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ABSTRACT

In this paper the indentation of an elastic layer by a rigid stamp is
treated under conditions of complete adhesion beneath the stamp, where the
ratio of the half-width of the contact region and the thickness of the layer
is assumed to be small. The cases of a flat stamp and a polynomial shaped

one are considered successively and two applications are treated.
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1. INTRODUCTION

Recently, the two-dimensional contact problem of a rigid stamp and an
elastic layer attracts some special attention. In the cases of a flat smooth
stamp and a cylindrical stamp where a constant coefficient of friction is
assumed, results were obtained by ALBLAS and KUIPERS [1], [2]. They consid-
ered both the thick layer and the thin layer. Under conditions of complete
adhesion work was done by MOSSAKOWSKI [3] and SPENCE [4], They treated the
indentation of a half-space.

In this paper, an isotropic elastic layer will be considered, attached
to an undeformable base and loaded in plane strain by a rigid stamp under
action of a force P per unit of length. It will be assumed that the friction
between the layer and the indentor is large enough to prevent any slip under-
neath the stamp and that the ratio of the half-width of the contact region,
and the thickness of the layer, a/b is small. Moreover, all discussions will
be held within the framework of linear elasticity.

Two cases are considered successively: the stamp has a straight horizon-
tal base and, secondly, the stamp is polynomial shaped. In the latter case
two applications are treated: The indentaticn of the layer by a wedge and
by a parabolic stamp, respectively. Throughout this paper use will be made
of integral representations in the applied stresses, of the displacements
in the layer and its upperboundary.

They will be referred to as the representation formulas.

In the case of a flat stamp, application of these formulas leads to a
coupled pair of integral equations for the stresses, working in the contact
region. Writing the equations in non-dimensional form and expanding to powers
of the reciprocal thickness of the layer in these equations, the resultant
ones are solved by transforming them into a set of Hilbert problems.

The found expressions for the contact stresses are compared with the
solutions of the corresponding contact problems where the lower side of the
stamp is allowed to slide freely along the upper boundary of the layer
(ALBLAS and KUIPERS [1]) and where a flat stamp is pressed into an elastic
half-space under conditions of adhesion (MUSKHELISHVILI [5]3), respectively.

For a polynomial shaped stamp the difficulty arises of the increasing

of the half-width of the contact region if we let the penetration of the



stamp into the layer grow. MOSSAKOWSKI [3] argued that this kind of problems
may be attacked incrementally, which means that the parameter a is treated
as a timelike variable with the assumption of static equilibrium during the
indentation. SPENCE [4] showed that for the axisymmetric case, dealing with
a half-space, the horizontal displacement in the contact region (which is

an unknown for this problem) necessarily is given by a polynomial in the di-
mensionless coordinate along the layer, having the same degree as the one
which describes the shape of the stamp.

After solving the problem by means of Mossakowski's techniques this
displacement deserves therefore some special attention. It appears to be of
the form of a series of powers of the reciprocal thickness of the plate, the
coefficients of which are polynomials of linearly increasing degree.

Finally, the solutions are worked out numerically for the wedge and the
parabolic stamp and the results are compared with the solutions of the cor-
responding problems for a rigid smooth wedge acting on a half-space (SNEDDON
[6]1) and for a smooth parabolic stamp which is pressed into a layer (ALBLAS
and KUIPERS [2]), respectively. For this last case, the solution is derived
from the general results obtained in [2] by taking the coefficient of fric-

tion equal to zero.
2, THE REPRESENTATION FORMULAS

We assume a coordinate'system Oxyz with the origin O and the x~ and
z—axis in the upper plane of the layer and the y—axis pointing out of the
layer. The stresses at the upper boundary of the layer (i.e.y=0) are func-
tions of x and consist of a normal pressure P(x) and a shear stress in the
x-direction, T(x). The case of plane strain will be considered.

Let u(x,y) and v(x,y) denote the displacements in the layer in x- and
y—-direction, respectively, and tij(x,y) the stresses then, recalling that
complete adhesion between the layer and the rigid base at y = -b is assumed,

the following boundary conditions have to be satisfied

txy(X,O) T(X)’
(2.1) tyy(x,O) = -P(x),

u(x,-b) = v(x,-b) = 0, —®© < X < o,



It is well known that, for the case of plane strain, the stresses can be
described by means of a so-called Airy functiom X(x,y) in the following

form

Bzx 82X Bzx
(2.2) t = —t t = - R t = =&
XX 3y2 Xy X3y vy aXZ

where x(x,y) satisfies the biharmonic equation

N 2 212
(2.3)  a%xGxy) = (—*’— + —%) xGx,y) = 0.

8x2 Ay
The solution of the boundary-value problem (2.1)-(2.3) may be obtained by
means of Fourier transforms.

Denoting the Fourier transform of a function f(x) by E(g), assuming
tﬁat the occuring functions are suitable regular and that the transform
¥(£,y) has vanishing derivatives up to fourth order as |x| » «», we arrive
after transformation of the equation (2.3) at an ordinary differential equa-

tion for y(&,y), the solution of which may be written in the form

(2.4) Y(E,y) = (A+BEy) cosh(Zy) + (C+DZy) sinh(gy),

where A-D are to be determined by the boundary conditions (2.1). We shall

restrict ourselves to the case that the applied stresses P(x), T(x) act on
a finite interval [-a,al, a > 0, while the remaining part of the upper sur-
face is unloaded. After determining the Fourier transforms of the stresses,
Eij(g,y) and by application of Hooke's law in its transformed form, taking
the inverse Fourier transforms of the results and applying the convolution
theorem for Fourier integrals we obtain the following expressions for the

displacements in the layer

, 1oy [ [ GEY) 1
u<~x2Y) = 271G J ! 2(1_\)) P(g)+81(x_€;Y)T(E)JdE9

-a
(2.5)
. f B (x-E3y) g
v(x,y) = 55 [ [az(x—i;y)P(E) M TeEn T(&:)Jdi,
-a

where v and G denote the Poisson's ratio and the shear modulus, respectively,



ai(x;y) and Bi(x;y) (i=1,2) are given by

“1(X;y)} ;
=2 J {[gb cosh(Ey)+(1-2v) sinh(&y)]g(b+y) +
By (x3y) g

T (3-4v) sinh(s<b+y))[£y-cosh(€b>1(1'2V)Sinh(gb)]} iiyégjg dz,
(2.6)

GZ(X;Y) 1 )
=) J {[2(1—v) cosh(Ey)+&b sinh(Ey) 1Z(b+y) +
B, (x5y) 3

¥ (3-4v) sinh(E(b+y)[2(1-v) cosh(Eb)FEy si‘nh(gb)]} _-—-——C;AS((;X)) e,
and A(t) is given by

(2.7) ACE) = 32624+ (5-12v+8v2) + (3-4v) cosh(2t)]

For |x| + ]yl < p < 2b, the functions (2.6) can be expanded as uniformly

convergent series

a](x;y) _ 2 A+ b—(2n+1+m)x2n+!ym —'—%Ezf + 2(1-2v) arctan EEJ,
n,m=0 " X +y y
3
P 2
+ .~(2n+m) 2n m 124y 2 1
BI(X;Y) - z Bnﬁb )X y - 1og( g’) 1-v 3] 2°
n,m=0 b X +y
(2.8) )
© 2 2 2
. - _—(2n+m) 2n m (X + 1 y
ay(x3y) = ) B b x4 log(F) + 15
n,m=0 b Xty
Bz(x;y) = z A; b_(2n+1+m)x2n+1ym + Xy + 2(1-2v) arctan G%,
_ m 2 2 y
n,m=0 X +y

Next, we shall derive expressions for the displacements at the upper boundary
of the layer. They are the representation formulas which will be used in the

following sections. To this end we take y = 0 in (2.5), (2.6) and (2.8), thus

obtaining a
1-v i al(x—g) T
u(x,0) = I J P(&) jf(r:;7'+ T(E)Bl(x-g) dg,
—a ’ h
(2.9) ' 1=y oo B, (x-€) 1
v(x,0) = e P(E)GZ(X‘E) + T(E) FICEDN dg,




where for |x| < 2b

: © 2k+1 _ .
GI(X) 1= al(x;O) = ) Ak(%) m(1-2v) 81gan),
k=0
® 2k x|
B () 1= B (x30) = [ B (F) - 2log(5;
k=0
(2.10) - o l
0, (x) = a,(x30) = ] B;(%] + 2 1og(-'—§-),
) k=0

By(x) := B,(x30) = a, (x).

Here, the coefficients Ak’ Bi are given by
K f 2k
_ 8(-w (D) 2o (1=0) (1=20)] e
(2.11) L0
k .
* -1 - -4t 2 2
B = EZk;' f [4t% (1-e 4By 4242 (5-12v+8v7) +
0
o t2k_1 4 log 2 ;s k=0,
+ (3"4\))6 —]} m‘s’ dt + (_] )k—] "
S 2S5 k= 1,23,

and they were calculated by numerical integration for several values of

Poisson's ratio. The results are presented in Table 1,2 below.

v AO A1 A2 A3
0.0 2.996 -0.888 0.295 -0.093
0.1 2.571 -0.832 0.288 -0.093
0.2 2.176 -0.789 0.287 ~0.095
0.3 1.820 -0.762 0.292 -0.098
0.4 1.513 -0.760 0.305 -0.105
0.5 1.275 -0.799 0.339 -0.120

- Tagble 1 ~



v B B B} B; B, B B, B,
0.0 | 0.288 0.683 | -0.204 | 0.067 | 0.745 | -1.148 | 0.349 | -0.106
0.1 | 0.445|0.667 | -0.213 | 0.073 | 0.790 | -1.206 | 0.379 | -0.118
0.2 | 0.626]0.658 | -0.228 | 0.081 | 0.882 | -1.294 | 0.424 | -0.135
0.3 | 0.8380.662 | -0.254 | 0.095 | 1.053 | -1.432 | 0.490 | -0.160
0.4 | 1.090]0.690 | -0.299 | 0.117 | 1.366 | -1.656 | 0.596 | -0.199
0.5 | 1.419]0.772 | -0.384 | 0.157 | 1.953 | -2.047 | 0.783 | -0.270

- Table 2 -

NdTE 1. For =b < y < 0, the functions ai(x,y), Bi(x,y) are twice differen-
tiable due to the exponential behaviour of the integrands in (2.6). There-
fore, the expressions (2.5) for the displacements are twice differentiable
with respect to x or to y, and it is easily shown that they satisfy the

Navier equations.

NOTE 2. By integration by parts of the expressions (2.6), we find for their

asymptotic behaviour for large |x]

o2
(2.12) o, (x3y), B;(x3y) = 0(573, G%?—*—w], i=1,2.

Therefore we find the displacements (2.5) to behave as

ab%  (|x]
(2.13)  u(x,y), vy = 0(=5), (-~ =).
X

In the half-space case, the displacement v(x,y) behaves logarithmically for
large |x| where the coefficient of log |x| only depends on the total normal

load P. This is in correspondence with Saint-Venants Principle.
3. A FLAT STAMP

In this Section we shall consider the problem of the layer as des~

cribed in the preceding Section, into which a rigid flat stamp is pressed.



The stamp which is of infinite extension in the z-direction has a width 2a

and the penetration of the stamp into the layer is d (see fig. 1).

Y.V

y=-b |

7Z /42224542¢;/’/;7’/4?235¢7//6/4422

- fig. 1 -

The penetration d is due to a normal force per unit of length, P while the

total shear force on the stamp is zero. Recalling that the layer is fixed

at y = -b on a rigid base and that there is complete adhesion beneath the

stamp at y = 0, we arrive at the following boundary conditions

tyy(x,O) = txy(x,O) = 0, x| > a,
(3.1)
u(x,0) = 0, v(x,0) = -d, x| < a,

at y = 0 and

(3.2) ulx,-b) = v(x,-b) =0

for all x ¢ R and at y = -b. The stresses P(x) and T(x)

at the upper sur-—

face of the layer, which are unknowns of the problem are restricted to the

relations



a a
(3.3) { P(x)dx = P, I T(x)dx = 0.
-a

-a
There are two ways of posing the problem

(i) P is given, then the penetration d is a function of b,
(ii) We require a certain penetration d, then the total load P depends

on the thickness b.

In this Section we shall confine ourselves to the first case. However, this
is not a real restriction as the reversion form problem (i) to problem {(ii)
is trivial since there always exists, for b fixed, a linear relationship
between P and d. Using the representations (2.9) and introducing

x =x"a, &=2E'a, b=nDbla, %g% =d'a,
(3.4)

P(g) = P'(£")G, T(&) =T'(g')6, P =P'aG,

the conditions (3.1)2 may be written in nondimensional form

1

RES i Rl T(8)8, (x-£) |dE = 0,
J] [ 2(1-v) 1 7]
(3.5)
i
g LP(E)GZ(X—E) + T(&) TTTT:GYJdg = -d, x| < 1.

In (3.5), and everywhere in this paper when no confusion is possible we omit
the primes.

It may be shown by arguments, similar to the ones used by AtEKSANDROV
(7, section 2] that the unknowns P(£) and T(£) may be expanded in uniformly

convergent series of the form

PE) = J Bop Y,
=0

(3.6)

1e) = § 1,07,
£=0



Since b does not affect the total load P it follows from (3.3) that

1
J P, (£)dE
-1

PﬁKO’

(3.7)

1

[ TK(E)dE
-1

0, £=0,1,2,...

where GKO is the Kronecker delta.
Substituting the expansions (2.10) and (3.7) into (3.5), differentiating
the resultant equations with respect to x and equating the coefficients of

equal powers of b_1 we obtain the systems of integral equatioms

[(e-1)/2] !

- Eﬁ%{%ﬁl Py (x) +'§%T:;j kZO Ay (2k+1) { (X—E)ZRPK_Zk_l(E)dE +
) -1
(3.8)
1 1
T,(8) [£/2] )
-2 J e de s ) B (W) f 5", (®)aE = 0,
) k=0 1
') g1 b
2 f e+ 1 B (2K J (x=£)"'p,_,, (£)dE +
4 k=0 4 _
(3.9)
[(£-1)/2] i
1-2 1
B ﬂ(l—\)\)) T + 505y kZO Ay (2k+1) J (X'E)Zsz—zk—l(E)dg=o’

-1

where £ = 0,1,2,... and [r] denotes the entier of r. The equations (3.8) and
(3.9) are of the form
1

_ T,(&)
(3.10) - TUZ2) p ) 4 2 [-45:5— ag = otV ),
-1
1
P,(&) _
G.11) 2 J —§:§_ ag + T0Z29) 1 ) = P 0, £ =0,1,2,...

-1
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where Qé )(x) and Qéz)(x) are even and odd polynomials in x, respectively,

of a degree < £-1, For the integrals, one should read the principal values

of the corresponding Cauchy integrals.
Introducing the complex function Gﬂ(z) by

L[ Bp(B)HET,(E) _
(3.12) Gﬂ(z) =57 [ = dg, z = x+iy,
-1

which is analytic in the complex plane with the exclusion of a straight cut
along [-1,1], we arrive at a Hilbert problem for Gﬂ(z), the solution of which

may be derived by application of standard techniques (MUSKHELISHVILI [5],[81).

We find

Gy () = 2= (05" (@) - 1Q§2)<z)1 .
(3.13)

i(1-v) n iPH(z)
e H@) Z qp o127+ =5 s

where

K =3 = 4v,
(3.14)

B = % ]-Og(K):v

H(z) = (z+1) 2185y 7716

and the real coefficients qp , are determined from the expansion
5

(1) (2)
= Qp T (2)-iQ,7 (2) £ -
(3.15) ;f? £ 702 = Y ap n(iz)n + 0(|z| 1), (lz] » =).

Writing

cl(x;B) cos
1 1+x
r=- (8 1og(:=))
sux;m} /2 {sin} o

and by application of one of Plemelj's formulas we finally arrive at the

following expressions for the stresses P,(x) and T,(x)
£ £
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2 [£/2] [(L-1y2]
4(1- 2 2n+1]
Py(x) = _(“1?,21)“ {c/&(x;s) ) qLZn(-l)nx P-sl(x;8) L qz,znﬂ(-])nx nr }+
n=0 n=0
2P (1-v) .
(3.17) +——1';7_—K_—-— CK(X,B) 6180,
N2 [(£-1/2] [£/21
TK(X) = 4(‘:“<\)) {C«E(X;B) z q/e 2n+1(_])r1x2n+1+8£(x;8) z qﬁ Zn(_l)nXZn] +
n=0 ? n=0 ?
2P(1-v) .
(3. 18) + —’n‘-‘/lz— SK(X,B) (SKO-

From these expressions it follows that for |x| - 1, PK(X) and TK(X) are
oscillating unbounded functionms.

If v = 1/2 then according to (3.14) B = 0 and the oscillating behaviour of
the expressions (3.17), (3.18) vanishes. We have evaluated the first three

functions in the expansions (3.6) and we found

_ 2(1-v)P )
PO(X) = *-;75—— cl(x;B),
AOP
(3.19) P (x) = - P [2Bcl(x38) - xsl(x;8)],
PZ(X) = giii%lg [(ABZBT—Z(%+32)B;+B;x2)c£(x;8) +

+ -—
28(B,-B,)xsl(x;8) 1,
together with

2(1-v)P

TO(X) = —— S«E(X;B),
TV
AOP
(3.20) Tl(x) = - - [28sf(x;B8) + xcl(x;B)]

2(1-v)P
e

T, (x) [(4 323’{—2 (‘£+BZ)BI+B;x2)s£(x; B) +

+

ZB(BT—B;)XCZ(X;B)].
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The expressions for Po(x) and To(x) agree with those, obtained by
MUSKHELISHVILI [5, p.4661 except for a factor 2 which appears to be an error
in [5] (see also [9, p.64]).

The penetration d follows by substitution of (2.10) and (3.6) into
(3.5)2. We find for the nondimensional case
(3.21) d = 2P log b + zz dzb'K

=0

where, for £ = 0,1,2 the coefficients dK are given by

d

?0- = -2 log 2-2y-B,~2Re ¥(}-i),

d 2A_B

1 _ 0
(3.22) 7 - Ty
2
d., _ _ A
T§L= 452[31—2BT]—BI— ————9—75 (%+8?)
4(1=v)

where y is Euler's constant and {(z) denotes the logarithmic derivative of

the Gamma functionm.
4, A POLYNOMIAL SHAPED STAMP

In this Section the problem is treated of the elastic layer with thick-

ness b indented by a rigid stamp whose shape is given by the function
(4.1) y = &(x), (0) = 0.

We shall assume thét, for x 2 0, 9(x) is a polynomial having a degree M and
that it is an even function in x. Moreover it is assumed that the friction
between the layer and the indentor is sufficient to prevent any slip. There-
fore, once a point of the upper surface of the layer has been brought into
contact with the stamp, its displacement u in the x-direction cannot change

any further. This can be expressed by the condition
ou
(4.2) 52-(x,0;a) = 0, Ixl < a,

In the following, the dependence of the stresses and the displacements on
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the parameter a will be brought into account by adding it to the list of

arguments.

YV

YA

]

R X0

pol.

~-a \ +ad

S D S

4:—b | u=v=0

- fig., 2 -

Let f(a) be the normal displacement of the center of the stamp (i.e. the
point (0,0)) due to a normal load per unit of length P . Then the bound-

pol.
ary conditions at the upper surface of the layer are

tyy(x,O;a) = txy(x,O;a) = 0, x| > a,

(4.3) u(x,03a) = F(x),
} IXI < a,

i}

v(x,03a) = -f(a)+o(x),

where F(x) does not depend on a.

MOSSAKOWSKI [3] argued that these kind of problems may be attacked
incrementally which means that the parameter a will be treated as a time-
like variable with the assumption of static equilibrium during the inden-
tation. Let d(a) be the penetration of a flat stamp with width 2a subject
to a total load per unit of length, aG. The total load of the corresponding

non-dimensional problem will then be equal to one. We introduce new functions

Ugs Vs tyyO’ txyO by
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uy(x,y32) = g% u(x,y;a) f¥%27 » Vo(x,y58) = g%-V(x,y;a) §¥%§y ,
(4.4)
2y = 2 .a) (&) ca) = & .2y 42
tyyo X,y3a) = 'a_gtyy(XSY:a) 7 a)°’ txyo(xsy’a) = 3a txy(xs}’sa) ' (a)"

Differentiation of (4.3) with respect to a and substitution of (4.4) into

the results yields the relations

tyyo(x,O;a) = txyo(x,O;a) =0, |x| > a,
(4.5) uO(x,O;a) =0
}’ lxl < a’
VO(X,O;a) = —-d(a)

which agree with the conditions (3.1).

Thus, the functions Ugs Vv are known from the results of

s € » €
0’ “yy0’ "xy0
the preceding Section where P = aG, Hence, if the function ¢(a), defined by

(4.6) ¢(a) = fd'((aa))9

is known, then the problem in this Section is solved by integration of the
expressions (4.4). Integration of (4.4)2 with respect to a, assuming that
v(x,y;a) vanighes for a = 0, taking y = 0 and using the last condition of

(4.3) leads to the Volterra integral equation

Ix|
(4.7) o(x) = f [d(£)+v0(x,0;£)]¢(5)dé, Ix] < a.
0

Since tx , v are odd functions and tyy’ u are even functions in x, it is
sufficient to consider the case x > 0 only. By means of the results of
Section 3 it can easily be shown that the kernel of the above integral

equation is of the form

o

L
E) = X (&
(4.8)  d(®) + vy(x,038) = £ ZZO w&E
where Yﬂtg) follows from
1

- i} L
(4.9) vp(s) = 22 [ Pp(n) log| == [dn + kZoYﬂ’kSk’ ls| < 1.
-1
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For £ = 0,1,2 and 0 £ k < £ the coefficients Yp i are given by
-4

= 2 0229 A7) o w-1ig) - Tm p(i-}ig) ],

YO,O 27”/‘:
. ) (1—-2\))AO
1,0 b/
_ o (1=2v) (1-v) + -
(4.10) | YZ,O = _-';T~}/—i_<-—— [ZBI B]],
(l—v)B;

Y2,2 2 °

=2
]

,1 - Y21
The equation (4.7) can be solved by expanding ¢(£) in the following series
-1 = m
G.11) 9@ =g ] e ).
m=0

Substituting (4.8) and (4.11) into (4.7), equating parts with equal powers
of b_1 and differentiating with respect to x, we arrive at a system of in-

tegral equations

1 1

_ £ : _ r P ()

=07 1 TE

g
(4.12) I
+ § % el Mgl = ot (s £ =0,1,2
Lo b Mem ) P tEE R/ L

=0 m=1

0

the solution of which is found by putting

(o]

M
-1 kg
4.13) ey =¢ ¥ Y ¢ . B
m=0 k=0 W¥ = P

where the coefficients ¢m Kk follow from (4.12) by equating parts with equal
2

powers of x.

Since f'(a) = ¢(a)d(a) we find by substitution of the obtained expressions

for ¢(a) and d(a) into this relation and by integration with respect to a
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under the assumption of £(0) = 0

o2}

27 b a, m,k-1 k ayt m,k~1 k
1=y e R i =0 2 k=1 (m+k)?

o

(4.14)
k m

a
nrk zzo %2, k-1°

F1 "

m=0 k

1=

1

Integrating (4.4)3’4 with respect to a and substituting y = 0, the follow-
ing expressions for the stresses at the upper boundary of the layer can be

easily derived

txy(x,O;a) o M- 1 Tm—ﬂ(n)

T -m m+k - -m~k-1
(4.15) =G ] box %kf”
—tyy(x,O;a) m=0 k=0 £=0 " %/a Pm—[,(n)

and it will be shown in the Appendix that the integrals in (4.15) may be

written in terms of Hypergeometric Functions. Suppose ®(x) is of the form

(46.16)  0(x) = Ax'
We note that A is not dimensionless but of the dimension of (length)]_M.
By means of the known expansions for t and t the displacement

xy0 yy0 1
uO(x,O;a) follows from the representation formula (2.9) . Expanding to
powers of b_], inserting the result into (4.4)1 together with (4.13) and
integrating this with respect to a we finally obtain that F(x) is of the

form

M T m
(4.17)  F(x) = Ax Z MES
m=0

where the constants o are dimensionless. Integration of the expression

for tyy(x,O;a) which is given by (4.]5)2 over (-a,a) yields the total load

Ppol
o M- b—manwk+l
4.18 = ——— .
( ) Ppol ¢ mtk+1 ¢m,k

m=0 k=0

dn, x >0,
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5. TWO APPLICATIONS

We first take

(5.1) o(x) = Alx], A >0,

"

(a wedge) in which case ¢m(E) For several values of Poison's ratio

¢ .
m,0
v and m, the values of c = ¢m 0/A are given in Table 3 (cO = 4/V/x).
3

v c0 c1 c2
0,0 2.309 | -0.614 -2.601
0,1 2.481 -0.521 -3.460
0,2 2.697 -0.426 -4.439
0,3 2.981 -0.319 -5.900
0,4 3.381 -0.194 -8.195
0,5 4.000 0 -12,282

- Table 3 -

The stress distributions in the contact region in case of a wedge, given by
(4.15) with M = 1, are shown in the figures 3 and 4, for v = 0.2 and b/a = 5.
Also the normal stress distribution for a rigid smooth wedge, acting on a half
space (SNEDDON [6]) is shown in figure 4. From (4.15) (with M = 1) one may

derive the following asymptotic relations

t (x,0;a)
y 2(1-2
2y o= 2B 0(F 10g(H)), & v 0),

txy x(x,O;a) 1 2 X X
(5.2) o e [Ageq (1+487)=2¢,8(k+1)] Log(3)+ 0(1), (5 + 0,
t (x,0:a)
y e ] 2(1+ ~
2y = 20D g0 (F)e 01y, & 4 0).

Differentation of the representation formulas (2.5) for the displacements
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yields for x = 0
txy(osy;a) =0,

(5.3) Ityy(O,y;a)l < @,
tyy,x(o’y;a) =0, (y<0),

so, in (0,0) the stresses are discontinuous.

Secondly, we take
2
(5.4) o(x) = Alx|™, A >0,

(a parabolic stamp) where ¢m(€) = ¢m IE. For several values of v and m, the
9

values of e. = ¢ ,/A are given in Table 4,
m m,!

0.0 | 7.832 | -2.623 | 14.55]
0.1 | 8.251 | -2.158 | 14.146
0.2 | 8.807 | -1.705 | 14.367
0.3 | 9.567 | -1.248 | 15.508
0.4 [10.694 | -0.739 | 18.420
0.5 [12.566 0 25.723

- Table 4 -

The stress distributions in the contact region in this case, giveﬁ by (4.15)
with M = 2, ¢£30 = 0, are shown in the figures 5 and 6 for v = 0,2 and b/a=>5.
In figure 6 the normal stress distribution under a smooth parabolic stamp
acting on a layer (ALBLAS and KUIPERS [2]) is shown for the same values of v
and b/a. |

From (4.15) the following asymptotic relations can be found

txy(x,O;a) 4e0(1-v)8 < x
——GA—_ = - ———:/-f-—x 10g(-£) + O(X),L‘a' ¥ 0),
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t (x,03a) be (1-v)
Xy, X - ._0 x x
GA B e " loglz) + 0, (G + 0),
(5.5) ( :
t (x,0;a o _-mm+] | )
2 b "a X
el i AU CON RV
m=0 £=0
t (x,0;a) e . (1-2v)B
’ 0
yyXGA = = + O(% 10g(—§)),(§-¢ 0).

NOTE. Studying %%(x,o;a) in the last case, one may find that there exists a

constant Xy € (0,a) such that

(5.6) sign %%(X,O;a) = sign(xo-x), (0 < x < a),

which means that for x ¢ (O,XO) the directions of the movement of a point

of the upper boundary of the layer is inside while for x ¢ (xo,a), it is

outside.
3
txylx,0;2) /A8 -lyy(xp;a)/AG
s 12 5
braze
-
04 <
N, \ 4
b\
vas < _“’f";,";:i::i
ks mooth :bg.
o2 \1 &
3

\ -

-02

N "
i__i__L_* S S — _%

L
-10 -aq8 ~-06 -04 -Q2 0 0z 04 [2) o8 ¢ %

- fig. 3 - - fig. 4 -
Shear stress distributions in case Normal stress distributions in case
of a wedge, acting on a fixed layer of a wedge, acting on a fixed layer

with thickness b, for v = 0.2. with thickness b, for v = 0.2.
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~lyy {xo0a)/AGa
tyyxpial/AGa 1

5
RS

8
N N
™

3
-

s
[

Adhesion (2 prazeo
adhesion L b/g .y
v

/.. smooth { brazs

\A_ :
” TN
\BRY annn

-19 1 1 x/a
-To - 06 -o08 -02 0 02 04 05 Of 19 -jo -08 -0 -04 -0 °o 02 04 06 08 i

- fig. 5 -

Shear stress distributions for a
parabolic stamp, acting on a fixed

- fig. 6 -

Normal stress distributions for a
parabolic stamp, acting on a fixed

layer with thickness b, for v = 0.2, layer with thickness b, for v = 0.2,

APPENDIX

Substituting n = x/& into the.integrals in (4.15) we see that they can be
expressed in terms of the functions K(n,0;x) where ‘
a
(A1) K(n,m;x) = J £ (gx) PR TR B v S 0, nym, = 0,1,2,...
x

Integration by parts yields for n = 1
(1+2m)K(n,m;x) = 2iBxK(n-1,m;x)-(n-1)K(n-2,m+1;x) +

- l _c .
(42) + a1 (oo 1018 (g 1S,

So K(n,m;x) can be determined, once K(0O,m;x) is known. Repeated integration

by parts yields

K(0,msx) = (a+x)“l/2+m+18(a_x)l/2+m"iB o (1/2-is—m)n (a—xrl
51, 1/2+m-iB n=0 (3/2_]'_B+m)n atx
-1/2+m+iB 1/2+m~1iB
_ (a+x) (a-x) 1. 3 .. a=x
(A3) = 1/2+m-1B Flz-ig-m, 1;5-i8 ; 25,
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