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Eshelby et al. [1] and Stroh [2] have developed the theory of anisotropic
elasticity for a three dimensional state of stress in which the stress is independent
of one of the Cartesian coordinates. Various problems involving dislocations in an
infinite anisotropic medium are solved in the first paper, while Stroh considers
dislocation problems as well as determining the stresses round a crack subjected to
an arbitrary non-uniform applied stress. In this note, which follows their treat-
ment, we consider the problem of determining the stresses produced by the inden-
tation of the plane surface of an anisotropic half space by a rigid punch. Problems
of this type have been solved by Green and Zerna [3], Lekhnitskii [4], Brilla [5],
Gallin [6] and Milne-Thomson [7] but if we take Cartesian coordinates x1, x2, x3

and let the stress be independent of x3, then these authors all assume the xt x2

plane to be one of elastic symmetry. The solution presented in this paper does not
require this assumption so that it has a more general application than has been the
case with previous solutions to problems of this type. The first part of the analysis
given here is for general anisotropy, but in order to obtain a solution to the punch
problem by the method of this paper, it is necessary to consider only a particular
class of anisotropic materials. The indentation of such materials by a circular block
is discussed in section 4 and the results are used in section 5 to examine the case
when the circular block is on a transversely isotropic half space.

1. General equations

The stresses «T>7 are related to the elastic displacements uk by the equations

(1) <*ij = cijki^
cxl

where i,j, k,l = 1, 2, 3 and the convention of summing over a repeated Latin
suffix is used. The elastic moduli cijkl have the symmetry properties

(2) cijkl = cJikl = ciJlk = cklij
75
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On substituting (1) in the equilibrium equations 

(3) = 0 
dxj 

we obtain 

(4) ctJU

 k- = 0 
dxj oxl 

Now we suppose that щ is independent of x3, and, following Eshelby et al. take 

(5) uk = Akf(xi+px2) 

where f(z) is an analytic function of the complex variable z; (5) is a solution of the 
equations (4) provided the constant vector Ak satisfies the equations 

(6) (cilkl +pcilk2+pci2kl +p2ci2k2)Ak = 0 

Values of Ak, not identically zero, can be found to satisfy these equations if p is a 
root of the sextic equation 

(7) \cnki+pcilk2+pci2kl+p2ci2k2\ = 0 

By applying the condition that the strain energy density 

(8) с 
dxj dxt 

should be positive for any state of strain Eshelby et al. have proved that equation 
(7) has no real root, so that the roots occur in complex conjugate pairs. The three 
roots with positive imaginary part will be denoted by px (a = 1, 2, 3) with complex 
conjugates pa; the corresponding values of Ak obtained from equation (6) are Aka 

and Аы. Summation over a will always be indicated explicitly. It will be assumed 
that the roots pa are all distinct; equal roots may be regarded as the limiting case 
of distinct roots. A general expression for the displacement may then be written 

(9) "* = I ^ / „ ( z a ) + X A~ZfJ&) 
a a 

where za = xt +pax2. From (1) we write the stresses as 

(10) atl = X L № / . ' ( z J+ I L~Jl^ 
a a 

where 

(11) Lm = {^ijki+PaCijk2)Akx 

and dashes denote differentiation with respect to zx. 
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2. Indentation by a rigid punch

Consider an anisotropic elastic body which occupies the half space x2 < 0.
Let the area of contact between the punch and the elastic material be

(12) — b < Xj < a, — co < x3 < oo

where a and b are positive constants. Then the boundary conditions on the plane
x2 = 0 are

(13) ffi2(*i>0) = o23(xl,0) = 0 — o o < x 1 < c o

(14) 022(*i»O) = 0 *! < —b, x1 > a

and on — b < xt < a only the normal component of displacement is given, so that

(15) u2{xl, 0) = g{xl) -b < XJL < a

with

(16) (' a22(x1,0)dx1 = -P
J -b

where P is the total applied force per unit length.
Let f,(za) = Fx(p(zx) where Fx is a complex constant and (f>(z) is analytic in

x2 < 0. Hence using (9) and (10) the components of stress and displacement are

(17) uk = X AbtFa<Kz.)+ E \ «
a a

(18) ffy = Z Ly.F.^(z.)+ I Z ^ £ £'(z~«)
a a

The boundary conditions (13) will be satisfied if

(19) lL12aF. = 0, E ^ F . = 0

Suppose that there exist values of Fx such that the equations (19) are satisfied and

(20) Y.^2xFx=iM, ^L22xFx=N
a a

where M and JV are real constants. Then using (17) the condition (15) may be
written as

(21) Re LiMcKxi)} = M * i ) -b<Xl<a

Also using (18) and (20) it follows that on the boundary x2 = 0

so that conditions (14) and (16) may be used to give

(22) Re Mfo) ] = 0 x2 = 0, xx < -b

x2 = 0, xx> a
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The information (21) and (22) may be written in a single equation

Re f rpJ _ = o x1 < - b

(23) = idipl _ -b<xl<a

-P
x, > a

Use of Cauchy's theorem in the form

izij-K> x1 — z

for a function analytic in the lower half plane, gives

!f z M ^ ^
nij -b M{a-xl)

i{xl + b)i(xl - zj
If™ P

+ — ; ; d
nil a 2N(x1-af(x1 + bf(xl-zx)

where on the left, 0 ^ arg {za — df ^ -\%, 0 ^ arg (ẑ  + i)* ^ - i n for Imz,
< 0. Hence

( 2 4 )

3. Restriction to a particular class of anisotropic materials

The solution presented in section 2 is only applicable if suitable values of the
Fa can be found to satisfy equations (19) and (20). We must therefore restrict our
attention to the class of anisotropic materials for which such values of the Fx can
be found. In this section we show that it is possible to find suitable Fa for the class
of materials for which the constants c1112, c1222> cii23> ci2i3> C2223 a n d ci323 a r e

zero. This is not necessarily the most general class of materials for which the solu-
tion of section 2 is valid, but with these six constants zero the sextic in p (7) be-
comes a cubic in p2 and with this simplification it is reasonably easy to establish
the existence of values of the Fx to satisfy (19) and (20). Also it is a class of materials
of some interest since it includes orthotropy and transverse isotropy as special
cases.
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Putting the six constants equal to zero the matrix equation (6) reduces to

(25)
'1232

(^2231

+p2C3232. L/I3J

= 0

where the values of p are obtained by solving equation (7) which is a cubic in p2.
We consider two possible cases.

CASE 1. Suppose the roots of the cubic are real. Then since p cannot be real
the cubic in p2 must have negative roots. Hence the six values of p are complex
numbers with zero real part. Then if the A3x are put equal to 1 equation (25) has
a solution for which the Alx have zero imaginary part and the A2x have zero real
part. Also using (11) it may easily be shown that with this choice of the Aix the
Ll2x and L23x have zero real part and the L22x have zero imaginary part. Hence we
may choose F3 = 1 and then real and unique values of Ft and F2 may be obtained
from (19) provided L121L232 —L122L231 =£ 0. Values of M and N may then be
obtained from (20).

CASE 2. Suppose only one of the roots (pt say) of the cubic is real and negative.
Then the other roots form a conjugate pair andp2 = —p3. Putting the A3a equal
to 1 equation (25) has a solution for which Atl has zero imaginary part and A2i

has zero real part. Also A22 = —A23andA12 = A13. Then using (11) it may easily
be shown that Ll2l and L231 have zero real part and that L122 = — L123 and
^232 = —^233- Also Z-221 has zero imaginary part and Z,222 = £223- Hence we
may choose Ft = 1 and then unique values of F2 and F3 such that F2 = F3 may be
obtained from (19) provided L122L233—L123L232 ^ 0. Values of M and N may
then be obtained from (20).

Here we take

(26)

4. Indentation by a circular block

g(Xi) =

which corresponds to the case of a rigid circular punch of large radius R with
38 = 1/2R. Substituting for g(xt) in (24) and integrating we get

(27)
2M

7UJV

and it is easily checked that this function has the required property (23) and is
O(log \zx[) as \zx\ -> 00. For this particular case we require that the stresses are
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finite at the ends a, b of the arc of contact of the punch with the elastic half space.
This will be the case if <t>'{zx) is finite at zx = a, —b. Differentiate (27) with respect
to zt. Then the coefficient of (zx — a)~i(zx + b)~i is

For finite stresses, this expression must vanish at zx = a, za =
dition will be satisfied if

(28)
XnNiM)

—b and this con-

4. A circular block on a transversely isotropic solid

It follows from equation (28) that for a circular punch the arc of contact with
the half space is proportional to (— M/N)*. In this section we calculate ( — M/N)*
for a circular punch on a transversely isotropic half space with the boundary of
the half space normal to the transverse plane. The elastic behaviour of transversely
isotropic materials is characterized by five elastic constants which will be denoted
by A, N, F, CandL. If the x2-axis lies in the transverse plane and the ^-axis makes
an angle a with the transverse plane (Figure 1) then the only non zero ctJkl which
are of interest are given by

Transverse plane.

Figure 1

c i m = A cos4a + 2(F + 2L)cos2 a sin2 a + Csin4 a
cii22 = iV cos2 a + F sin2 a

cU 3 1 = (^ -F -2L)cos 3 as ina + (F

c2222 = A, c2231 = (N-F) cos a sin a
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C33ii — (A + C — 4L) cos2 a sin2 a + F(cos4 a + sin4 a)

C3322 = F cos2 <x+N sin2 a

C333i = C<4—.F—2L)cos a sin3 a+(F-C+2L)cos3 a sin a

c1331 = L(cos2a-sin2a)2-(2F-C-,4)cos2asin2a

C2332 = L cos2 cc + ̂ (A — N) sin2 a

C23i2 = ih(A — N) — L) cos a sin a

ci2i2 = i(A — N) cos2 a+L sin2 a

Consider firstly the special cases when a = 0 and \n. For transversely isotropic
materials equation (7) is a cubic in p2 and when a = 0 the cubic has three equal
roots so the solution to the punch problem may be obtained by comparison with
the solution for the isotropic case. When a — ^n (25) becomes

C + Lp2- (F + L)p 0
0 = 0

0 0 L + i(A-N)p2\

Also the determinant (7) may be expanded to give

= 0

Let pi = -2L/(A-N). Then An = A21 = 0 and A31 is arbitrary so let An = 0.
If the roots of the quadratic term are denoted by/?2 and/?2, then choosing A22 =
A23 = i it follows that

A - -KF+L)p2 _ -i(F+L)p3
12 ~ C + Lpl'' 1 3 ~ C + Lpl

Ai2 = AZi = 0.

Also using equation (11) Z,23t[ = 0 and

If/»2 and ̂ 3 are real then real values of F2 and F3 which satisfy (19) are given by

-(C + Lp2
3)

_
3 "

C-Fp\
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Hence

N

C + Lpl
C-Fpl

lPi

C + Lpl
C-Fpl

+ Lp\)-F\

C-Fpl

D. L. Clements

{F + L)l . pl(

J iPi L
[C + Lpl)-F(F + L)l

C-Fpl J

[8]

If pi and pi are complex conjugates and/>2 = ~P$ then suitable values of F2 and
F3 which satisfy (19) are given by

Hence

C + Lpl C + Lpl
C-Fpl C-Fpl

+P3L c ^ p \ J +P3 L c^Jpl J
When 0 < a < \n the calculation of M and N becomes more complicated. How-

ever the task may be carried out reasonably easily with the aid of a computer and

this has been done for zinc which has the elastic constants A = 16.5, N = 3.1,

F = 5, C = 6.2 and L = 3.96. If each of these numerical values is multiplied by

1011 then the units for constants are dynes/cm2. Table 1 shows the variation in

( —M/JV)* as a assumes the values /m/18 (n = 1, 2, • • •, 9).

TABLE 1

n

(-MIN)i.

1

.356

Values

2

.360

of {-M/N)t for a = re.

3

.367

4

.377

5

.389

rc/18

6

.401

7

.411

8

.417

9

.419
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