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INTRODUCTION -

The purpose of this paper is to present a simple model for investi-
gatint the indentation of an orthotropic elastic medium. Such an idealized
problem is representative of the processes of the printing, calendering, cor-

rugating, scoring and cutting which occur in the paper and paperboard industry.

Simple formulas are derived for the distribution of pressure under‘a
punch of symmetrical profile and for the total load which must be axially
applied to achieve this punch. Examples of four typical shapes of punch
commonly seen in actual operation are given to illustrate the application of

the derived formula.

This paper is being submitted to the Journal of Applied Mechanics

for publication.
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The Indentation of a Nonplanar Punch
WA AN I A A o AL LIS t
on an Orthotropic Elastic Half Space

AL A T

ARSTRACT

A method due to Ting [1,2] is employed to

. investigate the indentation of an ortho-

tropic elastic half space in which, instead
of solving a pair of dual integral equations,
the inversion of a single integral equation
is required. Simple formulas are derived
for the distribution of pressure under a
punch of symmetrical profiie and for the
total load which must be axially applied to
achieve this punch. The application of
these formulas is illustrated for some
shapes of punch. It is hoped that the
derived formula will provide the basis

for further investigations into the de-
tailed mechanics of the printing, calendering,

corrugating, scoring, and cutting processes.
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Introduction
AN L T

The problem of an indented half plane seems to héve been considered
first by Sadowsky [3]. Using the methods of potential theory, under the éssﬁﬁp¥
tiéﬁ that the shearing fofces vanish on the contact surface, SadowskyAderiQed a‘xA
closed form solution of the contact pressure for a flat-ended rigid indenfer .
pressed normally into an isqtropic half plane. The same problem with the
presence of friction on the contact surface was treated independently with

different mathematical techniques by Abramov [4], Muskhelishvili [5], and Okubo [6].

The contact stresses between an arbitrary profile and an isotropic
half plane were.considered by several investigators. Using the theory of Fourier
transforms, Sneddon [7] obtained the solution to the punch of a wedge for an iso-
tropic half plane but made incorrect use of Busbridge's solution to the dual in-
tegral equations which does not cover the type of the dual integral .equations he .
considered. A simple general solution of the integral equation for the punch of
an arbitrary profile was given by Schubert [8], who used Hamel's solution [9]
td a singular integral eQuation with the finite Hilbert transforﬁation, which is

the type of equations he investigated.

The contact problems for an orthotropic body with and without friction
on the contact surface can be found in Galin's book [10]. The solution for the
contact stress between a flat-ended rigid block and an orthotropic half plane was
derived by Conway [11], who extended Schubert's solution for an isotropic half

plane to an orthotropic half plane.

The present work is concerned with the contact stresses between a
rigid indenter of a symmetrical profile and an orthotropic elastic half space.

A simple general solution of the integral equation derived in the form of Fourier
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transforms of a pressure function which is determined in terms of a displacement
function, is obtained by following Ting's treatment of the axisymmetrical visco-

elastic problem.
Stresses and Displacements for Half Space
R e T MR D T L . ) .

Consider an orthotropic half space whose bounding surface corresponds
with the y-axis as shown in Fig. 1, and assume that the system of Cartesian
coordinates are the principal axes of_orthotropy. The rigid indenter of a
symmetrical profile is pressed at the origin into an orthotropic half space and
it is assumed that the contact on the surface is frictionless. The problem of

interest is to determine the stresses cij and the displacement u, in an ortho-

—— —

tropic half space and particularly the contact stresses under the rigid indenter.
[Fig. 1 here]

The equations and formulas which determine the stresses and displace-

ments subject to the boundary conditions are the following:

—+X, =0, A (1)
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Where Xi are body forces, S, are elastic compliances. In the absence of body
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forces and introducing the Airy stress function ¢ for the orthotropic plane

stress problems the required equations become:
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The above equatlons also hold in the case of an orthotroplc (plaln

ij

s 61, Bz eVeI'y'Where replace the

elastic constants S.., 01, 02 by the followlng formulas (see Reference [12])
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The boundary conditions for the present problem are

Op T Tuy = 0  on x=0,y>a,
(53.[ =D - fly) =0 on x=0,y<a,

(8)

(9)

(10)

(1la)

(11b)

where D is the total depth of penetration, f(y) is the profile of the basze of

the indenter before contact and is defined so that f(y) 0, a is the width of

’
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the contact surface which will be determined from the continuity condition that

qﬁ =0at x=0,y=a.

The prescribed boundary coﬁditions are oflmixed kind. The formulation
of mixed boundary value problems oftenileaAS to the solution of a pair of dual
integral equations or a system of triple integral equations which is frequently
difficult to obtain. Alternatively, if ﬁhe given displacement condition in the
case under consideration is replaced by the stress condition by assuming that
the contact stresses are known, the transformed boundary conditions will then be
uniform which will render the.probiem tractable. This ingenious idea is due to
Ting [1,2], who introduced this technique to make the Laplace transform technique
applicable to the more general viscoel;stic problems of axisymmetry.‘ The original

_ boundary conditions (10) will therefore be converted as follows:
T =0 on x =0, (122)

6 =-ply) on x=0,y<sa, (12v)

-X‘ — -
where ply) is assumed known.

Using the theory of Fourier transforms [T], one can show that, in the
case of an orthotropic plane stress problem, the stresses and displacements which

satisfy the transformed béundary conditions (12) will take the following form:

-~
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where o = a;/az and p(A) is the Fourier transform of the pressure E(X) which is

defined by

a
p(A) = [ py) cos Ay &y (15)

The mathematical problem is therefore reduced to the determination of the assumed
pressure p(y) which must satisfy the replaced displacement condition (11b). Taking

x = 0 in equation (1ka), one obtains

2 §22(a13 - aap®) o da
ulo, y) = - - ) fo p(X) cos Ay v, (16)

where ulo, y) = D - £(y). Substituting equation (15) into equation (16) yields

a
F(z) = fo f; p(m) cos Am cos Ay A"t dmdA, (17)

where
m(1-a) (ulo, y)
Fly) = - (18)
2 S22 (0y? ~ aar®) '

Equation (17) is an integral equation for p(y) in terms of displacement F(y).
The total force P axially applied to the indenter is

& : .
p=2 [0 o g (19)
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It will be found convenient for the next sections to define another
constant B by

m(1l-0.) 1

B=- = (20a)
2 S22 (01? - co2®) S22 Q102 (0 + a2)
In the case of an orthotropic plane strain problem B is defined by
: mil- 1) 1
B <. (1-8) -1 , (200)

2 S22 (8,3 - BB2®) S22 BBz (By + B3)

where B = B,/B;. Identifying the elastic constants o = o) = 1, S;1 = S22 = 1/E,
§12 =2(1 + V)/EJ and making use of L'Hospital rule to evaluate the indeterminate

form, one can‘find, in the case of an isotropic plane stress problem,
™
B=pE (20¢)
and, in the case of an isotropic plane strain problem,

TE

Bz ——— (204)
h(1 - v2

Once the pressure g(z) is determined, the problem is completely solved.
Solution of the Integral Equation
A At [P . . et - -

If the original boundary conditions (11) are used, one has to solve

the following dual integral equations [7]:

fm )\ A(L) cos AydAr (21a)

(o]
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(21v)
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o

1<
v
o

00
fo A(X) cos AydA

where A(}) = E(A)/Xz(l-a). The problem of solving a pair of dual integral
equations is, in general, difficult. However, the inversion of the alternative
integral eqﬁation (17) is suggested from one of the above dual integral equations

by observing that
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f: 35 (al) cos Aydix = 0 for y > a, (22a)
a cos uy du
=2 —_— = :
Iy (ay) = = J'; - - , (22p)
& ~-u
Thus, one can proceed as follows:
Multiplying equation (17) by (zz - g?)—l/z and integrating with respect

to m from O to y one finds, on making use of equation (22b),

y Flmdm . a oo cos mh -
Jo - === Jo e fg folyw) —5— anr (230)

Y 4F(g) dm a

3 - - T — 0o ’ .
e === -31o 2N [ 21(yn) cos mh anar
But . ‘ [= 4
0 li }\ .
[~ 31(yn) cos nA an = =1 - iy
A A o
L L
&
2f, M) ax=p
Hence,
F(m) dm P a p(m) mdm
2 a3 [ = - 2 plm) mdm
vy =-Z+ (23b)
TT—a_ 0 XZ‘E_Z 2 Y mz—yz

Taking the well-known formula

n
—— - l]'-’
ﬂ; '/(E? - r?) (x? - o?) 2

and multiplying equation (23b) by a similar factor X/Viz - yz and integrating from

Yy to a, one gets, on changing the order of integration,
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Differentiating equation (23c) with respect to Y gives

ST omhkToyr MY Y pToyE % e gL

Equation (24) is the solution of equation (17). One can proceed to simplify

equation (24) by imposing an additional physical condition as follows:

Let

G(A) = A &

|
—
(o}
!
|
1

Integrating by part and then differentiating gives

A mdm 4F(m)
e\ = ] ——— @ (258)

Substituting equation (25a) into equation (24) and proceeding in the same way

as above the following is obtained:

o N ETTCS R g oo
ply) = P+ -2 | 25
IR T S U ‘

Imposing the continuity condition that E(Z) =0aty=a, one obtains from

equation (25),




=-2o) (25¢)

Substituting Flm) = §[Q-f(§)], QF(Q)/QQ = - _[Qf(g)/gg] into equations (25) yields
»  mdm  af(m)

G(A) =-3B [, = = | . (26a)
2 _ p2  dm

y 2 dA  a6(A)
p(y) = - = IZ T D (26b)
4 8 2  mdmw  af(m)
pe-giele-F L = Em (262)

Equations (26) are the formulas for the pressure under the indenter
and the total load exerted on the indenter. Some special cases of the application

of these formulas are illustrated in the next section;

Examgles

e

Results for four particular shapes are given in terms of B. One can
get the pressure distribution g(x)‘and the total force P by substituting the

expression B given in equations (20).

1. Flat-ended block: Since the profile of the punch is not smooth
at y = a, equation (24) must be used to determine the pressure

0,

distribution. Thus, for fly) =
P

p(y) = ———

my? - a’

which shows that the pressure is independent of elastic constants.
2. Wedge: f(y) =y cot 8, where 6 = semiangle of wedge.

It follows from equations (26) that
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4B cot ©
p(z) = cosh™!
4Ba cot O
E.= ——e

™

3. Circle (classical circular indenter)

2)

\

It

: f(y) = y?/2R.

Substituting expression f(y) into equations (26) gives

ply) = = Va2 - ?
£V TR '= S
a?B
P = ——

R

L. Profile with n-th order polynomial:

Integrating equations (26) yields

2B -? , TS+ %ﬁ
- \

= n N

py) = =77 L oB'e; Ty \

- F: -+ 1

\..2 /

| .

2 2 iz + -;-)

P= — ) nc_a- :
Jio onfo TRE /m

Conclu§ioq

POt

a
£ly) = I ey
n=0 —
y 2 _ 3Iz

A method due to Ting is employed to obtain the contact stresses between

the rigid indenter and the orthotropic half space.

The contact stresses for the

isotropic half space can be obtained by identifying the elastic constants and

taking the limit a; + oz > 1.

The components of stresses and displacements for

the isotropic half plane derivable from the paséage of limit of the orthotropic

half plane can also be obtained by following Lamb's treatment [13] of Boussinesq's

problem.

It has been shown that the pressure distribution under a flat-ended

block is independent of elastic constants of the elastic half space.
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It is surprising to note that the total depth of penetration D in the

plane contact problems cannot be obtained from the stress continuity that40x = 0,

at x = 0, ¥y =;g3 which, in contrast, will determine the total depth of penetration

D in contact problems of three-dimensions. Hence, the value D must be determined

from equation (17) by taking the limit y + O. However, the depth of penetration
D, given by the iﬁtegral equation (17% has a singularity at the origin in view
of the trigonometric kernel A~! cos Ay as A > 0. Thus, the actual value of D
is an arbitrary one which must be given as the prescribed value, a peculiar

behavior quite unexpected.
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