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Abstract

The problem of an elastic plane containing an elastic
inclusion is considered. It is assumed that both the plane and
the inclusion contain a radial crack and the two cracks are
collinear. The problem is formulated in terms of a system of
singular integral equations. In the interesting l i m i t i n g cases
in which the crack tips approach the interface from either one
or both sides, the dominant parts of the kernels become gener-
alized Cauchy kernels g i v i n g rise to stress singularities of
other than -1/2 power. For these unusual cases of a crack ter-
minating at or crossing the interface stress intensity factors
are defined and some detailed results are given for various
crack-inclusion geometries and material combinations.

1 . INTRODUCTION

In studying the fracture of composite materials which con-

sist of more than one perfectly bonded homogeneous elastic phase

with different mechanical properties, it was shown that the

singular behavior of the stress state in the close neighborhood

of a crack tip does not remain "self-simi1ar" as it enters and

crosses an interface separating two phases of the composite

[1,2]. If the crack tip remains in the same homogeneous medium

as it propagates, during the crack propagation the characteristic

*This work was supported by the National Aeronautics and Space
Administration under the Grant NGR-39-007-011 and by The
National Science Foundation under the Grant GK 11977.
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square root singularity and the related angular distribution of

the stresses at and around the crack tip remain unchanged, the

only possible change taking place in the m u l t i p i i c a t i v e constant

known as the stress intensity factor. This makes it possible to

apply any one of the conventional fracture criteria to this phase

of the fracture propagation. On the other hand, since the singu-

lar behavior of the stress field around the crack tip terminating

at a bimaterial interface is drastically different than that of

a crack tip imbedded into a homogeneous medium [1], as the crack

enters and crosses the interface an abrupt change takes place in

the crack tip stress field. Thus, since the stress field does

not remain similar to itself during this phase of fracture propa-

gation, for studying the related fracture phenomenon a closer

examination of the crack tip stress field and some modifications

of the existing theories or possibly a new fracture criterion

are needed.

A detailed treatment of this problem was given in [1] and

[2] for the case in which the interface is a plane and the crack

length and its distance to the interface are sufficiently small

so that the perturbed stress field can be approximated by that

of a crack in two bonded elastic half planes. However, in

materials such as ceramics and fiber reinforced composites, the

crack length is usually of the order of inclusion or fiber

diameter and the stress state in the uncracked medium is quite

different than that of two bonded half planes. Hence, for this

type of problems clearly the assumption of bonded half planes
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w i l l not be valid. In this paper we will consider the plane

elastostatic problem of a crack terminating at and crossing the

bimaterial interface in an elastic matrix containing a circular

elastic inclusion. The special case of the problem in which the

crack is imbedded in the elastic matrix was recently discussed

in [3]. Since [3] contains sufficiently detailed results of the

single crack problem, in this paper, aside from a sample solution

for the purpose of verification, we will not discuss this problem,

Instead, we w i l l give the solution of the problems of a crack in

the inclusion with one or both ends approaching and terminating

at the interface, of two collinear cracks one in the inclusion

and one in the matrix, and of a crack crossing the interface.

The analysis and the results given in [3] for the l i m i t i n g case

of the crack tip terminating at the inclusion boundary appear to

be incorrect. Therefore some results for this case will also be

given.

2. THE INTEGRAL EQUATIONS FOR THE GENERAL PROBLEM

Consider the plane elastostatic problem for an elastic

matrix with constants KI,y1 containing a perfectly bonded cir-

cular elastic inclusion of radius a and with constants Kp, y ~

where y. is the shear modulus, and <1- = 3-4vi for plane strain

and K. = (3-v.)/(l+v.) for plane stress, v. being the Poisson's

ratio (i=l,2). Let the medium contain two (radial) collinear

cracks with end points at y = 0 and x = a-j , b-j , a,,, b2 (Figure 1).

In addition to the geometry, let the external loads also be

symmetric with respect to the plane of the cracks, y=0. The
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integral equations for this problem can easily be written down

by using the dislocation solutions given in [4] and [5] as the

Green's functions. In the usual manner the solution of the

problem can be expressed as the sum of two sets of stresses:

(a) the stresses in the medium without the cracks and under the

given external loads, and (b) the perturbed stresses for the

cracked medium where equal and opposite of the stresses found in

(a) and applied to the crack surfaces are the only external loads

It is clear that the solution (b) alone w i l l contain the singu-

1 ari ties.

Consider now the crack-inclusion problem shown in Figure 1.

Let the crack surface tractions in the pertubation problem (b) be

a-|yy(x,0) =

a2yy(x,0) = p2(x) , (a2<x<b2) . (l.a.b)

For example, for the uniaxial tension at infinity a,°° = a

shown in the figure, the solution to problem (a), and hence, the

tractions p, and p2 are given by

a , ..
] y y (x ,0 ) =

aa2 y y(x,0) =

2m
1) " ^2"^ a4 3 ( m - l ) ,
+ ( i c - l ) T Z d + m i c ) J '

1+l) 1 1

2 -
 (2m + <2 -1

 + 1 * m*} • '

p l ( x ) = " a lyy ( x '0 )

where m = y2/vi-i . Def ine

P2(x) = - o * (x,0) , (2.a-d)

f l ( x ) = 37
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f2(x) = g| [v2(x,+0) - v2(x,-0)] , (a2<x<b2), (S.a.b)

where VT and v2 are the y-component of the displacement vectors

in the matrix and in the inclusion, respectively, f, and f2 can

be looked upon as the unknown functions of the problem defined

in the intervals (a,,b,) and (a2,b2), respectively. The consid-

erations of displacement continuity require that

bk
/ fk(x)dx = 0 , (k=l,2) . (4)
ak

Using the dislocation solutions given in [4] and [5] as the

Green's functions, after some manipulations the following system

of integral equations may easily be obtained to determine f,

and f2:

bl fn(t)
 bl

al al
dt + ^ tklls(x't) + kilf(x>t^fl(t)dt

b2 TT(K,+I)
+ Y / [k12s(x,t) + k12f(x,t)]f2(t)dt = — ̂  -

b2

/ Ck21s(x,t) + k21f(x,t)]f1(t)dt

[k22s(x.,t) + k22f(x,t)]f2(t)dt = — -^ - p2(x) ,
2

: (a2<x<b2) (5.a,b)

where
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'*) = FT [ (A1 + A 2 ) 23T + 4

x ( t - s ) a t ( t - s )

k, l f (x , t ) =
MT

k , 9 c ( x . t ) = 3+
-x ( A 3~Vt ( t -x )

x 2 - a 2

k,2 f(x.t) (A
"

a
tx x '

A, + B A, - B, a2 2
I 1 Q "" X

~ 2 t ( t - x ) 2

k2 1 f(x, t ) = [ ( l -m)M VB1

2 x "3 ' t -s

A n ) -
n- j 9 V . 1 t / 93 x2 t ( t - s ) 2 a t ( t - s )

o * D * 5 . . rt+2s a 2 ( t+3s ) 1 A t i
A3L 2 ~3 ." t " A6 2J •

( 6 . a - h )

I ~ 7^

M =

'2

. KI "•"' y

s = a /x , m =

*«T l i»*.- » *» '
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m-1 mK, -K 2 K +1
A = !!! ! a = ' ^ A = i _ _. ^H3 m+K2 ' M4 l+m<1 ' M5 ' rn[K,+

AH6 2m+K2-l

We note that for -a<a2, b2<a, a<a-j , (i.e., if none of the

crack tips is on an interface) (see Figure 1) the kernels

(k.-s + k-.f), (i,j=l,2) are bounded functions of x and t in

the intervals given by (5). Thus, in this case the set of equa-

tions (5) is an ordinary system of singular integral equations

with simple Cauchy type singular kernels. Since the displacement

derivatives f-j and f2 have integrable singularities at the end

points of the corresponding intervals, the index of the equations

is K=! . Consequently, the general solution of the system wi l l

contain two arbitrary constants [6], which are determined from

the continuity conditions (4). On the other hand, a close exam-

ination of the "Fredholm kernels" k.. + k-j,-f. (i»j = l > 2 ) would
I J ̂  ' w '

indicate that, if one or more crack tips terminate at the bima-

terial interface (i.e., if any one or a combination of the three

cases a2
 = - a - i » b~ = a, and a, =a is valid) (see Figure 1), certain

parts of these kernels become unbounded as both of the arguments

x and t approach the end point on the interface. These parts of

the kernels which go to infinity as (x,t)-»- + a are indicated by

k-- (x,t), (i,j = l,2) in (6). It is easy to see that k . . become
I J ̂  I J J

infinite as (x-a)~^, hence, together with the simple Cauchy

kernels, (t-x)~^, they constitute a set of generalized Cauchy

kernel s .
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Singular behavior of the solution of integral equations

having similar generalized Cauchy kernels was studied in detail

in [1] and [2]. Following the complex function technique out-

lined in [6] and using the procedure described in [1] and [2],

if we define the unknown functions f-j and f« in terms of unknown

bounded functions g-j and g2 and unknown powers a-| , 3-j . a2 , and

B2 as follows:

= g1(x)(brx)
 ]

f2(x) = g2(x)(b2-x)
 2(x-a2)

 2

(-1 < Re(aJ,3j) , j = l , 2 ) , ( S . a . b )

for various typical crack geometries, from (5) the characteristic

equations giving a- and 6- may be obtained as:

(a) -a < a~ < bp

cotuoi. = 0 ,
J

(b) -a < a < b

< a, < b, :

cotirB. = 0 ,
J

( j = l , 2 ) ; ( 9 )

< a , a =

cotira, = 0 , cotirou = 0 , cotTrg 2 = 0 ,

2cos7r3

(c) -a <

1 A2) - = 0 ; ( l O . a - d )

= a <

cotTrcu = 0 , = 0 , cotTr6 2 = 0 ,

= 0 , ( l l . a -d )
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(d) -a = a2 < b2 = a < a-| < b-| :

cotira, = 0 , cotfr3, = 0 , a* = 3? >

2cosiTa2 + ( A 3 + A 4 ) - 4A 3 (a 2 + l)2 = 0 , ( 1 2 . a - d )

(e) -a < a2 < b2 = a = a, < b-, ( through c r a c k ) :

= 0 , cotir32 = 0 , 6, = a2 ,

Tra9 9 2

= 0 , ( 1 3 . a - d )

= 2 ( l - m ) / m ,

K3 = -5+ (1 +K,) . (14)

The equations (9), (lO.a-c), (ll.a-c), (12.a,b) and (13. a, b)

give -0.5 as the acceptable root which is the well-known result

for a crack tip surrounded by a homogeneous medium. (11. d) and

(12. d) are identical to the previously obtained [1,2] character-

istic equation for a crack tip terminating at a bimaterial inter-

face. (13. d) is the same as the characteristic equation for two

bonded quarter planes [2,7,8]. The characteristic equations

(9 -13) are derived under the conditions that g^a.) and g^b.),
J J J J

(j = l,2) are finite and nonzero. (13. d) is the expression of

vanishing coefficient determinant in two homogeneous linear

algebraic equations in g-i(a) and g2(a)- Hence, in the case of

a crack crossing the boundary g-i(a) and g2(a) are not independent

and are related by [2]
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p

2-4A1(l+a2) + 2cosira2]

a-a9 **
)Y(b—i") CA 3+A 4 - 2- 2(l+a2)(A3-A4)] . (15)

U T Q *} T" t «J *T

The derivation of equations (9-15) follows very closely the

procedure outlined in [1] and [2] in great detail and therefore

is omitted in this paper.

3. STRESS INTENSITY FACTORS

From the viewpoint of applications of the results in frac-

ture studies, one of the important quantities of interest is the

strength of the stress singularity at the crack tips character-

ized by the stress intensity factors. For the crack tips im-

bedded in a homogeneous medium, the stress intensity factors are

defined in terms of "cleavage" stresses and are related to the

density functions f-| and f2 as follows:

k(b.) = lim /2(x-b.) aiyy(x>°) = - lim /2(b.-x) fj(x)Wj ',
j x">bj

k(a.) = lim /2(a.-x) a. v(x,0) = lim /2(x-a.) f.(x)w. ,j jyy . j j j
J J

wj = 2*y(1+Kj)> (J = 1'2)- (16. a, b)

The asymptotic expressions (16) may easily be obtained from (5)

by noting that the expressions given by (5) are val i d outside as

well as along the cuts (a,,b-,) and (a2,b2) (i.e.,

P^x) = alyy(x,0), (-°°<x<-a, a<x<») and p2(x) = a2yy(x,0),

(-a<x<a)), and by directly applying the function-theoretic

method to (5) [2]. Using the same procedure, from (5) the stress

intensity factor for a crack tip terminating at the interface may
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be obtained as follows [2]:

-a < 3o < bp < a = a, < b, :

k(a) = lim /2 (a-x) ' a (x,0)

(17)

a < a2 < b2 = a < a-] < b-| :

k(a) = lim SI (x-a) 2 a, (x,0)
x+a yy

(18)

In the case of a through crack (i.e., if -a<a2<b2=a=a, <b, ) ,

for all practical combinations of material constants the func-

tions f and fp, and consequently, the stresses have an integra-

ble singularity at the intersection of the crack and the inter-

face (i.e., -I<a2=$i<0). In fracture studies the quantities of

interest here are the distribution of contact stresses along the

interface. Thus, to characterize these stresses one may define

the following stress intensity factors:

-a2 -a2
Ma) = lim y a, (a,y) , k (a) = lim y aixv

(a'y) 'y y+o yy y y^-0 y

(19. a, b)

Developing asymptotic expressions for a. and a. around thejyy j xy

point (a,0) and using (8), it can be shown that the constants

-11-



k and k are related to g,(a) and g?(a) as follows [2]y xy i c.

\ _ yl rgra' r/i o.. \ m m ->k

a-a,,
LU *<

m

m

4. EXAMPLES AND RESULTS

Referring to Figure 1, if -a<a2<b2<a<a-, <b, (including the

special cases of single cracks, i.e., a2 = b^ or a,=b,), the

system of singular integral equations can be solved in a straight-

forward manner by using, for example, the technique described in

[9]. In all the examples discussed in this section the external
CO

load was assumed to be the uniaxial tension a, = OQ applied to

the matrix perpendicular to the plane of the cracks and away from

the inclusion-crack region (see equation 2). Following sample

calculations for a simple crack were made as a spot check for the

results given in [3]:

(A) KI = <2 = 2, y 2 / y ] = 1/3, a^a = 1.1, b^a = 2.1 :

k ( a , ) Mb,)
= 1.482 , — = 1.160 , c] = ( t ^ -a^ /2 ;

ao/£T
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(B) KI = <2 = 2, y2/
yi = 1/3' ai = a» bi/a = 2 :

k ( b l } k ( a )- l— = 1 .233 , JilLL- = 1.092 , C] = ( b r a ) / 2

e1 = -0 .62090 ( see (10. d) and ( 1 7 ) ) ;

(C) K I = 1.8, y2 = 0, a- | /a = 1.05, t^/a = 2 . 0 5 :

k ( a , )
= 1.515 , - — = 2.800 , c, = (b 1 -a , ) /2 ;

(D) K.J = 1.8, y2
 = °» a-| = a, b-j = 2 (edge crack) :

k(b,)
- — = 2.808 , . c = ( b a J / 2 .

These results agree with that of [3] for a-j>a. However, because

of the change in the power of the singularity 3-j for a-j=a, the

extrapolated results in [3] are clearly in error (k(a-,) tends to

zero or infinity as a-|-*-a).

For the cracks terminating at or going through the interface,

the system of singular integral equations (5) (dominant parts of

which have generalized Cauchy kernels) is solved by using the

technique described in [10]. The results obtained for various

material combinations and crack geometries are given in Tables

1 - 6 and Figures 2-8 (see (16 - 19) for definitions of stress

intensity factors). Table 1 shows the effect of y2/'
Ji on tne

power of stress singularity 3-t and on the stress intensity fac-

tors for a crack in the matrix with one end touching the inter-

face (the limi t i n g case of the results given in [3]). Figure 2

-13-



0

1.5 x/a

Figure 2. Crack surface displacement for a crack
in the matrix with one tip on the interface
(KI = K2 = 1.8, 1^/3 = 2, VQ = (!+K1)aa0/u1 ).



Table 1. The effect of modulus ratio on the
stress intensity factors for a crack
terminating at the interface (a, = a
k^/a = 2, KI = <2 = 1.8, c1 = (b^aJ/2).

U2
yl

0

0.05

1/3

1.0

3.0

10.0

23.0

100

300

1

0.81730

0.62049

0.5

0.40074

0.33277

0.30959

0.29387

0.28883

Kb,)

°ô

2.808

1.615

1.229

1 .000

0.8610

0.7969

0.7796

0.7691

0.7667

k(a)

Vi~61

1 .053

0.5836

1.000

1.299

1.389

1.375

1.345

1.348
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shows the crack surface displacement v(x,0) for four typical

values of y2/l
ai » (0, 0.05, 1 and 23) which is obtained from

(see (3))

1 bl

v(x,0) = - £ / f^xjdx , (21)
A

where the normalizing factor is

VQ = (!+K1)aa0/u1 . (22)

Tables 2-4 and Figures 3 and 4 show the results for a

single crack located in the inclusion. The l i m i t i n g stress

intensity factors 0 and °° shown by an arrow in Table 2 is the

trend based on the square root singularity. The correct stress

intensity factors and the related a^ or B2 are given in Table 3.

Some of the results given in Table 2 are also shown in Figures 3

and 4. The limi t i n g values of the stress intensity factors

shown in these figures for crack length 2cp approaching zero are

obtained from the uniformly loaded infinite plane solution with

the stress state away from the crack given by (2.b), namely

m c n + l , , 1 - <23)

Table 4 shows the results for a completely cracked inclusion

(i.e., a2=-a, b2=a). Table 5 and Figure 5 show the results for

the case where both the matrix and the inclusion contain a crack

(see the insert in Figure 5). The material constants used in

this problem correspond to an epoxy matrix and an aluminum inclu-

sion. In Table 5 the values of k(a^) corresponding to a^=a (the

numbers in parentheses) are evaluated from (17) with 3-| = -0.33811
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2.0 -

1.0 -

0

0 0.5 c/o 1.0

Figure 3. Stress intensity factor for a symmetrically
located crack in the inclusion (K- =K = l-8)-



2.0

1.0 -

0

- k(a)/V/c,

cu-0.75

I I

\

-0.9 - 0.75 0 b,/a 1.0

Figure 4. Stress intensity factors for a crack located
in the inclusion (KI =K 2=1.8, one tip fixed at

2 = -0.75a, b2 variable, c2=(b2-a2)/2)a2=-0.9a or



0

1.5

K(b)/(r/r

2.0 d/a 2.5

Figure 5. Stress intensity factors for a crack in the
matrix (epoxy) and a crack in the inclusion (aluminum)
(^=1.6, <2=1.8, y2/y] = 23.077; a2=0.3a, b2 = 0.
2c] = (b^a^ =a fixed, d=(b]+a1)/2 variable).



Table 2. Stress intensity factors for a crack
located in the inclusion (K-, = K? = 1 .8,
c2= (b2-a2)/2 ). ' *

a 2 /a

-0.9

-0.9

-0.9

-0.9

-0.9

-0 .9

-0.9

-0.9

-0 .75

-0 .75

-0 .75

-0.75

-0 .75

-0 .75

-0 .75

-0.1

-0 .25

-0.50

-0.90

b2 /a

-0 .75

-0 .5

-0 .25

0

0 .25

0.50

0 .75

1 .00

-0 .5

-0 .25

0

0 .25

0.5

0 .75

1.0

0.1

0.25

0 .50

0.90

"1 = 3

k (a 2 )

ao^2

1 .324

1 .451

1 . 5 7 2

1 .684

1 .790

1.890

1.990

2 .140

1 .314

1 .389

1 . 475

1 .564

1 . 6 5 5

1 . 7 5 2

1.907

1.283

1 .332

1.491

2 .062

k(b 2 )

ao^2

1 .309

1.376

1 .438

1.501

1 .572

1.664

1.822

->• 00

1 .306

1.359

1 .419

1 .492

1 .588

1 . 752

->• 00

1.283

1 .332

1 .491

2 .062

Sf- 1 "
k ( a 2 )

ao^2

0.5886

0 .5416

0 . 5 0 3 2

0.4719

0 .4450

0 .4220

0 .4020

0.3830

0.5917

0 .5596

0 .5266

0.4958

0.4681

0 .4437

0 .4212

0.6046

0 . 5 7 9 6

0 .5144

0.3900

k ( b 2 )

V Î

0 .5950

0.5684

0 . 5 4 5 2

0.5219

0 .4969

0 .4682

0.4300

->• 0

0 .5950

0 .5710

0 .5448

0.5166

0.4847

0 .4437

-> 0

0.6046

0 .5796

0 .5144

0.3900
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Table 3. Stress intensity factors for a crack
located in the inclusion (K, =<2 = 1
c2 = (b2-a2)/2 ).

a2/a

-0.75

-0.90

-1.0

-0.75

-0.90

-1.0

b2/a

1.0

1.0

1.0

1 .0

1.0

1.0

",

0.5

0.5

0.62049

(U2/

0.5

0.5

0.40074

-2
,/„,). a

0.62049

0.62049

0.62049

WT) = 1/3

0.40074

0.40074

0.40074

k(a2)

-32CToc2

1 .907

2.140

0.7920

0.4212

0.3830

0.9330

k(b2)
-a2

aoc2

0.6175

0.6300

0.7920

0.9550

0.9400

0.9330
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Table 4. Stress intensity factor for
a completely cracked inclusion

y2
yl

0.2

0.6

1.0

2.0

5.0

K-i = Kp =1.8

-a2

0.36621

0.45025

0.5

0.57451

0.67885

k(a)
-0.2

a0a

0.7890

1.014

1.0

0.8843

0.6555

<-|=2. 2, <2 = 1 .8

-a2

0.38087

0.47028

0.51991

0.59188

0.69124

k(a)
-a?

°oa 2

0.7848

0.9456

0.9209

0.8165

0.6194

K^l .8, K2 = 2.2

-Og

0.32027

0.42123

0.47724

0.55687

0.66380

k(a)
-do

°oa 2

1 .046

1 .174

1 .107

0.9465

0.6940

K.| = <2 = 2. 2

-a2

0.33845

0.44466

0.5

0.57624

0.67733

k(a')
-02

a0a

1 .010

1 .068

1.0

0.8613

0.6500
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Table 5. Stress intensity factors for a cracked inclusion
in a cracked matrix ^2/^1 =23.077, K-| =1.6,
< 2=1.8, c1 = (t^-a^/2, c2= (b2-a2)/2 ).

al
a

1.05

1.00

1.00

1 .25

1 .50

1 .75

2.00

bl
a

1 .55

1 .50

2.00

2 .25

2 . 5 0

2 . 7 5

3.00

a2
a

0 .45

0 .45

0.30

0.30

0.30

0.30

0.30

b2
a

0 .95

0 . 9 5

0.80

0.80

0.80

0.80

0.80

Ma^

ao^}

0 .335

(0 .861 )

(1 .091)

0.681

0.831

0.898

0.932

k ( b ] )

ao^\

0.683

0 . 6 3 4

0.790

0.833

0 .926

0.950

0 .963

k (a 2 )

ao^2

1 .947

1 . 942

1 .782

1 .771

1 .742

1 .719

1.702

k ( b 2 )

aa^2

2 . 7 1 6

2 . 7 3 2

2.061

1 .997

1.919

1 .870

1 .838
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found from (10.d), (and with normalizing factor OQ£-\~ instead

of a0/57).

The results for the crack crossing the interface are shown

in Table 6 and Figures 6-8. These results are also given for

an epoxy matrix containing an aluminum inclusion. It should be

noted that in solving the system of singular integral equations

(5) for this problem, the single-valuedness conditions (4) are

no longer valid. The two conditions necessary to account for

the two arbitrary constants arising from the solution of the

integral equations are the continuity condition v^a.O) = v2(a,0)

and the relation (15) which must be satisfied by the functions

g-, and g9. The stress intensity factors k and k given herei t ! y x y
are defined by (19) and are evaluated from (20). The limits 0

and + oo shown by an arrow in the table (and indicated by dashed

lines in the figures) toward which the stress intensity factors

tend as the crack tip approaches the interface are again the

consequence of the change in the power of singularity. For the

materials under consideration the powers a. and R., (j = l,2) are
J J

found to be ( s e e ( 8 ) ) :

-a < a2 < b2 = a = a] < b1 : 0 ^ = 8 2 = - 0 . 5 , <x2 = B1 = -'0. 27326 ;

a, = a = b2, a 2 ^ a < b 1 : a-| = - 0 . 5 , 32->- a2 = 6-| -»• -0.33811

a 1 = a = b 2 , b 1 - > a > a 2 : B2 = -0 .5 , a-j ->• 31 = »2 -»• -0. 33811

( 2 4 . a - c )

Figure 8 shows some sample results for the crack surface dis-

placements obtained from (see (3))
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Figure 6. Stress intensity factors for a crack going
through the matrix-inclusion interface (t^-1.6,
<2 = 1.8, v2/^=23.W, a i=B 2=-0.5, «2 = B, = -0. 27326,
c = (bra2)/2, a z=0 fixed, b, variable).
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Figure 7. Stress intensity factors for a crack
going through the interface (<-,=!.6, K2= 1.8,
P2/Ul =23.077, a2= 01 =-0.27326, 2c = (t>ra2) =a

fixed, d= (5̂ 82)72 variable).



Table 6. The stress intensity factors for a crack
cross ing the interface (K-, = 1 .6 , Kp= 1 .8,
y2/y1 = 23.077, a? =-0. 27326, c = (b]-a] )/2 ).

a2
a

0

0

0

0

0

0

0

0

0

-1.0

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1.0

0.1

0.3

0.7

0.9

1.0

bl
a

1.0

1.1

1.3

1.5

1.7

1.9

2.1

2 .5

3 .0

1.5

1.5

1.5

l.°5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.1

1.3

1 .7

1 .9

2.0

Mb,)

a0/c-

-+ 00

0.548

0.513

0 .570
0.626
0 . 6 7 2

0.710

0 .765
0.811

0.920
0.954

0.757

0.670
0.598

0 .547
0.518

0.510
0 .525

0 .572

0.487

0.425

0.619

0.731

k ( a 2 )

a0/c"

3 . 5 6 4

3.701

3 . 7 5 6

3 . 7 9 9
3.838
3.874

3 . 9 3 5

3 . 9 9 6

->• 00

5.600
5 . 2 4 2

5.003

4 . 5 7 0
4.034

3.481

2 .956

2 . 4 6 5
1.981

1.383

-> 0

3 .377

2.978

1.961

1 .401

-»• 0

k y ( a )
-ap

aoc 2

->• -00

-0 .847

-0 .446
-0 .282

-0.171
' -0.0835

-0.0113
0.105

0.219

-> - 00

-1.102

-0.954

-0.753

-0 .547

-0 .363

-0 .209
-0 .0852

0.0171
0.108

0.212
-»• 00

-0 .730

-0 .229

0.211

0.412
-»• 00

V"
-a2a0c

 2

->• oo

0.170

0.0894
0 .0565

0 .0342
0.0167

0 .00227
-0.0211

-0 .0440

-»• 00

0 .221

0.191
0.151

0.110
0.0727

0.0420

0.0171
-0.00343
-0.0216

-0.0426
->• - 00

0.146
0.0459

-0 .0424

-0.0826
-»- - 00
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1 x

v(x,0) = jj- / f(x)dx , (a2 <_ x ^b^ ,

'v2(x,+0) , (a2 < x £.a) ,
v(x,0) =

v-| (x,+0) , (a <_ x £ b] ) ,

(a2 £ x £ a) ,

(a £ x < t) . (25)

The results given in this paper show the effect of the

inclusion-crack geometry and the material constants on the be-

havior of the stresses around the singular points. In addition

to their application to fracture through conventional theories

whenever valid, they may be used in connection with a simple

criterion such as "a maximum cleavage strength at a character-

istic distance" in studying fracture initiation from singular

points where the power is not -0.5. It should also be noted

that the problem of radial cracks which are not collinear may

be solved without too much difficulty by using the technique

described in this paper.
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