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Abstract

Dengue viruses are major contributors to illness and death globally. Here we analyze the extrinsic and intrinsic incubation
periods (EIP and IIP), in the mosquito and human, respectively. We identified 146 EIP observations from 8 studies and 204 IIP
observations from 35 studies. These data were fitted with censored Bayesian time-to-event models. The best-fitting
temperature-dependent EIP model estimated that 95% of EIPs are between 5 and 33 days at 25uC, and 2 and 15 days at
30uC, with means of 15 and 6.5 days, respectively. The mean IIP estimate was 5.9 days, with 95% expected between days 3
and 10. Differences between serotypes were not identified for either incubation period. These incubation period models
should be useful in clinical diagnosis, outbreak investigation, prevention and control efforts, and mathematical modeling of
dengue virus transmission.
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Introduction

Dengue viruses (DENV) are a major cause of illness, hospital-

ization, and death throughout the tropical and subtropical regions

of the world [1]. Despite the prevalence of DENV and the

mosquito vectors, Aedes aegypti and Aedes albopictus, some compo-

nents of the transmission cycle are not well defined. Here we focus

on the extrinsic and intrinsic incubation periods of DENV

infections. The extrinsic incubation period (EIP) is the viral

incubation period between the time when a mosquito takes a

viremic bloodmeal and the time when that mosquito becomes

infectious. The intrinsic incubation period (IIP) is the time between

a human being infected and the onset of symptoms due to the

infection. These periods are important determinants of the

temporal dynamics of DENV transmission and are therefore

critical for clinical diagnosis, outbreak investigation, implementa-

tion of prevention and control programming, and mathematical

modeling of DENV transmission.

The EIP begins with a mosquito taking an infectious blood meal

from a viremic human host. DENV present in the blood meal then

invades the midgut, replicates, and eventually disseminates

throughout the mosquito, which becomes infectious once virus

reaches the salivary glands, at which point the mosquito is

infectious and has thus completed the EIP [2]. Since the early

1900s when the etiology of dengue was being investigated, the EIP

has been recognized as an important component of DENV

transmission dynamics [3]. Due to its known dependence on

temperature [4,5], the EIP plays an important role in efforts to

understand the influence of weather and climate on the

spatiotemporal dynamics of DENV transmission and to incorpo-

rate those effects into mathematical models of DENV transmission

(e.g. [6,7,8,9]).

The EIP is generally referenced as being 8–12 days [10,11],

based on two sets of experimental observations [12,13]. In these

experiments, no blood-fed mosquitoes were infectious until 8 days

post exposure, but were infectious by 12 days post exposure. These

observations have not however been incorporated into explicit

statistical models, which have the advantage of being able to

include cofactors, such as temperature, and to formally describe

expected values, expected variability, and confidence in model

parameters.

In humans, there are two periods of interest: the IIP, which

marks the onset of symptoms as described above; and the latent

period, the period between infection and the onset of infectious-

ness. The latter is another important determinant of transmission

dynamics, but data is extremely sparse, so here we focus on the IIP

as it is an important determinant of the temporal dynamics of

human disease and may be used in a differential diagnosis, for

example, for a traveler returning from a DENV-endemic area

[11]. The IIP also provides a rough estimate of the latent period as

most individuals have been noted to become infectious within a

day before or after the onset of disease [12]. Like the EIP, the IIP

varies and the ranges most cited in the literature are those of the

World Health Organization [10], 4–10 days, and the Centers for

Disease Control and Prevention [11], 3–14 days, but typically 4–7.

Again, these range estimates are based directly on observations

from a limited numbers of studies [12,14], but statistical models

such as those of Nishiura and Halstead [15] have the potential to

provide a more complete description including estimates of

uncertainty.

Here, we apply multiple Bayesian time-to-event models to the

DENV incubation periods. Time-to-event models have the distinct

advantage of being able to combine direct observations and

censored observations. Direct observations of DENV incubation

periods are unique to the IIP observations from the early 1900s

when humans were experimentally infected and monitored for

symptom onset [3,12,13,14,16,17,18]. Censored observations are

more common and include maximum or minimum observations,

rather than a precise time. For example, for a traveler becoming

sick after a short stay in an endemic area, the actual IIP is
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unknown, but the maximum and minimum IIP are defined by his

or her arrival and departure times, respectively, to the onset of

illness.

These models also offer the opportunity to investigate other

factors that may influence the incubation periods. Those factors

may include viral characteristics such as the fitness of particular

serotypes or genotypes [19,20,21] and the amount of virus to

which the mosquito or human is exposed [5,22]. Both vector and

host characteristics may also play a vital role; mosquito

competence can be highly variable even within a single species

[23,24] and human susceptibility may vary due to prior exposure

and intrinsic genetic factors [25,26]. Finally, as mentioned above,

temperature influences the EIP; at higher temperatures within the

viable temperature range of the vector, DENV replicates faster

and the EIP is shorter [4,5]. Here, we investigate the influence of

temperature on the EIP and potential difference in EIP and IIP

between the four DENV serotypes.

Materials and Methods

Data
Relevant literature was collected by searching the PubMed,

Ovid, and the Armed Forces Pest Management Board Literature

Retrieval System databases using combinations of search terms

including Aedes aegypti, Stegomyia fasciata (previous name for Ae.

aegypti), Aedes albopictus, dengue, experiment, import, incubation,

transmission, temperature, and travel. We did not restrict the

search based on time of publication or language. Further material

was found by reviewing references from identified papers.

The moment when a mosquito becomes infectious is not directly

observable, so observations of the EIP are restricted to the window

between exposure(s) and transmission experiment(s), defined by a

minimum and maximum EIP. For example, if a mosquito is shown

to be infectious 10 days after exposure, the EIP must be between 0

and 10 days. If the same mosquito is tested at day 5 and does not

transmit DENV at that time, the EIP is between 5 and 10 days.

For each observation, the maximum EIP was defined as the time

from the first infectious blood meal to the first successful

transmission of DENV. If transmissibility was tested and never

successful, the maximum EIP is unknown. The minimum EIP was

the time from the last infectious blood meal to the last negative

transmission experiment or zero if there were no negative

transmission experiments.

Acceptable transmission assays involved the confirmation of

transmission to a naı̈ve individual as evidenced by the onset of

dengue or by laboratory evidence of infection such as hemagglu-

tination inhibition or plaque reduction neutralization assays.

Because dengue is used as an indicator, there may be some

false-negative tests resulting from asymptomatic infections. We

initially assume that all negative tests are truly negative and revisit

this assumption later.

Observations of the EIP were limited to those in which Ae.

aegypti or Ae. albopictus were fed on viremic humans or non-human

primates. We also excluded observations in which infection of the

mosquito was attained by injection or by feeding on animal blood

or artificial media seeded with DENV, as these may not

realistically mimic natural transmission.

Temperature data were recorded for each EIP observation

when available. For observations with no temperature data, we

obtained temperature data for the location of the study at the time

of year when the study was undertaken from the Climate Research

Unit 30-year mean climatology dataset (CL 2.0) [27]. The

available temperature data was used to calculate a spatially and

seasonally matched mean temperature for each observation.

The IIP analysis was restricted to events in which humans

became sick after being experimentally infected by Ae. aegypti or Ae.

albopictus or after being naturally exposed to DENV within a

defined period of time by travelling into or out of an area with

ongoing DENV transmission. In this case, the end event, the onset

of symptoms, was always observed, but the exact exposure time is

only known in the case of experimental infections. In those cases,

the IIP was directly observed and therefore uncensored. In other

cases, the maximum and minimum IIP were defined as the time

from the first and last potential exposures, respectively, to the onset

of illness. For example, a traveler who became sick 3 days after

returning from a 10-day trip may have been exposed at any time

during the trip, so the IIP must be between 3 and 13 days.

Further ancillary data collected for the analyses included the

serotype of virus when known. The data is available in Text S1.

Statistical Analysis
The EIP and IIP data were both analyzed using censored time-

to-event models. For the IIP observations with a single exposure

and a known time of illness onset, the data are uncensored. For

observations of EIP or IIP defined by an interval, the event is

interval-censored, i.e. the event occurred sometime between the

minimum and maximum times defined by the observations.

Observations with only a minimum time are treated as right-

censored data.

For each incubation period, we analyzed four common time-to-

event models: exponential, Weibull, gamma, and log-normal. The

specific formulations of each are given in Table 1. For each model,

we assumed multiplicative hazards using linear covariates, defined

by bX. For the EIP, we incorporated a covariate for temperature

(T) to estimate the temperature sensitivity and a random effect (z)

to control for inter-study (i) variation which may arise from unique

study designs and unknown properties of a particular human,

monkey, mosquito, or virus population:

bX~b0zbT Tzzi ð1Þ

The IIP models only included the intercept b0 and random

effect, not the temperature covariate. We also evaluated possible

differences between serotypes using a dummy variable for each

serotype.

We fitted the models using Markov Chain Monte Carlo

methods. We used weakly informative priors for all coefficients

(Text S2). To improve sampling, the random effects were

hierarchically centered on the intercept estimate and the

temperature variable was mean-centered. Thus equation 1

becomes:

bX ~ bT (T {T) z zi, zi ~N b�0, s2
z

� �
: ð2Þ

The b0 coefficient that we report is adjusted for this and the

between-study variation so that it may be used directly without

centering: b0~b�0zbT Tzs2
z

�
2. The IIP is only adjusted for

between-study variation: b0~b�0zs2
z

�
2. The between-study

variation adjustment is necessary because ebX is log-normally

distributed such that this variance contributes to the expected

mean.

We initialized three Markov Chain Monte Carlo chains for each

model and ran them until convergence based on visualization and

the Gelman-Rubin statistic [28]. We then continued sampling,

using thinning to reduce first-order autocorrelation to below 0.1,
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until we had at least 1,000 independent samples for estimation of

the posterior distributions. Model fit was compared using the

deviance information criterion (DIC) [29]. The DIC rankings were

further assessed via bootstrapping (Text S3). The analyses were

performed in R 2.15.0 (www.r-project.org). OpenBUGS Version

3.2.1 [30] using R2OpenBUGS [31] (www.openbugs.info).

Results

Data
We identified 38 studies reporting relevant observations of

natural EIP and IIP

[3,5,12,13,14,16,17,18,32,33,34,35,36,37,38,39,40,41,42,43,44,4-

5,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61]. The crude

data and further details regarding selection or exclusion of specific

observations can be found in Text S1.

The EIP data included 146 observations from 8 studies

published between 1905 and 1987 [3,5,12,13,14,16,32,33]. In

109 instances, the EIP observation was interval-censored and in

37, right-censored. For 5 studies including 27 observations,

serotype was unknown. The other three studies consisted of

DENV-1 (49 observations), DENV-2 (38 observations), and

DENV-4 (32 observations). Ae. aegypti were used for 140 of the

observations and Ae. albopictus, for 6. The average temperature was

reported for 54 observations and estimated for the remaining 92

based on average climate for the particular location and time of

year. Overall, the average temperature ranged from 16.4 to

35.0uC with a median of 26.5uC.

For the IIP, 204 observations were collected from 35 studies

published between 1903 and 2011

[3,12,13,14,16,17,18,34,35,36,37,38,39,40,41,42,43,44,45,46,47,

48,49,50,51,52,53,54,55,56,57,58,59,60,61]. The 8 studies prior

to 1940 were experimental and included uncensored and some

interval-censored observations. The other 27 studies occurred

after 1970 and were all travel-related. These included only

interval-censored and right-censored observations related to the

period of travel. Altogether there were 131 uncensored

observations, 58 interval-censored observations, and 15 right-

censored observations. Serotype was not reported for 14 studies,

totaling 39 observations (19%). DENV-1 was reported for 102

observations in 12 studies, DENV-2 for 6 observations in 6

studies, DENV-3 for 5 observations in 3 studies, and DENV-4

for 52 observations in 2 studies.

Extrinsic Incubation Period
To characterize the EIP, we fitted four time-to-event models

with temperature as a covariate and a random effect for each

study. The models incorporating temperature and random effects

(DIC range: 75–91) fitted better than models without temperature

(DIC range: 104–116) and models without random effects (DIC

range: 119–129). The 95% credible intervals (CI) for bT (Table 2)

indicate that the association between increased temperature and

decreased EIP (Figure 1A–D), is significant for each model.

Figure 1 shows the temperature-dependent mean and middle 95%

of the respective distributions using the mean parameter estimates

(Table 2). Qualitatively, the middle 95% of each estimated

distribution crossed through the majority of the observed EIP

intervals. The mean estimate for the EIP at 30uC ranged from 4.7

days in the Weibull model to 6.5 days in the log-normal model

(Table 2). As measured by DIC, the model with the best fit was the

log-normal model, followed by the gamma, Weibull, and

exponential models, in order. Due to the close DIC values we

performed a bootstrap analysis and found that the log-normal

model consistently fit the data better than the other models (Text

S3).

Assessment of mosquito infectivity relies on the demonstration

of transmission, generally evidenced in this data as dengue in an

experimentally exposed individual. Thus, some negative tests of

infectivity may be incorrect. We repeated the analysis for the EIP

without any of the negative observations which may have resulted

from asymptomatic infection. The mean EIP at 30uC was similar

to the model with the complete data, but the estimated effect of

temperature was reduced (Table 2, Figure 2).

Only three studies contained serotype information for EIP

observations, each implicating a single serotype. Because of the

limited number of studies, each estimated coefficient was highly

correlated with the random effect of the respective study such that

inter-study variation could not be separated from potential inter-

serotype variation. As only 6 observations were made using Ae.

albopictus, we did not compare the EIP between species.

Using all of the data and omitting serotype information, the

mean estimate for the EIP decreased from 15 days (95% CI: 10, 20

days) at 25uC to 6.5 days (95% CI: 4.8, 8.8 days) at 30uC
(Figure 1D) in the log-normal model. To characterize the expected

range of EIPs at a given temperature, we estimated the middle

95% of the posterior distribution. At 25uC, the middle 95% of the

distribution was from 5 days (95% CI: 3, 8 days) to 33 days (95%

CI: 23, 48 days). At 30uC, this range was 2.4 days (95% CI: 1.6,

3.3 days) to 15 days (95% CI: 10, 21 days).

Intrinsic Incubation Period
Because of the differences between the pre-1940 and post-1970

observations, we modeled these subsets of data as well as the

complete dataset independently using each of the 4 models and a

random effect for each study. Inclusion of the random effects

improved the fit of each model and dataset, with the exception of

the exponential model and the post-1970 data (Text S3). The IIP

data included multiple observations of each serotype in various

studies, but covariates for serotype were not significant and did not

improve the fit of the models (Text S3).

As shown in Figure 3, the estimated distributions for the

completely censored post-1970 data are flatter than those for the

pre-1940 data, likely reflecting the censoring in the observations

rather than a change in the IIP. Furthermore, the post-1970 data

contributes little to the fit of the complete dataset (Figure 3), so we

focus our analysis on the 153 observations from the 8 pre-1940

studies. For this dataset, the gamma model provided the best fit

followed by the log-normal, Weibull, and exponential distributions

(Table 3). However, for bootstrapped samples of the pre-1940

datasets, the log-normal model provided a better fit in 71 out of

100 samples (Text S3). Thus, while the gamma model may fit the

Table 1. Statistical distributions.

Distribution
Probability density
function Parameters Covariates

Exponential le{lt l = rate l(X )~1
�

ebX

Weibull vltv{1e{ltv
l = rate l(X )~ebX

v = shape

Gamma lvtv{1e{lt C(v)ð Þ{1 l = rate l(X )~v
�

ebX

v = shape

Log-normal e{t( ln (t){m)2=2t{1
ffiffiffiffiffiffiffiffiffiffi
t=2p

p
m = mean m(X )~ebX

t = precision

doi:10.1371/journal.pone.0050972.t001
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complete dataset better, the log-normal model may better fit any

given subset of the data.

The gamma and log-normal models had similar qualitative fits

(Figure 4) and equivalent mean expected IIPs of 5.9 days (Table 3).

The middle 95% of the log-normal IIP distribution was 3.4 days

(95% CI: 3.0, 3.7 days) to 10 days (95% CI: 9, 11 days). For the

gamma distribution, the range was similar, from 3.4 days (95% CI:

2.9, 4.0 days) to 9 days (95% CI: 8, 11 days).

Discussion

From a total of 38 studies published between 1903 and 2011, we

compiled 146 and 204 observations of the EIP and IIP of DENV,

respectively. We limited the data to experimental or accidental

exposure involving humans, primates (for EIP only), and

mosquitoes to better reflect the incubation periods resulting from

natural transmission events, rather than highly manipulated

experimental ones. Though incubation period determinants may

include viral, host, vector, and environmental characteristics

[4,5,19,20,21,22,23,24,25,26], there was only sufficient data to

assess the role of different serotypes on the EIP and IIP and of

mean temperature on the EIP. The other factors, though difficult

to measure, are still present and we used random effects to control

for inter-study variation associated with the different experimental

designs, and mosquito, virus, and human population characteris-

tics present in different studies.

In the analysis of different serotypes, we found no conclusive

evidence of differences in EIP or IIP between serotypes. For the

IIP, there was a sample of infections due to all four serotypes over

a variety of different studies and reports. Controlling for inter-

study variation, we found no effect of serotype on IIP. For the EIP,

the relevant data was much more limited. With only censored

observations, one serotype absent, and the other three represented

in single, independent studies, there was not enough information

to separate inter-study variation and serotype-associated differ-

ences. The difficulty of parsing the effects of distinct genotypes,

serotypes, and mosquito populations on the EIP has long been

recognized and demonstrated even in highly controlled laboratory

studies [22,24,62].

The influence of temperature on the EIP of arboviruses has

been evident since the early days of arbovirology [63], but here,

for the first time, we described it statistically for natural DENV

infections. We note, however, that even the temperature

dependence as described here is by necessity a simplification of

what occurs in the real world. Temperature is constantly varying

on spatial and temporal scales and to different extents in different

locations. These fluctuations themselves have an influence on the

EIP [64]. Furthermore, mosquitoes may modify their exposure to

extreme temperatures by spending time inside homes and in shade

[65]. Because accounting for all of the subtleties influencing

mosquito body temperature is extremely difficult, we used the

most general measure readily available, mean temperature. Even

with this simplification, we had to estimate the mean temperature

for a number of the observations. In spite of this, the temperature-

dependence was significant in all models. We further tested this

association in the absence of negative infectivity data that could

Figure 1. Extrinsic incubation period models. (A–D) Vertical lines indicate the observed censored EIP observations (black for interval-censored
and grey for right-censored) at each temperature (with added variability in temperature to improve visualization for observations at the same
temperature). Thick solid lines and shaded areas indicate the mean and middle 95%, respectively, of the distribution for each fitted model (red:
exponential; blue: Weibull; orange: gamma; and black: log-normal). (E) The lines indicate the predicted probability density for each model at 30̊C.
doi:10.1371/journal.pone.0050972.g001

Table 2. Extrinsic incubation period models.

n/t b0 bT EIP (306C)

Model Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI DIC

Exponential NA NA 8 6, 10 20.20 20.29, 20.12 6.1 3.4, 9.9 91

Weibull 1.6 1.1, 2.2 213 218, 29 0.34 0.21, 0.49 4.7 2.5, 7.3 78

Gamma 4.3 2.5, 6.7 7.9 6.3, 9.7 20.21 20.27, 20.14 5.9 3.6, 8.6 76

Log-normal 4.9 2.8, 7.5 2.9 2.3, 3.5 20.08 20.10, 20.05 6.5 4.8, 8.8 75

Log-normal{ 7 4, 10 1.9 1.2, 2.6 20.04 20.069, 20.016 7 5, 10 NA

{without right-censored data, DIC is not comparable as the number of observations is different.
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include false-negatives due to asymptomatic infections. While the

strength of the temperature association was diminished, it was still

statistically significant. Because most of the researchers were

exceedingly diligent in monitoring for evidence of infection and

negative observations are especially important at lower tempera-

tures when a mosquito may not survive long enough to become

infections, we included these observations in the final analysis.

The final models included only the random effects and, for EIP,

the mean temperature. Among the EIP models, the log-normal

model provided the best fit. For the IIP, the gamma and log-

normal models were similar and there was no clearly favored

model. We previously found that the yellow fever virus (YFV) EIP

data was best described by a Weibull model, with the log-normal

model a close second, and that the YFV IIP was best described as

by a log-normal distribution [66]. In all cases, the log-normal

model provided the optimal or near-optimal fit out of the models

investigated. This suggests that the log-normal model may be a

good general model for incubation periods for arboviruses, as

shown here, as well as for directly transmitted pathogens [67,68].

The estimated incubation periods described here improve the

current understanding of these periods. The DENV EIP is

generally referenced as a range of 8–12 days [10,11]. Here, we

found that, given the available data, there is significantly more

expected variability, with expected EIP ranges of 5–33 days at

25uC and 2–15 days at 30uC. The IIP range, meanwhile, has been

cited as lasting 4–10 days [10] or 3–14 days [11]. Here we

estimated that 95% of IIPs are in the 3–10 day range. This range is

also in agreement with the previous work of Nishiura and Halstead

Figure 2. EIP model sensitivity to right-censored observations.
The log-normal model is shown as in Figure 1D. The dotted and dashed
lines are the comparable predicted mean and middle 95% range,
respectively, for the model when the right-censored data is omitted.
doi:10.1371/journal.pone.0050972.g002

Figure 3. Intrinsic incubation period models and datasets. The thick solid lines indicate the estimated probability distributions using the
complete dataset. The dashed and dotted lines indicate the estimate distributions using the pre-1940 and post-1970 subsets, respectively.
doi:10.1371/journal.pone.0050972.g003
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[15] who fitted log-normal models resulting in a range of

approximately 3–9 days. While all of these ranges are similar,

our estimates leverage more data from more studies with more

diverse vector, human, and virus populations and are based on

more flexible models, incorporating covariates, censoring, and

different distributional assumptions. These qualities make the

estimates more generalizable than those of Nishiura and Halstead

and better supported than those generally cited based on

observations alone.
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