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The independence of and associations among apoptosis,

autophagy, and necrosis
Qi Chen1,2, Jian Kang3 and Caiyun Fu1,2,4,5

Cell death is an essential biological process for physiological growth and development. Three classical forms of cell death—
apoptosis, autophagy, and necrosis—display distinct morphological features by activating specific signaling pathways. With recent
research advances, we have started to appreciate that these cell death processes can cross-talk through interconnecting, even
overlapping, signaling pathways, and the final cell fate is the result of the interplay of different cell death programs. This review
provides an insight into the independence of and associations among these three types of cell death and explores the significance
of cell death under the specific conditions of human diseases, particularly neurodegenerative diseases and cancer.
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INTRODUCTION
For unicellular organisms, cell death is the end of life. However, for
multicellular organisms, cell death is an essential biological process
for physiological growth and development. Deregulation of cell
death is involved in the pathogenesis of a wide range of human
diseases, such as neurodegenerative diseases and cancer1. Three
classical forms of cell death—apoptosis, autophagy, and necrosis—
display distinct morphological features by activating specific
signaling pathways2. In brief, apoptosis is a caspase-mediated
programmed cell death3,4 that is characterized by chromosome
condensation, nuclear fragmentation, and membrane blebbing5. In
contrast to apoptosis, necrosis is considered to be an unregulated,
accidental cell death caused by nonspecific, or non-physiological
stress inducers and is characterized by the expansion of cellular
organelles, plasma membrane rupture, and subsequent inflamma-
tory responses caused by release of the intracellular contents6,7.
The third form of cell death, autophagy, is accompanied by the
formation of the autophagosome, which is a bilayer vesicle
containing damaged organelles, proteins, and other cytoplasmic
components. The autophagosomes fuse with the lysosomes,
degrading cellular macromolecules and organelles and producing
renewable energy and metabolites for cells8. Autophagy acts as a
pro-survival mechanism but can also induce autophagic cell death,
which is currently an active research area in cell death9,10. Our
understanding has been rapidly expanded in the last decades
owing to the great advances in cell death research. Identification of
the programmed forms of necrosis11 has changed our perception
about necrosis. More importantly, we have started to appreciate
that the molecular mechanisms of various types of cell death are
distinct but also overlapping. There are multiple signaling path-
ways independently controlling different types of cell death.
However, they are interconnected, can be activated simulta-
neously, and can operate in parallel in cells in response to stress.

Necrosis and apoptosis are two types of cell death with different
mechanisms5,12. Autophagy can be described as a degradation
mechanism rather than as a form of cell death, although it can
also induce cell death9. Of the cell death types, autophagy has the
highest survival superiority, followed by apoptosis, with necrosis
having the lowest survival superiority. Autophagy is instinctively
induced prior to apoptosis when cells are stimulated by stress, and
apoptosis rather than necrosis is induced if autophagy is inhibited
or ineffective8,13–16. Thus, two or three types of cell death may be
induced simultaneously or successively when cells are exposed to
certain stimuli. If the three types of cell death are placed on an axis
according to their survival superiority, autophagy, and necrosis
would be placed at opposing ends, whereas apoptosis would be
placed in the middle; furthermore, programmed necrosis would
be placed between necrosis and apoptosis (Fig. 1).
Herein, we review the different types of cell death, discuss the

specific mechanisms involved in each type of cell death and
connections among them, and explore the impact of different
types of cell death on disease treatment.

DISTINCT CHARACTERISTICS OF APOPTOSIS, NECROSIS, AND
AUTOPHAGY
Apoptosis
Apoptosis is generally considered a caspase-mediated programmed
cell death3,4,17,18. Apoptotic cells display distinct morphological
characteristics, including cell shrinkage, chromosome condensation,
nuclear fragmentation (late stage), plasma membrane blebbing and
the formation of apoptotic bodies, and exhibit biochemical changes,
such as the exposure of phosphatidyl-l-serine on the outer plasma
membrane (early stage)19–21. Apoptosis can be activated via either
the death receptor-mediated apoptosis pathway, the mitochondria-
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dependent apoptosis pathway or endoplasmic reticulum (ER) stress-
induced apoptosis pathways (Fig. 2)22.
The death receptor-mediated apoptosis pathway is activated

upon the binding of the Fas ligand, TNF-α (tumor necrosis factor
α), or TRAIL to the corresponding death receptors23,24. The adaptor

protein FADD23,25 and the procaspase-8 protein form a complex,
namely, death-inducing signaling complex (DISC). In DISC,
procaspase-8 is activated by autohydrolysis26. The activated
caspase-8 transduces the apoptosis signal through either the
activation of caspase-3 or cleavage of Bid to truncated Bid (tBid).
tBid translocates to the mitochondria, resulting in conformational
changes in Bax and Bak and their oligomerization for pore
formation in the outer mitochondrial membrane26,27.
The mitochondrial-dependent pathway can be activated by

various stress inducers such as DNA damage, growth factor
withdrawal, and oxidative stress28,29. The Bcl-2 family of proteins
controls this intrinsic pathway by regulating the permeability of
the mitochondrial outer membrane30–32. Upon release from the

Fig. 1 Survival superiority among the different types of cell death

Fig. 2 Mechanisms of apoptosis. In the exogenous pathway, the binding of FASL, TNF-α, or TRAIL to their corresponding receptors can
transform procaspase-8 to caspase-8 through autohydrolysis. In type I cells, activated caspase-8 can activate caspase-3, followed by apoptosis.
In type II cells, activated caspase-8 can hydrolyze Bid to tBid, and then tBid interacts with Bax/Bak, which is located on mitochondria, to induce
apoptosis. In the intrinsic apoptosis pathway, DNA damage, growth factor withdrawal, oxidative stress, or toxic damage can destroy the
homeostasis of the mitochondria, typically controlled by the Bcl-2 family members, and can lead to increased mitochondrial membrane
permeability to induce cytochrome c release from the intermembrane space of the mitochondria. In addition, the released cytochrome c can
interact with Apaf-1 and caspase-9 to activate caspase-3 and induce apoptosis. In the endoplasmic reticulum stress-induced apoptosis
pathway, the disturbance in calcium homeostasis and excessive accumulation of unwanted proteins in the endoplasmic reticulum induce
caspase-12-mediated apoptosis, in which activated caspase-12 translocates from the ER into the cytosol to directly cleave caspase-9 and then
activate caspase-3
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mitochondria into the cytoplasm, cytochrome c combines with
Apaf-1 to promote caspase-9 activation, which, in turn, activates
effector caspases33,34 to trigger a cascade of proteolytic events.
In addition, ER stresses, such as calcium homeostasis distur-

bance, excessive unfolded, or misfolded protein accumulation in
the ER, nutrient deprivation, and hypoxia, can induce apoptosis.
This apoptosis is mediated by caspase-12, an ER-resistant
caspase22. Activated caspase-12 directly cleaves caspase-9 after
translocation from the ER into the cytosol, followed by caspase-3
activation35. The molecular mechanisms of activation of caspase-
12 during ER stress include forming a complex with the inositol-
requiring enzyme-1α-TNF receptor-associated factor 2 (TRAF2)
complex36, or by calpains, a family of Ca2+-dependent intracellular
cysteine proteases37.

Autophagy
Autophagy is a self-degradative process in response to various
stresses, including nutrient deficiency, organelle damage, hypoxia,
reactive oxygen species (ROS), ER stress, and drug treatment. The
process of autophagy involves four key steps—initiation, nuclea-
tion, fusion of autophagosome and lysosome, and hydrolyzation.
Our understanding of the molecular mechanisms of autophagy
starts from research in yeast. A set of autophagy regulatory
molecules was identified by genetic screening in yeast, particularly
autophagy (Atg)-related proteins, which are the main players in
autophagy. The assembly and aggregation of the Atg1 complex,
which includes Atg1, Atg13, Atg17, Atg29, and Atg3138,39, are
required for the formation of the phagophore at the initiation
step40. However, in mammals, the UNC-51-like kinase 1 (ULK)-
mAtg13-FIP200 complex, comprising the homologous analogs to
yeast Atg1, Atg13, and Atg17, is formed41. At the step of
nucleation, phagophore formation at the ER and other mem-
branes is controlled by a complex of the class III PI-3 kinase VPS34,
Atg6 (known as Beclin1 in mammals), Atg14, and Vps15. Atg9 and
vesicle membrane protein VMP1, which circulate in the Golgi
complex, autophagosomes, and endosomes, may be involved in
the transport of lipids to the isolation membrane42,43. The

expansion and closure of the autophagosome require two
ubiquitin-like protein-conjugated systems, namely, Atg12
and Atg8 (Atg8 is also known as LC3 in mammals)44. The
Atg12 system includes five Atg proteins, Atg5, Atg7, Atg10, Atg12,
and Atg1645–47. Atg12 is activated by Atg7, which is an E1-like
enzyme45, and is then transferred to the E2-like enzyme Atg1047.
Finally, the C-terminal glycine of Atg12 covalently binds to the
Lys149 side chain of Atg5 before binding to the dimer protein
Atg16 to form the E3-like complex45. The Atg8 system including
four Atg proteins, Atg3, Atg4, Atg7, and Atg8, represents another
ubiquitin-like protein-conjugated system48. Atg8 is cleaved by
Atg4, a cysteine protease, and exposes its C-terminal glycine
residue (LC3 I in mammals)49. Atg8 is further activated by Atg7, an
E1-like enzyme and is then transferred to Atg3, an E2-like
enzyme48, before covalently binding to the amidogen of PE
through the E3-like Atg12-Atg5-Atg16 complex48,50. The Atg8-PE
covalent structure (LC3 II in mammals) confers Atg8 membrane
tethering and hemifusion ability and plays a critical role in
autophagosome formation. LC3 II is associated with both the outer
and inner membranes of the autophagosome and is a typical
marker of autophagy formation. The Atg8-PE covalent structure
can be reversibly cleaved to Atg8 by Atg4 for the recycling of
Atg8. Subsequently, the fusion of autophagosome and lysosome is
mediated by SNARE (soluble N-ethylmaleimide-sensitive factor
attachment protein receptor)-like proteins51–54. Finally, at a
low pH, various lysosomal enzymes hydrolyze all types of
damaged organelles, proteins, lipids, and nucleic acids40,55. A
diagram of the autophagy process is shown in Fig. 3.

Necrosis and necroptosis
Unlike apoptosis, necrosis is often considered to be an unregu-
lated and accidental cell death2. However, the identification of
programmed necrosis supported the existence of multiple
nonapoptotic regulated cell death mechanisms. Several types of
programmed necrosis have been reported, including necropto-
sis56, parthanatos57, ferroptosis58, pyroptosis59, and NETosis60.
Here, we focus on necroptosis, a type of regulated necrotic cell

Fig. 3 Mechanisms of autophagy. The mechanisms of autophagy can be divided into four steps, initiation, nucleation, expansion and closure,
and fusion and degradation. In mammals, the assembly of the ULK1/2 complex is necessary for the formation of the phagophore assembly
site, whereas the ULK1/2 complex is regulated by mTORC1, which is positively regulated by PI3K/AKT and negatively regulated by AMPK.
Growth factors activate the PI3K/Akt pathway through receptor tyrosine kinases (RTKs). The Beclin1 complex, which is usually suppressed by
Bcl-2, is activated and drives the isolation membrane to nucleation, and the transmembrane protein Atg9 and vesicle membrane protein
VMP1 may be involved in the transport of lipids to the isolation membrane. In addition, two ubiquitin-like protein-conjugated systems (Atg12
and LC3 systems) are needed in this process. Subsequently, the autophagosome and lysosome fusion is mediated by SNARE-like protein, and,
finally, various lysosomal enzymes hydrolyze all types of damaged organelles, proteins, lipids, and nucleic acids
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death that shares several key signaling pathways with apoptosis.
Most of the knowledge regarding necroptosis originated from
investigations of TNF signaling. TNF is a pleiotropic cytokine that
plays an important role in the process of inflammation61. TNF is
also a potent cell death inducer under certain conditions through
binding to TNFR12. Although an early study revealed that TNF-
induced RIPK1-mediated caspase-independent cell death62, TNF-
induced nonapoptotic cell death did not attract much attention,
until researchers further uncovered that cells executed necrosis-
like death when apoptosis was blocked63,64.
Necroptosis is initiated by the engagement of death receptors,

such as TNFR165–67 and Toll-like receptors (TLRs)68–70. TNF binding
to the death receptor TNFR induces the conformational changes
of TNFR, which recruits multiple proteins, including TNFR1-
associated death domain protein (TRADD), RIPK1, TRAF2, E3
ubiquitin ligases, cIAP1/2, and LUBAC, to form TRADD and the
RIPK1-dependent complex I. This multi-protein complex trans-
duces pro-inflammatory and pro-survival signals by recruiting
TGF-activated kinase 1 (TAK1)-binding protein (TAB) complexes
and Iκb kinase (IKK) complexes consisting of IKK1, IKK2, and NF-κB
essential modulator (NEMO)71,72 to activate NF-κB signaling, AP-1
signaling, and mitogen-activated protein kinase signaling. When
RIPK1 is deubiquitinated by cylindromatosis lysine 63 deubiqui-
tinase73, complex I becomes unstable and renders the dissociation
of RIPK1 and the formation of another complex, termed complex
IIa, by interacting with TRADD, FADD, pro-caspase-8, and FLIP73.
Pro-caspase-8, together with FLIPL, cleaves RIPK1 to prevent
necroptosis and activate apoptosis signaling16,74,75. TNF–TNFR
signaling can also induce apoptosis through the formation of
complex IIb when the function of IAP (inhibitors of apoptosis)16,
TAK176, NEMO, and/or Pellino3 is blocked77. This complex IIb
comprises RIPK1, RIPK3, FADD, pro-caspase-8, and FLIPL and
causes RIPK1-dependent apoptosis15. However, complex IIb may
be further transformed into the necrosome, a microfilament-like
complex, when the levels of RIPK3 and mixed lineage kinase

domain-like (MLKL) are sufficiently high and the activity of
caspase-8 is inhibited78. Oligomerization and phosphorylation of
RIPK3 in the necrosome lead to the recruitment and phosphoryla-
tion of MLKL78,79, and then MLKL translocates to the plasma
membrane and causes membrane damage and necroptosis80. In
addition, the necrosome interacts with mitochondrial serine/
threonine protein phosphatase PGAM family member 5 on the
mitochondrial membrane and activates mitochondrial fission
factor dynamin-related protein 1 to induce necroptosis through
mitochondrial fragmentation81. As mentioned above, the binding
of FasL or TRAIL to the death receptor Fas or TRAILR induces the
formation of DISC, activates caspase-8, and executes apoptosis82.
However, in the absence of cIAPs or inhibition of caspase-8, RIPK1
translocates to the membrane93 and promotes the formation of
complex II-b83 and initiation of necroptosis when Fas/TRAILR is
activated 78,79,84,85.
Activation of TLRs induces the formation of a platform that

recruits the cytoplasmic adaptor protein TRIF (Toll/IL-1 receptor
domain-containing adaptor protein inducing interferon-Β). TRIF is
involved in the activation of NF-κB signaling and induction of type
I IFNs86. By relying on its RHIM (RIP homotypic interaction motif)
domain, TRIF can interact with RIPK1 and RIPK3. In the presence of
the apoptosis inhibitor zVAD-fmk, activation of TLR4 by lipopoly-
saccharide or activation of TLR3 by polyinosine–polycytidylic acid
can induce TRIF-mediated necroptosis87, 88, which can be blocked
by the inhibition of necrostatin-1 (Nec1) or knockout of RIPK189.
These results suggest that the RIPK1-TRIF signaling complex plays
an important role in TLR3/4-induced necroptosis. In the absence of
RIPK1, TRIF can also induce necroptosis by directly recruiting and
activating RIPK387,89.
In addition to death receptor signaling and TLR signaling, DNA-

dependent activator of IFN-regulatory factors (DAI), a cytoplasmic
viral DNA sensor90,91, can also induce necroptosis. Like TRIF, DAI
has the RHIM structure. In response to viral (such as murine
cytomegalovirus) double-stranded DNA, DAI can activate NF-κB,

Fig. 4 Mechanisms of necroptosis. In TNFR signaling, complex I containing TRADD, RIPK1, TRAF2, E3 ubiquitin ligases, cIAP1/2, and LUBAC is
unstable when RIP1K is deubiquitinated by CYLD, leading to the formation of the necrosome together with high levels of RIPK3 and MLKL as
well as inhibited caspase-8. Subsequently, RIPK3 in the necrosome oligomerizes and is phosphorylated, leading to the recruitment and
phosphorylation of MLKL, and phosphorylated MLKL translocates to the plasma membrane to cause membrane damage and necroptosis, or
phosphorylated MLKL interacts with phosphorylase PGAM5 on the mitochondrial membrane and then activates mitochondrial fission factor
Drp1 to induce necroptosis. In Fas/TRAILR signaling, when cIAPs are absent and caspase-8 is inhibited, the activation of Fas/TRAILR can induce
necroptosis. In TLR3/4 signaling, their activation can induce TRIF-mediated necroptosis in the presence of zVAD-fmk, TLR4 activation by
lipopolysaccharide (LPS) or TLR3 activation by polyinosine–polycytidylic acid. In DAI signaling, in response to viral double-stranded DNA, DAI
also mediates RIPK3-dependent necroptosis under certain conditions
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induce type I IFNs, and mediate RIPK3-dependent necroptosis91.
Moreover, Wei et al. recently reported a novel necrosis mechan-
ism, indicating that the acute cell necrosis induced by cationic
nanocarriers occurs through the impairment of Na+/K+-ATPase,
which causes a subsequent inflammatory response92. A diagram
of the process of classical necroptosis is shown in Fig. 4.

ASSOCIATIONS AMONG THE THREE TYPES OF CELL DEATH
Association between apoptosis and necroptosis
Apoptosis and necroptosis may occur simultaneously93 or
mutually transform because of the interconnection of the down-
stream death signaling pathways. For example, cells can commit
to necrotic cell death when apoptosis is blocked94, and oxidative
stress-induced necrotic cell death involves the activation of the
apoptosis-associated caspase-8/Bid pathway95. The final form of
cell death will depend on the cell type, cell microenvironment,
and initial inducers.

Caspase-8 and RIPK1/3. As an apoptotic initiator caspase,
caspase-8 interacts with FADD to form DISC, followed by
homologous dimerization and proteolytic processing. Activated
caspase-8 is then released from DISC and triggers downstream
apoptotic signaling96. Meanwhile, caspase-8 can inhibit necropto-
sis by cleaving and inactivating RIPK1 and RIPK385,97,98. However,
when the activity of caspase-8 is inhibited pharmacologically, such
as by the pan-caspase inhibitor ZVAD, or genetically, such as in
RNAi-mediated knockdown, RIPK1 and RIPK3 become activated
through phosphorylation and induce the formation of the
necrosome to trigger necroptosis12,99,100.

ATP. ATP plays a crucial role in the decision of cell death fate101.
A high level of intracellular ATP often favors apoptosis, whereas a
low level often promotes necrosis102. Therefore, excessive
consumption of intracellular ATP or the inhibition of ATP synthesis
may convert apoptosis to necrosis101,103. For example, substantial
DNA damage leads to the activation of poly ADP-ribose
polymerase-1 (PARP-1), a nuclear enzyme involved in DNA repair,
resulting in the consumption of many NAD+ and ATP molecules
and subsequent necrotic death104,105. The mitochondria is the
major site that generates ATP; therefore, mitochondria dysfunc-
tion can trigger necrosis by ATP depletion. In addition, excessive
mitochondrial ROS formation and the onset of the mitochondrial
permeability transition are also causally linked to the conversion
of apoptosis to necroptosis106.

Association between autophagy and apoptosis
Autophagy is an intracellular catabolic mechanism that involves
the degradation and recycling of cytoplasmic undesired compo-
nents, such as malfunctioning proteins or damaged organelles, to
maintain cellular homeostasis107–109. Autophagy is a double-
edged sword and can either protect cells from apoptosis110 or
promote apoptosis111 depending on the cell type, intracellular
metabolic activity, extracellular nutrient supply and triggering
stimuli.

Beclin1. Mammalian Beclin1 (Atg6 in yeast) cross-regulates
autophagy and apoptosis through direct interaction with anti-
apoptosis family members112–115. Beclin1 is a key molecule
involved in the autophagosome formation. Beclin1 interacts with
class III type PI3KC3/Vps34 and promotes the formation of the
Beclin1-Vps34-Vps15 core complex116,117. Beclin1 is also a member
of the BH3-only protein family. The antiapoptotic protein Bcl-2 or
Bcl-xL combines with Beclin1 through the BH3 domains118 to
simultaneously block the process of autophagy by inhibiting
Beclin1 activity119 and the occurrence of endogenous apopto-
sis111,118,120,121. On the other hand, NOXA and other BH3-only
family proteins can displace Bcl-2 family members from Beclin1

and promote autophagic cell death122,123. Furthermore, Beclin1
can also be cleaved by several caspase proteins, such as caspase-
8 and caspase-3, to shift the cell fate from autophagy to
apoptosis14, 93. The C-terminal fragment of Beclin1 can then
translocate to the mitochondria and induce mitochondrial
membrane permeability and apoptosis124.

Association between autophagy and necroptosis
The interconnection between autophagy and necroptosis has
been investigated in several studies with conflicting results. As a
protective mechanism, autophagy can unsurprisingly inhibit
necroptosis125,126. Interestingly, autophagy appears to facilitate
necroptosis in certain instances127. Khan et al.128 reported that
palmitic acid triggers Ca2+-dependent autophagy, resulting in the
necroptosis of endothelial cells.

mTORC1. mTORC1 is a key sensor of nutrients, growth factors,
and stress and controls cell metabolism, growth, and survival.
Activation of mTORC1 by growth factors and nutrients can
suppress autophagy by phosphorylation of autophagy-related
proteins involved in autophagy initiation, such as ULK1 and
ATG13, in the ULK complex and ATG14 in the VPS34 complex129.
Cellular metabolic and energetic status regulates mTORC1 activity
and consequently impacts autophagy induction. At a low-energy
status, AMPK signaling is activated in response to an increased
AMP/ATP ratio, which inhibits the mTORC1 signaling pathway via
the phosphorylation of TSC2 (tuberous sclerosis complex 2), a
mTORC1 negative regulator13,41,130–133, subsequently promoting
autophagy141,130,134. Autophagy stimulation by the downregula-
tion of mTORC1 signaling protect cells from programmed cell
death, including apoptosis and necroptosis, under nutrient- or
energy-deprived conditions135–142. As mentioned above, the
activation of PARP-1 in the DNA damage response causes necrosis
owing to ATP depletion, which also leads to AMPK activation,
mTORC1 inhibition, and autophagy induction as the last protective
resort143. The balance between autophagy and necrosis will
determine the cell death fate.

Association among apoptosis, autophagy, and necroptosis
Cellular FILCE-like inhibitory protein (cFLIP). FADD-like interleukin-
1β-converting enzyme (FLICE)-like inhibitory proteins (FLIPs)
possess caspase-8-like structures but lack proteolytic activity.
cFLIP has three major isoforms in humans containing one long
protein cFLIPL and two short proteins cFLIPs and cFLIPR

144–146.
cFLIPL possesses a C-terminal caspase-8-like domain but does not
have enzymatic activity due to the substitution of several
catalytically important amino-acid residues144–147, whereas the
other isoforms cFLIPs and cFLIPR do not possess the caspase-like
C-terminal domain. Nevertheless, these three isoforms all contain
two death receptor domains at the N-termini, which allow them to
interact with the adaptor protein FADD to form the DISC complex.
cFLIP regulates not only the death receptor-mediated extrinsic

apoptosis pathway but also death receptor-independent apopto-
sis pathways. In complex IIb/ripoptosome, homodimeric caspase-8
initiates apoptosis by cleaving RIPK1 and disassembling complex
IIb/ripoptosome. When procaspase-8 forms a heterodimer with
cFLIPL, not only is necroptosis prevented due to cleavage of RIPK1
but apoptosis is also blocked because activated caspase-8 is not
formed148. However, formation of a heterodimer by procaspase-8
with cFLIPS/R triggers necroptosis owing to the lack of proteolytic
cleavage of RIPK1149–151 and simultaneously fails to induce
caspase-8-dependent apoptosis. Therefore, the existence of cFLIP
isoforms in the ripoptosome determines whether cells will execute
RIPK1-dependent necroptosis or caspase-8-dependent apoptosis.
In addition to the regulation of apoptosis and necroptosis, cFLIP

is known to be a negative regulator of autophagy. During
autophagosome formation, Atg3 covalently binds the
microtubule-associated protein LC3. Strikingly, cFLIP prevents
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the combination of Atg3 and LC3 by competitively binding Atg3
and consequently inhibiting autophagy152. The process in which
cFLIP regulates apoptosis and necroptosis through formation of
the ripoptosome occurs at the plasma membrane, but cFLIP
inhibits autophagy at the sites where autophagosomes form. Thus,
the different subcellular localizations of cFLIP may be important
for its actions152. The complex associations among the three types
of cell death are summarized in Fig. 5.

CELL DEATH AND DISEASE TREATMENT
Cell death in neurodegenerative diseases
Neurodegenerative diseases, including Alzheimer’s disease, Par-
kinson’s disease, Huntington’s disease, and amyotrophic lateral
sclerosis153, involve the loss of structures and functions of nerve
cells owing to the accumulation of abnormal proteins in the
intracellular and extracellular spaces154. Deregulated cell death
has been implicated as a major mechanism in these neurodegen-
erative diseases. The intervention of cell death pathways is
therefore considered a potential therapeutic strategy.
The interaction between β-amyloid accumulation and the death

of neurocytes contributes to the progression of Alzheimer’s
disease155. β-amyloid accumulates in mitochondria, mediates
mitochondrial toxicity, and induces caspase-3-dependent apopto-
sis156, which, in turn, accelerates the formation of β-amyloid and
neurofibrillary tangles157. Activation of caspases also cleaves
autophagy-related proteins, such as Beclin1, consequently inhibit-
ing autophagy158.
An overwhelming body of evidence indicates that the inhibition

of programmed cell death may be an effective strategy for the
treatment of neurodegenerative diseases. For example, the
efficacy of minocycline in the treatment of Alzheimer’s disease
and Parkinson’s disease has been linked to its anti-apoptosis
action by inhibiting oxidative stress, cytochrome c release, and
caspase-3 activation and by increasing the expression levels of
anti-apoptotic proteins, such as Bcl-2159. Blocking necroptosis

by the RIPK1 inhibitor Nec-1 protects cortical neuronal cells of
embryonic rats and mouse hippocampal neurons from excitatory
toxicosis-induced cell death160,161. Nec-1 can also reduce the
death of striatal neurons with Huntingtin (HTT) mutations and
retard the process of Huntington’s disease in HTT-mutant
transgenic mice162. As a cell survival mechanism, promoting
autophagy163,164 by mTOR inhibitors, such as rapamycin and its
analogs (CCI-779, RAD001, and AP23573), protects cells from
apoptotic and necrotic cell death165,166 and has been proven to be
effective in the treatment of neurodegenerative diseases.

Cell death in cancer
A delicate balance between cell death and survival maintains the
homeostasis within a cell, a tissue, and an organism. Uncontrolled
cell proliferation and escape from cell death have been
recognized as the hallmarks of cancer cells167.
Substantial studies have suggested that autophagy plays a dual

role in tumorigenesis. At the early stage, autophagy exerts an
antitumor effect and curbs chronic tissue damage, inflammation,
and genome instability; however, during the late stage, autophagy
meets the energy and nutrient requirements to sustain tumor
development168. Therefore, autophagy inhibitors, such as chlor-
oquine or hydroxychloroquine, have a therapeutic potential in
cancer treatment169–171. Autophagy also contributes to the
resistance to cancer therapy. For example, autophagy plays a
protective role against quercetin or histone deacetylase inhibitor
SAHA (suberoylanilide hydroxamic acid)-induced apoptosis, and
the combination of autophagy inhibitors and quercetin or SAHA
may provide a rational utility of these drugs in the clinic172,173.
Similarly, inhibition of autophagy has been reported to enhance
the sensitivity of tumor cells to TRAIL agonists and promote
apoptosis170.
Cancer cells exhibit aberrant apoptotic signaling, including

upregulation of anti-apoptotic molecules and suppression of
proapoptotic molecules174–176. The high expression level
of survivin, a member of the IAP family177, the disrupted balance

Fig. 5 The relationship among the three types of cell death. FLIP regulates the modes of cell death by interacting with caspase-8, interfering
with the functions of RIPK1, and combining Atg3 and LC3 by competitively binding Atg3. Caspase-8, which is a key factor in apoptosis, inhibits
necroptosis by hydrolyzing RIPK1 and RIPK3. The level of intracellular ATP plays a crucial role in the decision of cell fate between apoptosis and
necrosis. High levels of intracellular ATP often favor apoptosis, whereas low levels of intracellular ATP often favor necrosis. Beclin1, which is a
key molecule required for autophagosome formation, can control the switch between autophagy and apoptosis via several mechanisms, such
as by combining with Bcl-2 or Bcl-XL, which are anti-apoptotic proteins, and becoming hydrolyzed by several caspase proteins. mTOR can
sense the level of intracellular ATP and relieve the inhibition of autophagy when the level of intracellular ATP is low, triggering necrotic cell
death. When activated by growth factor, AKT can induce mTOR signaling to inhibit autophagy. The activation of AKT can inhibit apoptosis by
phosphorylating apoptotic factors, such as Bad and caspase-9
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among the Bcl-2 family members178, or the impaired activity of
caspases179, enhances cancer cell survival and is associated with
tumor aggressiveness and the survival of cancer patients. There-
fore, targeting apoptosis-related proteins has been one of the
most active research fields in cancer therapeutics for the long-
term and has achieved significant progress recently. The BH3
analog ABT-737 and its derivative ABT-263 act as pan-Bcl-2
inhibitors and simultaneously inhibit several members of Bcl-2
family proteins, including Bcl-2, Bcl-xL, and Bcl-W, to induce cell
apoptosis180,181. BH3 analogs have shown therapeutic benefits for
solid tumors and hematological malignancies182,183. The negative
regulatory role of cFLIP in apoptosis makes it an attractive target
molecule to treat cancer. The modulation of cFLIP expression and
activity has been linked to the antitumor action of several targeted
therapies, including those utilizing mTOR inhibitors and histone
deacetylase inhibitors184–186.
Cell death-related pathways participate in the cellular stress

response. Cancer cells exposed to various stresses (for example,
DNA damages, oxidative stress) during oncogenic transformation
and adaption to these stresses are required for cancer cells to
survive. Oxidative stress results from the accumulation of ROS.
ROS collectively include superoxide onion, hydrogen peroxide,
and hydroxyl radical and regulate programmed cell death.
Activation of death receptor-mediated signaling pathways has
been associated with ROS production187–190. Wang et al.191

demonstrated ROS-mediated degradation of cFLIP, a negative
regulator of Fas-induced apoptosis in lung epithelial cells. ROS can
also trigger the intrinsic apoptotic cascade by disruption of the
mitochondrial membrane potential, promoting cytochrome c
detachment from cardiolipin and release to the cytosol and
inducing oxidative mitochondrial DNA damage192. Furthermore,
ROS can activate apoptotic signaling via ASK1/JNK signaling193.
Accumulation of ROS can also activate autophagy. ROS-mediated
oxidative modulation of Atg4 inhibited Atg4-delipidating activity,
leading to the accumulation of LC3-PE on autophagosomal
membranes and facilitating autophagosome formation. The
interplay between ROS and autophagy contributes to cancer
progression194. In the early stage of cancer initiation, autophagy is
proposed to play a tumor suppressor role by reducing ROS
accumulation via the degradation of ROS-producing mitochon-
dria, thus limiting genomic instability195. However, at the later
stage of tumor progression, autophagy may be exploited by
cancer cells to promote their survival and oncogenic mutations196.
ROS-mediated programmed cell death makes ROS-based thera-
pies an attractive strategy in cancer treatment. Moreover,
although cancer cells have developed redox adaptation
mechanisms to survive in a high oxidative environment, extensive
studies have suggested that they are more vulnerable to
oxidative stress caused by ROS-generating agents than
normal cells, providing the selectivity of ROS-based therapies197.
Exogenous ROS-generating agents used as a single agent or
in combination with other standard therapies have shown
promise in pre-clinical studies198–200.

Cell death in other diseases
In addition to neurodegenerative diseases and cancer, cell death is
associated with other diseases. Autophagy is involved in intestinal
homeostasis201, muscular dystrophy, stroke, pancreatitis, heart
disease, liver disease, and type II diabetes202–205. Increasing the
activity of Beclin1 has been proposed as a therapeutic strategy for
these autophagy-related diseases202. Apoptosis is also associated
with ischemic stroke, acute central nervous system injury, heart
disease, infectious diseases, autoimmune diseases29. Therefore,
targeting apoptotic pathways such as the broad-spectrum caspase
inhibitor Q-VD-OPh, has been reported to cure diseases induced
by apoptosis206–209. Necroptosis has been linked to the pathogen-
esis of ischemia-reperfusion injury210, multiple sclerosis211, myo-
cardial infarction, stroke63,212, inflammatory disease213, acute

kidney injury214, and microbial infection184,187,215–217. Nec-1, an
inhibitor of RIPK1, has shown the efficacy by preventing
necroptosis64,164,212,214,218–220.

PROSPECTS
Apoptosis, autophagy, and necrosis, three types of cell death, have
been studied separately and are considered independent
processes. Recent advances in cell death research have changed
our perception, leading us to consider these processes as
interconnected with overlapping signaling pathways and cross-
talk in response to different stresses. The existence of diverse
regulated cell death pathways implicates the complexity of cell
death programs but also provides novel therapeutic targets.
Further studies are required to investigate the linkage within
different cell death programs and identify key molecular factors
that determine cell death under specific pathological conditions
and that can be pharmacologically manipulated.
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