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INTRODUCTION

The purpose of this paper is to present a simple model for investi-

gatint the indentation of an orthotropic elastic medium. Such an idealized

problem is representative of the processes of the printing, calendering, cor-

rugating, scoring and cutting which occur in the paper and paperboard industry.

Simple formulas are derived for the distribution of pressure under a

punch of symmetrical profile and for the total load which must be axially

applied to achieve this punch. Examples of four typical shapes of punch

commonly seen in actual operation are given to illustrate the application of

the derived formula.

This paper is being submitted to the Journal of Applied Mechanics

for publication.
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A method due to Ting [1,2] is employed to

investigate the indentation of an ortho-

tropic elastic half space in which, instead

of solving a pair of dual integral equations,

the inversion of a single integral equation

is required. Simple formulas are derived

for the distribution of pressure under a

punch of symmetrical profile and for the

total load which must be axially applied to

achieve this punch. The application of

these formulas is illustrated for some

shapes of punch. It is hoped that the

derived formula will provide the basis

for further investigations into the de-

tailed mechanics of the printing, calendering,

corrugating, scoring, and cutting processes.



Introduction

The problem of an indented half plane seems to have been considered

first by Sadowsky [3]. Using the methods of potential theory, under the assump-

tion that the shearing forces vanish on the contact surface, Sadowsky derived a

closed form solution of the contact pressure for a flat-ended rigid indenter

pressed normally into an isotropic half plane. The same problem with the

presence of friction on the contact surface was treated independently with

different mathematical techniques by Abramov [4], Muskhelishvili [5], and Okubo [6].

The contact stresses between an arbitrary profile and an isotropic

half plane were considered by several investigators. Using the theory of Fourier

transforms, Sneddon [7] obtained the solution to the punch of a wedge for an iso-

tropic half plane but made incorrect use of Busbridge's solution to the dual in-

tegral equations which does not cover the type of the dual integral equations he

considered. A simple general solution of the integral equation for the punch of

an arbitrary profile was given by Schubert [8], who used Hamel's solution [9]

to a singular integral equation with the finite Hilbert transformation, which is

the type of equations he investigated.

The contact problems for an orthotropic body with and without friction

on the contact surface can be found in Galin's book [10]. The solution for the

contact stress between a flat-ended rigid block and an orthotropic half plane was

derived by Conway [11], who extended Schubert's solution for an isotropic half

plane to an orthotropic half plane.

The present work is concerned with the contact stresses between a

rigid indenter of a symmetrical profile and an orthotropic elastic half space.

A simple general solution of the integral equation derived in the form of Fourier
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transforms of a pressure function which is determined in terms of a displacement

function, is obtained by following Ting's treatment of the axisymmetrical visco-

elastic problem.

Stresses and Displacements for Half Space

Consider an orthotropic half space whose bounding surface corresponds

with the y-axis as shown in Fig. 1, and assume that the system of Cartesian

coordinates are the principal axes of orthotropy. The rigid indenter of a

symmetrical profile is pressed at the origin into an orthotropic half space and

it is assumed that the contact on the surface is frictionless. The problem of

interest is to determine the stresses a.. and the displacement u. in an ortho-

tropic half space and particularly the contact stresses under the rigid indenter.

[Fig. 1 here]

The equations and formulas which determine the stresses and displace-

ments subject to the boundary conditions are the following:

aaij

x. + x. = , (1)
-X -1

__ ijkl I kl' (2)

+A^^' . (3)ij 2 taxi aii

where X. are body forces, Sijkl are elastic compliances. In the absence of body

forces and introducing the Airy stress function * for the orthotropic plane

stress problems the required equations become:
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.- a22 + al2 a\ x2 + 2 0 = o (4)

iky ^2p+ c1̂ .2 + 
(u

2

E = SS a0 + S12 (5a)

E = s1 2 a + s 2 2 a (5b)y - - y

YM Ssr , (.5c)-Y. = s66 T (5C)

a a2 = 29 a2T (6)
X ay2 ' a 2 axa

S 1 1 S6 6 + 2 S 1 2
2 2 2 -+ a22 -- (7)

S22 2 S22

The above equations also hold in the case of an orthotropic (plain

strain) problem if the elastic constants C, i, 62 everywhere replace the
-i'J

elastic constants S.., al, d 2 by the following formulas (see Reference [12]):

S 1 3
2 S 1 3 S 2 3 , S 2 3

2

Cl1 = S1 1 - -I, C1 2 = S1 2- = S22 - - (8)

Clii C66 + 2 C1 2

.12 2 2 = C 2+ ~ 2 2 i- (9)

= S 1 3 a. + S23 (10)Z S 3 3 - x ,

The boundary conditions for the present problem are

a = 0 on x = 0, y > a , (lla)
x xy

utx,y) = D - f(y), T = 0 on x= 0, y < a , (llb)

where D is the total depth of penetration, f(y) is the profile of the base of

the indenter before contact and is defined so that f(y) = 0, a is the width of
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the contact surface which will be determined from the continuity condition that

= 0 at x = 0, y = a.

The prescribed boundary conditions are of mixed kind. The formulation

of mixed boundary value problems often leads to the solution of a pair of dual

integral equations or a system of triple integral equations which is frequently

difficult to obtain. Alternatively, if the given displacement condition in the

case under consideration is replaced by the stress condition by assuming that

the contact stresses are known, the transformed boundary conditions will then be

uniform which will render the problem tractable. This ingenious idea is due to

Ting [1,2], who introduced this technique to make the Laplace transform technique

applicable to the more general viscoelastic problems of axisymmetry. The original

boundary conditions (10) will therefore be converted as follows:

T = 0 on x = 0, (12a)
xy

= - p(y) on x = 0, y < a, (12b)

where p(y) is assumed known.

Using the theory of Fourier transforms [7], one can show that, in the

case of an orthotropic plane stress problem, the stresses and displacements which

satisfy the transformed boundary conditions (12) will take the following form:

ax = 2 - e - ae cos y dX (13a)
-0

_0 2
Y + c Jof (a12 e-alX - -c 2 2 e-a2 cos Xy dX (13b)

'T T -x - af (eklx _- -Xa2) sin ky dX (13c)
x vTr o ^OL a \ - e -
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2 foo i 1 3 -X(IX 3 -Xa2X
u =_- - f (X) S2 2 ! a1 e -X - aa2 e - i(SI + SE.)

T - // e - -

/ dX
! -Xalx -Ac 2 xj; cos X d-A

x e e- - e cos Xy (14a)

2 fo (X)o ' 2 -Xaix 2 -Xa2x / -kalx
V = + £ -J f a S2 2 Ct e - - aa2 e - / - S12 e --- ~ o 1-a S22

dX

ae 2 sin y (14b)

where a = al/a2 and p(X) is the Fourier transform of the pressure p(y) which is

defined by

a

p(X) = fo p(y) cos Xy dy (15)

The mathematical problem is therefore reduced to the determination of the assumed

pressure p(y) which must satisfy the replaced displacement condition (llb). Taking

x = 0 in equation (14a), one obtains

2 S 2 2 ( 1 3 - =23) m dX

u(o, y) = _ (l-_) f0 p(X) cos Xy - , (16)

where u(o, y) = D - f(y). Substituting equation (15) into equation (16) yields

a
F(y) = Jf f p(m) cos Xm cos Xy X- 1 dmdX, (17)

where
Tr(l-a) (u(o, y)

F(y) = - (18)

2 S22 (c 1
3 - aa23)

Equation (17) is an integral equation for p(y) in terms of displacement F(y).

The total force P axially applied to the indenter is

a
P = 2 fJ p(y) dy (19)0~~~~~~~~~~(9
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It will be found convenient for the next sections to define another

constant B by

B = - Tr(l-a)

2 S22 (al 3 - ea23)

w 1

2 S22 aaI2 (ai + 0 2 )

In the case of an orthotropic plane strain problem B is defined by

B = -((1- )

2 S22 (B13 _- 82 3 )

7T 1

2 S 2 2 61 2 (B1 + 62)

where ¢ = B2/61. Identifying the elastic constants a = al = 1, S1 1 = S2 2 = 1/E,

S12 = 2(1 + v)/E, and making use of L'Hospital rule to evaluate the indeterminate

form, one can find, in the case of an isotropic plane stress problem,

B = E (20c)

and, in the case of an isotropic plane strain problem,

TrE
B =

4(1 - v 2
(20d)

Once the pressure p(y) is determined, the problem is completely solved.

Solution of the Integral Equation

If the original boundary conditions (11) are used, one has to solve

the following dual integral equations [7]:

fIO -' A(X) cos XydX = F(y)
0 -- -

< y < a, (21a)

(21b)fo A(X) cos XydA = 0
O - -

where A(X) = p(X)/A 2 (-1a). The problem of solving a pair of dual integral

equations is, in general, difficult. However, the inversion of the alternative

integral equation (17) is suggested from one of the above dual integral equations

by observing that

(20a)

(20b)
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|'o JO (aX) cos XydX = 0 for y > a, (22a)

2 a cos uy du
O (a = i T . - (22b)

Thus, one can proceed as follows:

Multiplying equation (17) by (y2 _ m2)-1/2 and integrating with respect

to m from 0 to y one finds, on making use of equation (22b),

y F(m) dm a cos nX
f 2 _ 2= I O p(J) fO J0 (y n ) - dndX (23a)

y - m _

Differentiating equation (23a) with respect to y yields

fy F(m) dm a o

ay mo / ~ f o P(X) fo J1 (yn) cos ns dnd

But

f Jilyn) cos nX dn = - 1 - = -
o - 2 -- A 2

a
2 fo p(X) dX = P

Hence,

2 a .y F(m) dm P a p(m) mdm

E Y ay Jo yy2 _ _22 IY M2 y
(m db

Taking the well-known formula

n rdr
___ _ 7r i.

m- / (n2 r 2 ) (r2 _ m2 ) = 2

and multiplying equation (23b) by a similar factor X/V 2 - y2 and integrating from

y to a, one gets, on changing the order of integration,
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F(m) dm

ax fo Am 2^~~~X _° M

P a XdX
+

j2 y2

P
-= - /a2 _ y2

2 -

P

2 a -p __

a XdX
I _ _

y A'2 y2

m
p(m) mdm J

in

a

RI

/(m 2 - X2 ) (X2 - y 2 )

a

7 y p(m) mdm

Differentiating equation (23c) with respect to y gives

P

p(y) = -
ir/a 2 - y2

4 a
-T2 y ay

a XdX
fI ' -- X a

fo

F(m) dm

A2 _ m2
(24)

Equation (24) is the solution of equation (17). One can proceed to simplify

equation (24) by imposing an additional physical condition as follows:

Let

G(X) = X a J
_ *5~x *

X F(m) dm

0 A 2 _ m2

Integrating by part and then differentiating gives

X mdm dF(m)
G X) = f J 2 dm (25a)

Substituting equation (25a) into equation (24) and proceeding in the same way

as above the following is obtained:

F 4G(a)
p(y) = ' 1 I+ --

T yT P+ 7
7TYa!

a
- 72 fy

dX

A2 y2

dG(X)

dX (25b)

Imposing the continuity condition that p(y) = 0 at y = a, one obtains from

equation (25),

,XdX
X ·

72 -y

a2
ITy

(23c)

p (m) mdm

7M - --X 2
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P = - G(a) (25c)

Substituting F(m) = B[D-f(m)], dF(m)/dm = - B[df(m)/dm] into equations (25) yields

X mdm df(m)

G(X) = -fB | , " -(26a)
G(t) = B- X2 2 dm

4 a dX dG(A)

p(y= - 2 -y A y d (26b)

)4 4B a mdm df(m)
p = - G(a) -= - f - - (26c)-7T -T- 7r oa/a 2 - m d

Equations (26) are the formulas for the pressure under the indenter

and the total load exerted on the indenter. Some special cases of the application

of these formulas are illustrated in the next section.

Examples

Results for four particular shapes are given in terms of B. One can

get the pressure distribution p(y) and the total force P by substituting the

expression B given in equations (20).

1. Flat-ended block: Since the profile of the punch is not smooth

at y = a, equation (24) must be used to determine the pressure

distribution. Thus, for f(y) = 0,

P
p(y) = - ,

which shows that the pressure is independent of elastic constants.

2. Wedge: f(y) = y cot 0, where 0 = semiangle of wedge.

It follows from equations (26) that
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4B cot 6 /a' \
p(y) = --- cosh 1 1 -I

2 \-

4Ba cot 8
p = -----

_- ~ 7gT

3. Circle (classical circular indenter): f(y) = y2/2R.

Substituting expression f(y) into equations (26) gives

2B

p(y) =2 r2

a 2 B

- R

4. Profile with n-th order polynomial:

Integrating equations (26) yields

/n 1 1
2B r l-+

p(y)= - Y n2c2 \2 2

\2 /

2B n n l
P = - nc a-
- i- -=-n- /n \r °n=0 1+\

n

f(y) = I c y-.
n=0 -

a X (n-)dX

r ^-

Conclusion

A method due to Ting is employed to obtain the contact stresses between

the rigid indenter and the orthotropic half space. The contact stresses for the

isotropic half space can be obtained by identifying the elastic constants and

taking the limit al -+ a2 - 1. The components of stresses and displacements for

the isotropic half plane derivable from the passage of limit of the orthotropic

half plane can also be obtained by following Lamb's treatment [13] of Boussinesq's

problem. It has been shown that the pressure distribution under a flat-ended

block is independent of elastic constants of the elastic half space.
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It is surprising to note that the total depth of penetration D in the

plane contact problems cannot be obtained from the stress continuity that a = 0,
x

at x = 0, y = a, which, in contrast, will determine the total depth of penetration

D in contact problems of three-dimensions. Hence, the value D must be determined

from equation (17) by taking the limit y + 0. However, the depth of penetration

D, given by the integral equation (17) has a singularity at the origin in view

of the trigonometric kernel A-' cos Ay as X - 0. Thus, the actual value of D

is an arbitrary one which must be given as the prescribed value, a peculiar

behavior quite unexpected.
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