guided by the two-
Gaussian fit to the ecliptic inclination distribution above,
we try a similar two-Gaussian multiplied by sini fit to the
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Fic. 8—D./N statistic as a function of ¢ for distributions of the form
f{i) = sin i exp (—i%/20?) for Plutinos. The horizontal lines show the value
of D\/ﬁ at which we can reject the hypothesis at the 1, 2, and 3 ¢ level. The
best-fit value of ¢ = 1022 can only be rejected with 43% confidence and is
thus a statistically good fit to the data.
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F1G. 9.—Total inclination, ecliptic inclination, and latitudinal distribu-
tion as a function of angle (inclination or, in the case of the latitudinal
distribution, latitude). The thick lines show the best-fit distributions, while
the thinner lines show the 1 ¢ variations. The inclination distributions are
normalized, so that the total number of objects (the integral under the
curve) is constant. The latitudinal distribution is normalized to a fixed
value at the ecliptic.

total inclination distribution. The best fit for this case gives
a=0093, 0, =2%2, and o, = 18°, with a D\/N statistic of
0.89, implying a statistically good fit. For such a three-
parameter fit, the values of D,/N form a three-dimensional
volume, with all the values within the volume enclosed by
the surface D./N = 1.49 acceptable fits at the 1 ¢ level. If
the three parameters were uncorrelated, we could simply
give 1 ¢ error bars on each to indicate the range of accept-
able values. Unfortunately, the parameters are highly corre-
lated. We instead show the range of possible parameters in
two ways. First, we give a series of contour plots, which are
slices through the three-dimensional D./N volume (Fig.
11). Each slice gives contours of confidence levels as a func-
tion of ¢, and g, for a given value of a. From these contour
slices, the confidence of rejection of any particular sum of
two Gaussians can be determined. In addition, to graphi-
cally demonstrate the range of acceptable values, we calcu-
late the 1 ¢ variation in each parameter, keeping the other
two parameters fixed. From this calculation, we find
a=0934002, 6, =22%2 and ¢, = 17° & 3°. For the
best fit, 19% of the objects are included in the narrow
Gaussian distribution, while the remaining 81% are in the
wider Gaussian. In Figure 12, we plot the best-fit inclination
distribution, along with the effects of varying the parame-
ters in these ways. Note, however, that these are not the full
ranges allowed for these parameters, only the full range
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F1G. 10.—Inclination distribution of all 111 classical KBOs found at
ecliptic latitudes lower than 0°5. The solid line shows the best fit to the data
using the sum of two Gaussians.

allowed with the other parameters fixed. Alternatively, if we
calculated the full range allowed, we would find a =
0.93 + 0.04, 6, = 222195, and o, = 18° + 8°, but, again,
these parameters cannot be varied independently by these
amounts. While these two methods allow a more intuitive
feel into the allowed ranges, the contour plots should be
used to examine any particular set of parameters.

From the best-fit inclination distribution, we also calcu-
late the ecliptic inclination distribution and the latitudinal
distribution (Fig. 12). From the latitudinal distribution, we
find an effective area of the classical Kuiper belt of
6100 + 2100 deg? and a FWHM of 6°8%2-2 (allowing the
full range of parameters). The extremely narrow FWHM is
a consequence of the large number of objects in the nar-
rower of the two Gaussian distributions.

The most noticeable characteristic of the distributions is
the sharp break in slope in both the ecliptic inclination
distribution and the latitudinal distribution, caused by the
sum of two Gaussians. To determine whether this break in
slope is actually present in the real distributions or an arti-
fact caused by our choice of functional forms, we attempted
a set of fits to the data using a distribution with no such
hard break. We constructed distributions similar to the sum
of two Gaussians, but we artificially connected the peaks of
the two Gaussians in f,(i) with a straight line. These distribu-
tions lack the depletion in moderate inclination objects
characteristic of the sums of Gaussians seen in Figure 12.
We find that these distributions cannot be ruled out at the
1 o level, thus we conclude that the change in slope evident
in the distributions in Figure 12 is not required by the data.
The real distributions need not be purely the sum of two
Gaussians, but this analytic form is a simple approximation
that captures the important behavior of the distribution.
Nevertheless, we point out that the ecliptic inclination dis-
tribution (Fig. 10) appears well fit by a sum of two distinct
Gaussians, with a sharp break between them.

4.3. Scattered KBOs

The small number of known scattered KBOs makes the
determination of the inclination distribution least certain.
Only 10 scattered KBOs have been found within 0°5 of the
ecliptic (Fig. 13), so the estimate of the ecliptic inclination
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F16. 11.—Confidence levels for a fit to the total inclination distribution of the classical Kuiper belt objects. The plots show the 1, 2, and 3 ¢ contours of
slices of the three-dimensional parameter space. The best-fit values of a = 0.93, 6, = 2?2, and o, = 17° are shown as a diamond.

distribution is particularly bad. Based on our previous find-
ings and expectations, however, we attempt to fit the total
inclination distribution with a single Gaussian multiplied
by sini. The best fit gives a Gaussian width of 20° + 4°,
where now we have given 2 ¢ error bars, since none of the
fits is acceptable at the 1 o level. An attempt at a sum of two
Gaussians multiplied by sini for the total inclination dis-
tribution does not improve the fit significantly. The poor fit
to the inclination distribution of the scattered KBOs could
be due to the effects of the assumption of circular orbits,
which is clearly incorrect for this class of objects. We discuss
this possibility further below.

We show below that even though the fit for high-
eccentricity groups of objects is poor, the final result is rea-
sonably accurate. We thus make the assumption that our fit
of the total inclination distribution to a single Gaussian
multiplied by sini is representative of the true inclination
distribution of the scattered KBOs. The fitted total inclina-
tion distribution, ecliptic inclination distribution, and lati-
tudinal distribution, along with formal 2 ¢ error limits, are
show in Figure 14. We find that the effective area of the
scattered Kuiper belt is 17000 + 3000 deg® and the
FWHM is 44° + 10°, where we again present formal 2 ¢
error bars. Trujillo, Jewitt, & Luu (2000) modeled the incli-
nation distribution of the scattered Kuiper belt from the
first four scattered objects recognized. While they used an

unphysical total inclination distribution for their model (a
Gaussian), they also comment that the data can be fitted by
a total inclination distribution that is a Gaussian centered
at 20°. Such a form would closely approximate our best-fit
distribution.

4.4. Limitations

A large limitation to this method is the assumption that
all orbits are strictly circular. For the Plutinos and the scat-
tered KBOs, this assumption is far from correct. We explore
errors caused by this assumption by constructing a variety
of artificial plutino and scattered populations, simulating
observations of these populations, and trying to determine
the inclination distributions using our method.

For the Plutinos, we construct a Monte Carlo population
of 10° objects with semimajor axis chosen uniformly
between 38.5 and 39.5, eccentricity chosen uniformly
between 0.07 and 0.35 (Fig. 6), and all other orbital parame-
ters (except for inclination) randomly chosen between 0°
and 360°. We select a size for each object using a power-law
size distribution, with a differential size index of 3.6 (Chiang
& Brown 1999), and we calculate the brightness from the
absolute magnitude and the geocentric distance (assuming
all objects are observed approximately at opposition). To
simulate the observations, we randomly select a Monte
Carlo KBO having the same magnitude and latitude as
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F1G. 12.—Total inclination, ecliptic inclination, and latitudinal distribution of the classical Kuiper belt. For each distribution, we show the 1 ¢ variations

obtained by holding two of the three parameters constant and allowing the other one to vary. While this method gives an indication of the range of variability
allowed, the true range can best be seen from the contour plots of confidence levels.

each known KBO. We thus implicitly take into account all between 5° and 20°. In all cases, we find that the recovered
of the biases, inefficiencies, and search regions of the surveys inclination distribution is within 1 ¢ of the true inclination
that found the real KBOs. We simulate inclination distribu- distribution.

tions as single Gaussians multiplied by sini with widths To explore the effects of even higher eccentricities, we

simulate the Plutino population using all the same parame-
ters above, except we allow the eccentricity to range from
0.1 to 0.6. In this case, we still recover the correct inclination
distribution within 1 ¢ for all Gaussian widths between 5°
and 20°, although the fits are not as good. If we take the
extreme case of allowing eccentricities to vary from 0 to 1,
the best-fit Gaussian is always within 25% of the true value,
although at times the fits are sufficiently bad that we would
reject them at the 1 ¢ (although never 2 o) level. We thus
conclude that our method is robust for the Plutinos, even
for eccentricities significantly more extreme than those
known to be present.

For the scattered objects, we construct a Monte Carlo
population of 10° objects with perihelion chosen uniformly
between 30 and 40 AU, eccentricity chosen between 0 and 1
(Fig. 6), and all other parameters chosen randomly. For
Gaussian widths between 10° and 30°, we again find that
20 30 the best-fit Gaussian is always within 25% of the true value,

inclination and as before, at times the fits are sufficiently bad that we

F1G. 13.—Inclination distribution of the nine scattered KBOs found at would reject therp at the 1 o (although never 2 o) level. We
latitudes lower than 0°5. The solid line shows the best single-Gaussian fit conclude that while our general methOd. works least well f.or
to the data. With the small number of objects in the distribution, the true the case of the scattered KBOs and their extreme eccentric-
form of £,(i) is difficult to discern. ities, even for these objects, the method is sufficiently robust
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Fi1G. 14—Total inclination, ecliptic inclination, and latitudinal dis-
tribution of the scattered Kuiper belt. The solid lines show the best-fit
distributions, while the thinner lines now show the 2 ¢ variations, since all
of the distributions can be rejected at the 1 o level. Our simulations suggest
that these distributions could nonetheless be accurate representations of
the true distributions.

that we can have confidence that the final answer is giving
physically meaningful results. The relatively poor fit to the
real scattered KBO data (Fig. 15) could simply be a conse-
quence of the large range of scattered KBO eccentricities.
An additional limitation of the results comes not from the
method itself, but from the potential errors in the orbital
parameters of the known KBOs. Because we use data from
all detected KBOs, including those with poorly determined
small-arc orbits, we are including some objects of each
dynamical class in the wrong class for the analysis. These
misclassified objects are those most likely to have signifi-
cantly different inclinations than those initially reported
(Fig. 2). Note in particular that all multiopposition objects
that were initially reported to have inclinations above 33°
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FiG. 15—D./N statistic as a function of ¢ for sini multiplied by a
single-Gaussian fit to f(i) for the scattered KBOs. The best-fit value of
o = 20° can be formally rejected at the 93% confidence level, but we find
from full Monte Carlo simulations of scattered KBO populations that this
type of poor fit is expected because of the large eccentricities of these
objects. We thus conclude that this single Gaussian is an adequate fit to the
data.

are now recognized to have lower inclinations. It is possible
that most or all the single-opposition objects with these
high inclinations actually are misclassified objects with
lower inclinations. It is also possible that single-opposition
objects that were searched for and not recovered have incli-
nations different from those assumed. To determine the
likely magnitude of the effects of these problems, we have
redone the entire analysis using only objects with multi-
opposition observations. While the distribution of such
objects has its own intrinsic set of biases, we find that the
final results are not changed (although the statistics are
poorer) by using this smaller sample. Specifically, we find
for the Plutinos that ¢ = 1023*5%8 (FWHM = 23° + 9°,
and the effective area is 9600 + 3500 deg?) and for the clas-
sical KBOs a =095 + 0.03, 6, = 2°2 + 0%8, and ¢, = 20°
+ 7° (FWHM = 622 + 3°, and the effective area is 6200
+ 3000 deg?). The accidental misclassification of objects
and errors in initial inclinations appears to have little effect
on our final answers.

5. DISCUSSION

Figure 16 and Table 1 summarize the results for all
classes of KBOs. We discuss the specific implications below.
Total number of KBOs—Previous estimates of the total
number of KBOs (Jewitt, Luu, & Chen 1996; Gladman et

TABLE 1
SUMMARY OF BEST-FIT KBO DISTRIBUTIONS

Population Number a* ¢, o, fi® 5 A0 FWHM
All objects........ 379 0834003 267 1541 026 074 810071399 125435
Plutinos ........ 70 1.00 102+%3 .00 ... 9300 + 1800 23 +5
Classical ........ 251 0.93 + 0.02 22%2 1743 0.19 0.81 6100 + 2100 6.8722
Scattered ....... 50 1.00 20+ 4 1.00 17000 + 3000 44 + 10

2 Best fit to a total inclination distribution of the form £,(i) = sin i[a exp (—i%/202) + (1 — a) exp (—i*/2053)].

b Fraction of objects in the narrow Gaussian distribution.
¢ Fraction of objects in the wide Gaussian distribution.
4 Effective area.
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Fi1G. 16—Comparison of the best-fit total inclination, ecliptic inclina-
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al. 1998; Chiang & Brown 1999) have had to rely on order
of magnitude estimates of the effective area of the total
Kuiper belt. Following Jewitt et al. (1996), a total area of
10* deg? is usually assumed. This value is almost within the
1 ¢ error limits of our estimate of 810071355 deg? We
conclude that the total population of KBOs calculated does
not need to be significantly revised.

Plutinos—Malhotra (1995) found that the inclinations
and eccentricities of KBOs can be raised by the resonant
capture of an outwardly migrating Neptune. The inclina-
tions in Malhotra’s simulations do not reach values as high
as those observed, however. Most of the objects in these
simulations stay in relatively low-inclination orbits, while a
small fraction of them (~10%) are pumped to values as
high as 20°. In contrast, we find that approximately half of
the objects have inclinations above 10°, and 15% have incli-
nations higher than 20°. Similar simulations by Ida et al.
(2000) verify the lack of high inclinations caused by
Neptune’s migration. It remains possible that migration
and capture is the main mechanism responsible for the high
inclinations of the Plutinos—e.g., Malhotra finds a corre-
lation between higher inclinations and slower migration of
Neptune—but more work on additional inclination-
pumping mechanisms is clearly required.

Classical KBOs.—The classical KBOs are often thought
of as being essentially undisturbed since formation in a low-
eccentricity, low-inclination disk. The extremely narrow
component of the inclination distribution likely corre-
sponds to this initial population. However, a significant
fraction of the objects that we classified as classical KBOs
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have been greatly disturbed. The similarity between the
width of this component of the classical Kuiper belt and the
width of the inclination distribution of the scattered Kuiper
belt leads us to investigate the possibility that the classical
Kuiper belt is interspersed with scattered KBOs that
happen to have small semimajor axes. As one test of this
possibility, we exclude all KBOs with perihelia between 30
and 40 AU and redo the complete analysis. We still find
that a second wide Gaussian is required to fit the inclina-
tions. Thus the high inclinations do not appear to be associ-
ated with unrecognized scattered KBOs. Indeed, a plot of
inclination versus eccentricity for the classical KBOs (Fig.
17) shows that the inclinations of the known KBOs are
distributed over a much larger range than the eccentricities,
even though the observational biases tend to select for the
detection of low-inclination, high-eccentricity objects. Most
excitation mechanisms would tend to increase inclinations
and eccentricities by approximately equal amounts, so we
would initially expect to see many more high-eccentricity
objects based on the high inclinations. However, objects in
such orbits are dynamically unstable (Duncan, Levison, &
Budd 1995), so it is possible that many were excited into
such orbits and have now escaped the solar system.

Several mechanisms for the general excitation of the clas-
sical Kuiper belt objects have been explored, including
planetary migration, excitation by large planetesimals, and
stellar encounters. Models of planetary migration show that
some classical KBOs have their inclinations increased even
when they are not resonantly captured by Neptune, but in
all cases, the increases are limited to 5°~10° (Malhotra 1995;
Hahn & Malhotra 1999; Ida et al. 2000) and cannot repro-
duce the observed inclinations. Large planetesimals moving
through the Kuiper belt can also excite eccentricities and
inclinations of the KBOs. Morbidelli & Valsecchi (1997)
and Petit, Morbidelli, & Valsecchi (1999) have modeled
several cases of the excitations of such planetesimals. While
none of the modeled cases comes close to creating a popu-
lation of high-inclination classical KBOs, inclusion of sulffi-
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equally. Objects with inclinations as high as 30° correspond to those with
eccentricities as high as 0.5, of which none exist.
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ciently massive scattered objects could greatly increase the
inclinations of many objects. Such massive objects would
also have the effect of removing objects from the 3:2 reso-
nance, however (Morbidelli & Valsecchi 1997), so such
massive objects appear inconsistent with the observed
Kuiper belt. The final mechanism considered for exciting
inclinations and eccentricities is a stellar encounter early in
the history of the solar system. Such an encounter would
more strongly affect distant objects, so the Plutinos could
be unperturbed (Ida et al. 2000), although the existence of
any objects in the 1:2 resonance becomes difficult. Nonethe-
less, the simulations of such encounters show an inclination
distribution reminiscent of what we have found for the clas-
sical objects; a high-inclination population is created, while
maintaining a sizable population of low inclinations. In the
particular simulations shown, the number of high-
inclination objects is still too small, but this results could
come from tuning the models to produce the current eccen-
tricity distribution without taking into account the fact that
high-eccentricity objects could have been created but would
have been lost over the age of the solar system. We therefore
deem this scenario a promising possiblity for explaining the
existence of the high-inclination classical Kuiper belt
objects.

Recently, Tegler & Romanishin (2000) have shown evi-
dence that also suggests that the classical Kuiper belt might
be divided into at least two populations, one with red colors
and low inclinations and one with more neutral colors and
higher inclinations. In addition, Levison & Stern (2001)
have suggested that the classical Kuiper belt is divided into
a low-inclination fainter population and a high-inclination

brighter population. Both of these effects could be related to
the two-component inclination distribution that we find
here.

Scattered KBOs.—The broad inclination and latitudinal
distributions of the scattered KBOs are consistent with for-
mation by scattering by Neptune. The simulation of
Duncan & Levison (1997) predicts upper limits to the incli-
nations of the scattered Kuiper belt objects of ~35°. Our
best-fit distribution has approximately 20% of the objects
beyond this upper limit; indeed, one known Kuiper belt
object appears to have an inclination of 40°. Again, some
mechanism appears to be operating, which increases the
inclinations beyond that expected, although in this region
the statistics and results are sufficiently poor that this con-
clusion is not firm.

6. CONCLUSION

We have developed a method that can be used to deter-
mine the inclination distribution of Kuiper belt objects
using all objects that have been found from all surveys, and
we have applied this method to find the inclination distribu-
tions of the Plutinos and the classical and scattered Kuiper
belt objects. We find that the effective area of the Kuiper
belt has been estimated correctly in previous studies, but
that the inclination distributions of the Kuiper belt contain
significantly more high-inclination objects than have been
found in any dynamical simulation. This general method
will be able to be applied easily to continue to refine the
inclination distributions of the Kuiper belt as larger
numbers of objects are found.
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