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Introduction

Platelets are small anucleate cell fragments that have a char-

acteristic discoid shape and range from 1 to 3 µm in diameter. 

Historically, platelets were referred to as cellular dust. We now 

know that they are indispensable for processes such as hemo-

stasis, wound healing, angiogenesis, in�ammation, and innate 

immunity. Platelets are formed from the cytoplasm of mega-

karyocytes (MKs), their precursor cells, which reside in the 

bone marrow (Pease, 1956). MKs are the largest (50–100 µm) 

and also one of the rarest cells in the bone marrow; MKs ac-

count for 0.01% of nucleated bone marrow cells (Nakeff and 

Maat, 1974). To assemble and release platelets, MKs become 

polyploid by endomitosis (DNA replication without cell divi-

sion) and then undergo a maturation process in which the bulk 

of their cytoplasm is packaged into multiple long processes 

called proplatelets, and the nucleus is extruded. An MK may 

extend 10–20 proplatelets, each of which starts as a blunt pro-

trusion that over time elongates, thins, and branches repeatedly. 

Platelets form selectively at the tips of proplatelets (Richardson 

et al., 2005). As platelets develop, they receive their granule and 
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organelle content as streams of individual particles transported 

from the MK cell body (Italiano et al., 1999). Platelet formation 

can be arbitrarily divided into two phases: The �rst phase of 

MK maturation and development takes days to complete and 

requires MK-speci�c growth factors. During this time, massive 

nuclear proliferation and enlargement of the MK cytoplasm  

occur as the MK is �lled with cytoskeletal proteins, platelet- 

speci�c granules, and suf�cient membrane to complete the 

platelet assembly process. The second phase is relatively rapid 

and can be completed within hours. During this phase, MKs 

generate platelets by remodeling their cytoplasm �rst into pro-

platelets and then into preplatelets, which undergo subsequent 

�ssion events to generate discoid platelets. The time required 

for MKs to complete polyploidization, mature, and release 

platelets is 5 d in humans and 2–3 d in rodents (Ebbe and 

Stohlman, 1965; Odell and Jackson, 1968; Odell et al., 1970). 

Once released into the bloodstream, human platelets survive 

7–10 d, whereas rodent platelets survive 4–5 d (Aster, 1967; 

Harker and Finch, 1969; Jackson and Edwards, 1977).

In this review, we outline the process of platelet produc-

tion—starting with MK development and ending with terminal 

platelet formation (illustrated in Fig. 1). After a brief history 

and context of each step, we highlight some exciting recent 

�ndings and important unanswered questions pertinent to the 

cell biology of platelet formation.

MK maturation and development

MKs develop from hematopoietic stem cells (HSCs) that reside 

mainly in the bone marrow but are also present in the yolk sac, 

fetal liver, and spleen during early development (Long et al., 

1982; Gordon et al., 1990; Ogawa, 1993; Morita et al., 2011). 

During maturation, MKs increase in size, become full of platelet-

speci�c granules, expand their cytoplasmic content of cyto-

skeletal proteins, and develop a highly tortuous invaginated 

membrane system (IMS; Behnke, 1968; Fig. 2).

Thrombopoietin (TPO) directs MK develop-

ment. The discovery of TPO, and its MK-speci�c receptor  

c-Mpl, revolutionized the �eld of MK and platelet biology. 

Circulating blood platelets are specialized cells that pre-
vent bleeding and minimize blood vessel injury. Large 
progenitor cells in the bone marrow called megakaryo-
cytes (MKs) are the source of platelets. MKs release plate-
lets through a series of fascinating cell biological events. 
During maturation, they become polyploid and accumu-
late massive amounts of protein and membrane. Then, in 
a cytoskeletal-driven process, they extend long branching 
processes, designated proplatelets, into sinusoidal blood 
vessels where they undergo fission to release platelets. 
Given the need for platelets in many pathological situa-
tions, understanding how this process occurs is an active 
area of research with important clinical applications.
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platelet production and allowed study of the mechanisms that 

regulate these processes (Choi et al., 1995; Cramer et al., 1997; 

Lecine et al., 1998). Interestingly, although TPO is one key driver 

of MK differentiation, mice lacking either c-Mpl or TPO suc-

cessfully produce platelets, indicating a role for other regulators 

in the process of proplatelet and platelet formation (Choi et al., 

1995; Ito et al., 1996).

TPO functions as the major regulator that promotes the growth and 

development of MKs from their HSC precursors (Bartley et al., 

1994; de Sauvage et al., 1994; Kaushansky, 1994; Kaushansky 

et al., 1994; Kuter et al., 1994; Lok et al., 1994; Sohma et al., 

1994; Wendling et al., 1994). Subsequently, this discovery facil-

itated development of in vitro cell culture systems that reconsti-

tute MK differentiation, maturation, proplatelet extension, and 

Figure 1. Schematic of platelet production. (1) HSCs in the bone marrow differentiate into MKs in a TPO-dependent manner. (2) MKs undergo endomitosis 
and develop nuclei ranging in DNA content from 2n to 128n. (3) As MKs mature, they develop a highly invaginated membrane throughout their cytoplasm, 
which is continuous with the external plasma membrane. This membrane serves as a reservoir for proplatelet formation. (4) MKs migrate to the vascular niche, 
where they extend proplatelets and release them into vascular sinusoids. The entire MK is converted into pre/proplatelets, and its nucleus is exuded and phago-
cytosed. (5) Once in the bloodstream, proplatelets interconvert into preplatelets. (6) A fission event creates two platelets from a barbell proplatelet.
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of the cleavage furrow, a contractile ring consisting of myosin II 

and F-actin that generates the mechanical forces necessary for 

cell separation (Geddis et al., 2007; Lordier et al., 2008). Spe-

ci�cally, down-regulation of nonmuscle MYH10 (myosin IIB 

heavy chain) in the contractile ring by RUNX1 (runt-related 

transcription factor 1) is required for the switch from mitosis 

(2n) to endomitosis (4n; Lordier et al., 2012). The importance 

of cleavage furrow inhibition in polyploidization was further 

underscored by examining the mechanism by which it forms. 

RhoA, a small GTPase that regulates the actin cytoskeleton, is 

required to generate the contraction force necessary to complete 

cytokinesis (Melendez et al., 2011). The microtubule-associated 

GEF-H1 activates RhoA at the cleavage furrow (Birkenfeld  

et al., 2007), whereas ECT2 (epithelial cell–transforming se-

quence 2) is involved in RhoA localization and activation 

(Petronczki et al., 2007). Gao et al. (2012) recently revealed 

that both GEF-H1 and ECT2 are down-regulated at the mRNA 

and protein levels during MK polyploidization. Interestingly, 

GEF-H1 down-regulation is required for 2n cells to become 4n, 

Endomitosis. Endomitosis (Fig. 1, step 2) is a pri-

marily TPO-driven process by which MKs become polyploid 

through cycles of DNA replication without cell division (cyto-

kinesis; Ebbe, 1976; Gurney et al., 1994). The study of endo-

mitosis was largely facilitated by the implementation of in vitro 

culture systems that used TPO. During their life cycle, MKs 

�rst undergo a proliferative 2n stage in which their progres-

sion through the cell cycle is identical to other hematopoietic 

cells. Subsequently, MKs begin endomitosis and accumulate a 

DNA content of 4n, 8n, 16n, 32n, 64n, and even 128n in a single 

polylobulated nucleus before proceeding with their �nal matu-

ration and proplatelet formation (Zimmet and Ravid, 2000). 

Studies in megakaryocytic-transformed cell lines showed that 

the switch to polyploidization is related to the cell cycle and 

dependent on degradation of cyclin B and reduced activity of the 

cyclin B–dependent Cdc2 kinase (Datta et al., 1996; García and 

Calés, 1996; Zhang et al., 1996, 1998). Subsequent studies with 

primary MKs revealed that endomitosis occurs because of a 

defect in late cytokinesis that results in incomplete formation 

Figure 2. Transmission electron micrographs of murine MKs, preplatelets, proplatelets, and platelets. MK cultures generated from murine fetal liver cells were 
fixed with 1.25% paraformaldehyde, 0.03% picric acid, and 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4, for 1 h, postfixed with 1% osmium te-
troxide, dehydrated through a series of alcohols, infiltrated with propylene oxide, and embedded in epoxy resin. Ultrathin sections were stained and examined 
with an electron microscope (Tecnai G2 Spirit BioTWIN; FEI Company) at an accelerating voltage of 80 kV. Images were recorded with a charge-coupled de-
vice camera (2K; Advanced Microscopy Techniques) using digital acquisition and analysis software. (A) Overview of one MK showing multilobulated nucleus 
and IMS. (B) MK with a highly developed IMS. (C) Released preplatelets (#), proplatelets (*), and platelets (^). (D) Detailed view of platelets (bottom right) and 
an MK, highlighting its contents. N, nucleus; IMS, invaginated membrane system; G, granule; M, mitochondria; V, multivesicular body.
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et al., 2012). Although nicotinamide does increase ploidy, its 

effect on platelet formation is controversial. Some observed 

nicotinamide-induced increased proplatelet production in vitro 

(Giammona et al., 2006), whereas others saw reduced proplatelet 

formation (Giammona et al., 2006; Leysi-Derilou et al., 2012). 

Importantly, administration of nicotinamide to mice does not in-

crease their platelet levels (Konieczna et al., 2013). In addition, 

overexpression of cell cycle regulators, such as cyclin D3, has 

been shown to enhance MK ploidy in vivo without any concomi-

tant increase in platelet count (Zimmet et al., 1997). As we learn 

more about the process of endomitosis and how to manipulate it, 

we will be better able to reveal whether high nuclear content is 

causative or correlative to platelet formation.

The IMS: A membrane reservoir. One purpose of 

endomitosis is to generate the large quantity of protein and lipid 

synthesis necessary to create the IMS (previously referred to  

as the demarcation membrane system). The IMS (Fig. 1, step 3)  

is an extensive complex of cisternae and tubules distributed 

throughout the MK cytoplasm that is continuous with the plasma 

membrane and is thought to exist as a membrane reservoir for 

proplatelet formation (Yamada, 1957; Radley and Haller, 1982). 

Schulze et al. (2006) con�rmed this hypothesis by demonstrating 

that the IMS is indeed the origin of the proplatelet and platelet 

surface. Furthermore, the force necessary for internal IMS mi-

gration relies on actin �lament assembly via the WASP–WAVE 

whereas ECT2 down-regulation is required for polyploidization 

beyond 4n. This suggests that different mechanisms may be reg-

ulating the initial 2n to 4n transition versus subsequent endomi-

totic events (Papadantonakis et al., 2008; Gao et al., 2012).

These studies do not, however, preclude a role for the cell 

cycle in endomitosis. Although inhibition of cleavage furrow for-

mation physically prevents the MK from dividing, there still may 

be a separate process that regulates the repeated cycles of DNA 

replication. Multiple studies have identi�ed roles for G1/S-phase 

regulators, such as the cyclins D and E, supporting the hypothesis 

that up-regulation of G1-phase components may be important in 

promoting cycles of endomitotic DNA synthesis to allow for the 

development of high ploidy MKs (Zimmet et al., 1997; Muntean 

et al., 2007; Eliades et al., 2010).

It is theorized that MKs are polyploid to produce the large 

quantities of mRNA and protein necessary to be packaged into 

platelets while still retaining their ability to perform multiple 

functions without the stress of mitosis and cytokinesis (Zimmet 

and Ravid, 2000). Although endomitosis and polyploidization 

are undoubtedly important for MK cytoplasmic maturation, the 

relationship between high nuclear DNA content and ef�cient 

platelet formation is still highly debated. For example, nicotin-

amide, a form of vitamin B3, is commonly used to increase the 

ploidy of human and mouse MKs in culture (Giammona et al., 

2006; Panuganti et al., 2010; Avanzi et al., 2012; Leysi-Derilou 

Figure 3. Microtubules in proplatelets and platelets. Microtubules composed of 1-tubulin line the shafts of proplatelet extensions and form a microtubule 
coil in nascent platelet tips and released preplatelets/platelets. To delineate the microtubule cytoskeleton, murine fetal liver MK-generated samples were 
incubated with a rabbit polyclonal primary antibody for 1-tubulin, washed, and probed with a secondary Alexa Fluor 488 nm–conjugated antibody. 
MKs were imaged on a microscope (Eclipse TE2000-E; Nikon) equipped with a 63× objective, NA 1.4, and 1.5× optivar. Images were acquired with  
a charge-coupled device camera (ORCA-II-ER; Hamamatsu Photonics). Image acquisition was under the control of MetaMorph software (Molecular Devices). 
(A–C) Images highlight the branching of proplatelets (A), heterogeneous mix of platelets, pre- and proplatelets released from MKs (B), and the figure 8  
structure seen in preplatelet to proplatelet interconversion (C).
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these data, mutations in the MYH9 gene that reduce myosin II 

activity have been implicated in the May-Hegglin anomaly and 

related macrothrombocytopenias (Kelley et al., 2000; Seri et al., 

2000). More recently, MYH9 mutations have been associated 

with premature initiation of proplatelet formation within the 

bone marrow. This is mediated by disruption in the Rho–Rho 

kinase–myosin-IIA pathway and leads to decreased numbers 

of circulating platelets (Chang et al., 2007; Chen et al., 2007). 

These observations are supported by mouse models showing 

that mutations in the MYH9 gene cause both cultured MKs and 

those in the bone marrow to produce fewer and shorter proplate-

lets with less branching (Zhang et al., 2012b). Recently, Bluteau 

et al. (2012) further highlighted the importance of myosin regu-

lation by showing that RUNX1 can affect proplatelet formation 

by direct regulation of MYL9, MYH10, and MYH9. This study 

may explain one reason why patients with familial platelet dis-

order with predisposition to acute myelogenous leukemia, a fa-

milial platelet disorder characterized by germline heterozygous 

RUNX1 alterations, present with thrombocytopenia.

Although these studies suggest that regulation of the cy-

toskeleton is necessary for ef�cient proplatelet formation, their 

focus is largely on de�ciencies or mutations that diminish pro-

platelet formation. In the future, it will be important to investigate 

whether direct manipulation of the cytoskeleton can augment or 

even initiate the process of proplatelet formation directly.

The cytoskeleton highway connects the MK 

body to budding platelets. In addition to playing an essen-

tial role in proplatelet elongation, microtubules lining the shafts of  

proplatelets serve a second function: transportation of organelles 

and granules into proplatelets and assembly of platelets at pro-

platelet ends. In MKs, granules are derived from budding of small 

vesicles containing granule cargo from the trans-Golgi network 

(Blair and Flaumenhaft, 2009). Vesicles budding from the trans-

Golgi network may be delivered directly to multivesicular bodies, 

where proteins are sorted and eventually packaged into granules 

(Heijnen et al., 1998; Yousse�an and Cramer, 2000). Organelles 

and granules are then sent individually from the MK cell body into 

the proplatelets, where they move bidirectionally until they are 

captured at proplatelet tips (Fig. 4; Richardson et al., 2005). Inter-

estingly, this process bears striking resemblance to neuronal cells 

in which axons can reach millimeters in length and also need to 

transport organelles long distances. In MKs, immuno�uorescence 

and electron microscopic experiments indicate that organelles are 

intimately associated with microtubules, and actin drugs do not 

affect organelle motion (Richardson et al., 2005). Thus, move-

ment appears to be microtubule based (Richardson et al., 2005). 

The bipolar arrangement of microtubules within the proplatelet 

contributes to bidirectional organelle movement. The plus end– 

directed microtubule motor kinesin localizes in a pattern similar 

to organelles and granules, implicating this motor in transport of 

organelles along microtubules. There appears to be two aspects 

of this process: �rst, organelles and granules travel along micro-

tubules, and second, the microtubules themselves slide bidirec-

tionally in relation to other motile �laments, indirectly moving 

organelles along proplatelets (Richardson et al., 2005). Although 

microtubule highways appear to transport granules and organ-

elles long distances along proplatelets, the mechanism by which 

pathway at the IMS cytoplasmic face in response to phosphati-

dylinositol 4,5-bisphosphate signaling (Schulze et al., 2006).

Not surprisingly, the IMS also requires cytoskeletal sup-

port. Spectrin, a protein that forms the plasma membrane skeleton 

in many cell types, forms a 2D lattice in MKs that underlies and 

stabilizes the IMS; MKs expressing a dominant-negative spectrin 

peptide have an underdeveloped IMS with insuf�cient membrane 

to form proplatelets (Patel-Hett et al., 2011). Thus, a developed 

and mature IMS aided by the spectrin membrane skeleton helps 

establish and maintain proplatelets during platelet biogenesis 

(Patel-Hett et al., 2011). Although evidence suggests that the IMS 

functions as a membrane reservoir for proplatelet elongation, there 

are still several questions that need to be addressed. For example, 

IMS continuity with the plasma membrane in mature MKs may 

suggest that plasma membrane invagination is involved in IMS 

formation. In addition, other internal pools of membrane, such as 

the endoplasmic reticulum or Golgi, may contribute to IMS devel-

opment and/or initiate this process.

Terminal MK development and  

proplatelet formation

Mature MKs extend long branching processes called proplatelets 

into the sinusoidal blood vessels of the bone marrow. Proplate-

lets, which function as the assembly lines of platelet production, 

are comprised of platelet-sized swellings in tandem arrays that 

are connected by thin cytoplasmic bridges (Fig. 1, step 4; Italiano 

et al., 1999). Proplatelet production has been observed in vivo by 

imaging proplatelets extending into the sinusoidal blood vessels 

of bone marrow (Behnke, 1969; Becker and De Bruyn, 1976; 

Junt et al., 2007; Zhang et al., 2012a). Spontaneous proplatelet 

formation also occurs in vitro with MKs derived from murine  

fetal liver stem cells (Italiano et al., 1999; Patel et al., 2005a; Thon 

et al., 2010, 2012a) and human cell–derived MKs (Choi et al., 

1995; Miyazaki et al., 2000; Chang et al., 2007; Dunois-Lardé 

et al., 2009). Currently, we have an insuf�cient understanding of 

the signals that trigger proplatelet formation in MKs, resulting in a 

signi�cant gap in our knowledge of platelet production.

The cytoskeleton powers proplatelet exten-

sion. Accumulating evidence suggests that the cytoskeleton is 

the principal machinery for platelet production (Tablin et al., 

1990; Hartwig and Italiano, 2006; Thon et al., 2010). This is not 

unexpected, considering the massive reorganization a mature, 

round MK goes through to extend proplatelets and release them 

into sinusoidal blood vessels. 1-Tubulin is the main tubulin 

isoform in MKs; its reorganization is essential for proplatelet 

formation and powers proplatelet elongation using cytoplas-

mic dynein, a microtubule minus end–associated motor protein 

(Fig. 3; Lecine et al., 2000; Patel et al., 2005b). Mice lacking 

1-tubulin produce 60% fewer platelets, and the platelets that 

are produced show structural and functional defects, including 

reduced microtubule content and fewer microtubule coilings 

around the platelet periphery (Schwer et al., 2001). In humans, 

mutations in 1-tubulin result in an autosomal dominant macro-

thrombocytopenia (Kunishima et al., 2009).

Likewise, F-actin is present throughout proplatelets and 

forms the assembly points required for them to bend and bifur-

cate (Italiano et al., 1999; Patel et al., 2005b). Consistent with 
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is not required for platelet production. Nevertheless, the ef�-

ciency of platelet production in culture is decreased relative to 

that observed in vivo, suggesting that the bone marrow micro-

environment plays an important role in stimulating and enhanc-

ing proplatelet formation and platelet release.

The osteoblastic niche. It has been hypothesized that 

the dynamic interaction of MKs with the different extracellular 

matrix proteins in the bone marrow compartmentalizes their 

maturation to speci�c sites. This is important to allow MKs to 

�rst develop from HSCs and then migrate to the vascular niche 

before beginning the process of proplatelet formation. Colla-

gen I is the most abundant component of the osteoblastic niche 

(Reddi et al., 1977). Interestingly, binding of MKs to collagen 

through 21-integrin inhibits proplatelet formation (Sabri  

et al., 2004, 2006; Zou et al., 2009). This suggests that under nor-

mal physiological conditions, the osteoblastic niche inhibits pro-

platelet formation (Arai and Suda, 2007; Pallotta et al., 2009). 

Recently, an in vitro model to study MK function in the bone 

marrow environment was developed by differentiating human 

mesenchymal stem cells into osteoblasts and then co-culturing 

osteoblasts with HSCs and MKs (Pallotta et al., 2009). Using 

this model, Pallotta et al. (2009) found that HSCs form a niche 

that leads to collagen I deposition, creating an environment con-

ducive for HSCs to differentiate through the megakaryocytic 

lineage but not to complete maturation and extend proplatelets. 

This supports the model that engagement of collagen I in the 

osteoblastic niche acts to suppress proplatelet formation while 

allowing for MK differentiation and maturation.

The vascular niche. Polyploid MKs localize to sinu-

soidal bone marrow endothelial cells in vivo, where they form 

proplatelets that migrate through bone marrow endothelial cells, 

and release platelets directly into the marrow intravascular 

sinusoidal space (Tavassoli and Aoki, 1989). Recent evidence 

suggests that up-regulation of the cytokine SDF-1 and its re-

ceptor CXCR4 may be important for the migration of MKs to 

the vascular niche (Avecilla et al., 2004; Pitchford et al., 2012). 

The vascular niche is comprised of extracellular matrix proteins, 

such as collagen IV, �bronectin, �brinogen, and von Willebrand 

factor, which in conjunction with chemokine-mediated interac-

tion of progenitors allow MKs to relocate to a microenvironment 

that is both permissive and instructive for the late stages of MK 

maturation and proplatelet formation (Avecilla et al., 2004).

Fibrinogen is a commonly studied extracellular matrix pro-

tein in bone marrow sinusoids that enhances proplatelet forma-

tion. MKs from bone marrow aspirates form signi�cantly more 

proplatelets when plated on �brinogen (Larson and Watson, 

2006). The mechanism for this augmentation is thought to be 

through �brinogen binding to the MK integrin IIb3 (Eto et al., 

2002; Larson and Watson, 2006). Although IIb is expressed in 

MK progenitor cells, and thus very early in MK development, its 

role throughout MK maturation remains controversial (Berridge 

et al., 1985; Prandini et al., 1996). A study by Eto et al. (2002) 

suggests that IIb3 only exhibits agonist-induced �brinogen 

binding in mature MKs. Aside from its role in binding �brino-

gen, the integrin IIb3 in itself may be important for proplatelet 

release; a study shows that antibodies directed against the in-

tegrin subunit IIb inhibit proplatelet formation when added to 

the necessary organelles and granules are packaged into plate-

lets remains unclear. In addition, the idea that granules may 

be sorted into heterogeneous populations in platelets remains 

controversial (Italiano et al., 2008; Kamykowski et al., 2011; 

Jonnalagadda et al., 2012). Furthermore, recent studies have 

identi�ed heterogeneity in -granule morphology and mem-

brane protein composition as well as granule motility during 

platelet activation (van Nispen tot Pannerden et al., 2010; Peters 

et al., 2012). In the future, studies addressing this question may 

help us better understand the many unique roles platelets and 

their cargo play in health and disease.

The role of the microenvironment  

in proplatelet formation

MKs cultured in vitro can form proplatelets in suspension, sug-

gesting that direct interaction with the bone marrow environment 

Figure 4. Trafficking of -granules. Granules are packaged in MKs, traf-
ficked along microtubules lining proplatelet (Proplt) shafts, and captured 
in nascent platelet tips. To visualize -granules, murine fetal liver–derived 
MKs were incubated overnight with 150 µg/ml Oregon green 488 human 
fibrinogen conjugate, which they take up and package into their -granules. 
MKs were then washed by albumin gradient sedimentation, and the resus-
pended pellet was placed in a video chamber. MKs were imaged on a 
microscope (Nikon) equipped with a 100× objective, NA 1.4, and were 
acquired with a charge-coupled device camera (ORCA-II-ER). Image acqui-
sition was under the control of MetaMorph software. (A and B) Images visu-
alize MKs actively releasing proplatelets (A) and released proplatelets (B).
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proplatelet extension and release. Once in the blood, proplate-

lets are exposed to a high S1P concentration, which initiates the 

subsequent shedding of platelets into the circulation. Using S1pr1 

knockout mice and multiphoton intravital microscopy, they 

showed that the S1P gradient guides proplatelet extensions into 

the lumen of the bone marrow sinusoids and that mice lacking 

S1pr1 develop severe thrombocytopenia caused by both forma-

tion of extravascular proplatelets and defective proplatelet release 

inside the vascular space. Importantly and perhaps most exciting 

is that activation of S1pr1 signaling directly stimulated the release 

of new platelets; this is mediated through S1pr1, which triggers 

activation of the Gi/Rac GTPase signaling cascade. Therefore, 

this study identi�es S1P and its receptor S1pr1 as important me-

diators of directional proplatelet elongation and terminal shed-

ding of new platelets into the blood stream. The implications of 

this study are far reaching and open the door to many interesting 

questions. For example, as proplatelets extend into the lumen, 

could they also function to monitor circulating levels of proteins, 

such as TPO, or even platelet numbers? This would allow the 

MK to receive information and instruct the MK in processes such 

as protein translation, granule packaging, and platelet production. 

Understanding the impact of blood components on proplatelet 

formation is an exciting �eld for future work.

Proplatelet extension into the vascular space. 

Once the lumen is “sensed” by the MK, how are the proplatelets 

able to break through into the vascular space? In another recent 

study, it was revealed that podosomes, cylindrical actin-rich 

structures found on the outer surface of the plasma membrane, 

actively degrade the extracellular matrix and are therefore 

important for MKs to extend proplatelet protrusions across the 

basement membrane (Schachtner et al., 2013). This study showed 

that the mechanism by which MKs form podosomes is through 

actin polymerization via the Arp2/3 complex and WASP to cre-

ate an F-actin core, which is then surrounded by rings of vincu-

lin. Once assembled, podosomes degrade matrix proteins, such 

as �brinogen, in a matrix metalloproteinase- and myosin-IIA– 

dependent manner. This study is the �rst to examine the role of 

podosomes in MKs and suggests that they may play a role in 

effective delivery of platelets into the bloodstream during pro-

platelet formation.

Similarly, the impact of blood shear forces on proplatelet 

formation is an emerging trend in the �eld of MK and plate-

let biology. In a pivotal study, Junt et al. (2007) observed pro-

platelet formation in real time in the bone marrow of mice by 

multiphoton intravital microscopy. Their observations in these 

live-cell experiments uphold the hypothesis that blood �ow–

induced shear stress helps separate proplatelet fragments from 

the MK cell body. This was supported by an in vitro model in 

which cultured MKs shed signi�cantly more proplatelets when 

they were agitated compared with MKs in static cultures (Junt 

et al., 2007). In a complementary study, the role of shear on 

platelet release from human cord blood MKs adhered to a von 

Willebrand factor matrix was examined (Dunois-Lardé et al., 

2009). During exposure to high shear rates (1,800 s1), cyto-

plasmic MKs produced extensions organized along the direc-

tion of �ow in a manner dependent on both microtubules and 

the GPIb receptor (Dunois-Lardé et al., 2009). Together, these 

cultured MKs (Takahashi et al., 1999). Interestingly, patients with 

Glanzmann’s thrombasthenia, a disease characterized by either 

absent or nonfunctioning IIb3, still have a normal level of circu-

lating platelets (Caen et al., 1966). Therefore, IIb3 may enhance 

but is not necessary for proplatelet formation.

In contrast, patients with Bernard-Soulier syndrome display 

thrombocytopenia with giant platelets in addition to functional 

defects like defective platelet adhesion to subendothelium and 

reduced platelet aggregation (Ware et al., 1993). Bernard-Soulier 

syndrome is linked to genetic lesions of the platelet membrane 

glycoprotein complex GPIb–IX–V, which contains the binding 

site for von Willebrand factor, a plasma glycoprotein important 

for platelet adhesion to the endothelium (Geddis and Kaushansky, 

2004). Therefore, it appears that GPIb–IX–V may be necessary 

for ef�cient platelet formation. In fact, in vitro studies have 

shown that antibodies against GPIb–IX–V strongly inhibit pro-

platelet production and that MKs derived from patients with 

Bernard-Soulier syndrome do not extend proplatelets in vitro 

(Takahashi et al., 1999; Balduini et al., 2011). These studies 

suggest that one mechanism by which GPIb–IX–V mutations 

cause macrothrombocytopenia in patients is through defective 

proplatelet formation.

Fibronectin is another abundant protein in the hematopoi-

etic microenvironment and is a proliferative stimulus for HSCs 

(Weinstein et al., 1989; Vuillet-Gaugler et al., 1990). Speci�cally, 

it plays an important role in megakaryocytopoiesis, proliferation, 

and differentiation through adhesion to �bronectin receptors 

VLA-4 (very late antigen 4) and VLA-5 (Han et al., 2004; Fox 

and Kaushansky, 2005). Recently, the role of these receptors in 

proplatelet formation was examined by Matsunaga et al. (2012), 

who found that �bronectin-activated VLA-4 and VLA-5 may 

contribute to proplatelet formation through enhanced activation 

of ERK1/2. Although preliminary, these data are the �rst to sug-

gest a mechanism by which �bronectin augments proplatelet 

formation. In sum, these studies suggest a model in which the 

osteoblastic niche provides an environment that allows MKs to 

mature and develop, whereas the vascular niche enhances pro-

platelet formation.

How proplatelets find their way  

into sinusoidal blood vessels

Directed release of proplatelets by MKs. In addi-

tion to functioning as the assembly lines for platelet produc-

tion, the architecture and morphology of proplatelets provide 

a mechanism to deliver platelets to the bloodstream. Observa-

tions of MKs releasing proplatelets in vivo have led to the no-

tion that there is directional release of proplatelets from MKs. It 

is only recently, however, that studies have begun to elucidate 

how MKs do this. Although MK receptor engagement of extra-

cellular matrix proteins in the vascular niche is important, an-

other less-studied interaction involves exposure of MKs and/or 

newly generated proplatelet extensions to blood components. 

Because of their unique position at the vascular interface, MKs 

are effectively exposed to a transendothelial gradient of blood 

components. Recently, an elegant study by Zhang et al. (2012a) 

exploited this phenomenon and identi�ed S1P (sphingosine 1 phos-

phate) and its receptor on MKs, S1pr1, as important mediators of  



JCB • VOLUME 201 • NUMBER 6 • 2013 792

Platelet size correlates with platelet reactivity; larger plate-

lets have greater prothrombotic potential. Elevated platelet size 

(mean platelet volume) is associated with increased platelet 

aggregation, increased expression of adhesion molecules, and 

elevated risk of cardiovascular and peripheral arterial diseases 

(Bath and Butterworth, 1996; Kamath et al., 2001; Berger et al., 

2010; Chu et al., 2010; Slavka et al., 2011). Interestingly, a study 

of patients with acute coronary disease found a direct associa-

tion between 2-integrin chain expression and mean platelet vol-

ume, suggesting that expression levels of integrin 21 may be 

involved in the regulation of platelet size (Kunicki et al., 2012). 

Recently, this was supported by the creation of conditional MK-

speci�c 2-integrin chain (Itga2/)–de�cient mice in which the 

resulting platelets have a signi�cantly decreased mean platelet 

volume (Habart et al., 2013).

These observations begin to explain platelet size under 

normal, physiological conditions and also genetic variations that 

may result in macrothrombocytopenia. However, there is still 

much to be revealed about what regulates platelet size. A recent 

paper addressed this issue in a novel way; Gieger et al. (2011) 

conducted a high-powered meta-analysis of genome-wide asso-

ciation studies in >66,000 individuals. From this genome-wide 

association study, 68 genomic loci associated with platelet vol-

ume were identi�ed, including both previously studied and novel 

regulators of platelet formation. Studies such as this pave the 

way for future research into genes that regulate platelet produc-

tion, the results of which will be integral in understanding what 

molecular pathways regulate both platelet formation and size.

Translating MK cell biology into medicine

Platelets are essential for hemostasis, and thrombocytopenia 

(platelet counts < 150 × 109/liter) is a major clinical problem 

encountered across several conditions, including idiopathic 

thrombocytopenic purpura (ITP), myelodysplastic syndromes, 

chemotherapy, aplastic anemia, human immunode�ciency virus 

infection, complications during pregnancy, and surgery. It is es-

timated that 1.5 million platelet transfusions to prevent severe 

bleeding are administered yearly, with each transfusion costing 

over $600 (Kaushansky, 2008). Therefore, because of the strong 

effect of TPO on platelet production, clinical trials evaluating 

the use of recombinant TPO to treat thrombocytopenia began 

in 1995 (Kuter and Begley, 2002). Unfortunately, some patients 

treated with recombinant TPO developed antibodies that created 

a paradoxical decrease in platelets. This led to the creation 

of TPO mimetics, such as romiplostim and eltrombopag, which 

are highly effective in raising the platelet count in ITP (Li et al., 

2001). Although effective in treatment of ITP and other chronic 

conditions, TPO mimetics take 5 d to increase platelet counts and 

12 d to reach maximum effect, making them less useful in acute 

situations (Kuter, 2010). In addition, one serious side effect of 

current TPO mimetics is development of bone marrow myelo-

�brosis (Kuter et al., 2009). Therefore, it is obvious that other 

alternatives (in addition to platelet transfusions) are necessary to 

instantaneously elevate platelet counts in situations such as sur-

gery, sepsis, trauma, or disseminated intravascular coagulation.

The ability to make platelets from cultured MKs would 

be an extremely valuable clinical tool. Because of this, several 

results support the idea that intravascular release of fragments 

protruding from mature MKs is aided by �uid shear forces in 

bone marrow sinusoids. However, the majority of these studies 

have been performed using in vitro assays examining platelet 

rolling and adhesion in an open system. The development of 

micro�uidic chips that recapitulate the bone marrow and vas-

cular compartments will likely provide new insights into how 

shear in�uences proplatelet production and release.

Terminal platelet formation and release

Once proplatelets are extended into the blood stream, what hap-

pens? Do small, platelet-sized objects or larger fragments get re-

leased into circulation? In light of recent work, it appears that 

MKs release a heterogeneous mix into the blood, indicating that 

terminal platelet formation may continue in the blood stream. 

The presence of proplatelet-like structures in blood has been 

long recognized, and it is therefore likely that proplatelets rou-

tinely fragment from the MK body, enter the blood, and mature 

into platelets while in circulation. Schwertz et al. (2010) revealed 

that platelets are capable of producing progeny; platelets pro-

duce “�gure 8” barbell-shaped structures with two platelet-sized 

bulbs on each end that contain their own organelles and cyto-

skeletal system (illustrated in Fig. 3 C). This duplication occurs 

in vitro over a few hours, is dependent on an intact microtubular 

network, and is associated with increased protein synthesis. Sub-

sequently, Thon et al. (2010) identi�ed a new stage in platelet 

formation present in both cultured MKs and peripheral blood 

smears, the preplatelet. Preplatelets are anucleate discoid parti-

cles that are 2–10 µm in diameter that can reversibly convert into 

barbell-shaped proplatelets (Fig. 1, step 4). As in the study by 

Schwertz et al. (2010), Thon et al. (2012a) found that preplate-

lets are able to mature into platelets both in vitro and after trans-

fusion into mice in vivo. Additionally, it was uncovered that this 

is a microtubule-mediated process; bidirectional polymerization 

of microtubules at each end of the barbell proplatelet forms two 

platelet-sized (2-µm diameter) microtubule coils at each end, 

which split into two individual platelets after an abscission event 

(Fig. 1, step 5; Thon et al., 2010).

Regulation of terminal platelet size. The conver-

sion from pre- to proplatelet is driven by microtubule-based 

forces, which are governed by two major biophysical properties: 

microtubule coil diameter and microtubule coil thickness (Thon 

et al., 2012b). Interestingly, these forces both regulate and predict 

the size of circulating platelets generated by proplatelets, provid-

ing an explanation for the 2-µm diameter of platelets (Thon  

et al., 2012b). This supports a model in which circular preplate-

lets are released into the blood, rapidly and spontaneously con-

vert into barbell proplatelets, and undergo fast rounds of abscission 

that result in mature platelets. Alternatively, preplatelets may be-

come trapped in the microcapillaries of the bone marrow, lung, or 

spleen where intravascular shear forces drive proplatelet to 

platelet production. A study of higher platelet counts in postpul-

monary vessels suggests that the lung may be a site of terminal 

platelet formation (Howell and Donahue, 1937). In addition, a 

study using rat models reveals that lung damage may reduce cir-

culating platelets, suggesting that the lungs play an active role in 

the regulation of platelet formation (Xiao et al., 2006).
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Future perspectives

We have made substantial progress on understanding the mecha-

nisms that regulate thrombopoiesis and platelet formation. But, 

as is often the case in science, new discoveries lead to more 

questions. Interestingly, the �eld of platelet biology is beginning 

to move away from thinking of platelets as just mediators of he-

mostasis and starting to study their role in other processes such 

as in�ammation, immunity, and cancer. Are there humoral regu-

lators of proplatelet production and platelet release? Along with 

these “new” roles for platelets, we have yet to fully uncover what 

signaling pathways initiate and regulate various aspects of 

platelet production, in particular, proplatelet initiation, sliding, 

branching, and release. In addition to revealing fundamental cel-

lular mechanisms, future studies of platelet production will en-

hance our understanding of how pathological processes in the 

body affect platelet production and may lead to improved treat-

ments for thrombocytopenia.
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