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THE INDEPENDENCE OF CERTAIN AXIOMS

OF STRUCTURES IN SETS1

JAPHETH HALL, JR.

Abstract. The independence of the axioms for spans and the

independence of the axioms for closure structures are usually taken

for granted. In this paper, the author establishes the independence

of monotonicity, extensiveness, idempotence, the exchange prop-

erty, the property of having 0 as a fixed set and two covering

properties (a-character, with a being some cardinal number, and

a covering property with respect to generators). The independence

of the axioms for closure structures and spans follow immediately.

It is shown that any proof of the independence of a given axiom

must involve an example with certain restrictions on the cardinal

number a.

Each of the following axioms or properties pertaining to structures in

sets, that is, functions P:2V—>2V for some set V, has been considered in

at least one of [1]—[7]: monotonicity [if A£ Fs y, then P(X)^P(Y)],

extensiveness [if A£ V, then X^P(X)], idempotence [if Je V, then

P(P(X))=P(X)], the exchange property [if X^ V,yeV, xeP(XV{y}) and

x$P(X), then yeP(XV{x})], finite character [if A£ V, then P(X) is a sub-

set of \J{P(Z):Z^X, Z is finite}]. Structures having monotonicity, exten-

siveness, and idempotence are called "closure structures" or "closure

operations". (See, e.g., [l]-[6].) Closure structures having the exchange

property and finite character are called "spans". (See, e.g., [2], [3], and

[7].)
Finite character is a special case of the following property, where a is

some cardinal number and \S\ denotes the cardinal number of a set S:

a-character. If Ac V, thenP(A")£ (J{P(Z):Zs X, |Z|<a}. (a-character

was considered in [4] and [5] for a not exceeding the first infinite cardinal

number.) If V is a vector space over a division ring and P{X) is the sub-

space generated by X for all X^ V, then P has the following property:

Equivalence covering property. If Je y and F£ V such that P(A) =

P(Y), thenP(Al£U{P(Z):Z£ Y, \Z\g\X\}.
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It is usually assumed that the axioms for closure structures are inde-

pendent, and that the axioms for spans are independent. It is the purpose

of this paper to show the independence of monotonicity, extensiveness,

idempotence, the exchange property, a-character (with certain restrictions

on a), the equivalence covering property and the property of sending 0

onto 0. It will follow that any combination of these axioms is

independent, and that the axioms for spans are independent.

Lemma. Suppose that V is a set having a subset A such that V—A is

nonempty. Let F be a nonempty family of nonempty subsets of V—A. The

following defines a structure P in V having monotonicity, idempotence, ex-

tensiveness and the property of sending 0 onto A :

IfX £ V, then P{X) = V ifY^X-Afor some YeF,

= X \J A otherwise,

where S—T—{xeS: x£T} for all sets S and T. Moreover, if /i is a cardinal

number such that [ig\V\, then the following conditions are satisfied:

(1) If F is the family of all Y^ V such that \Y\=/i, then P has the
exchange property.

(2) If F is any family of subsets Y of V such that \ Y\=fi, then P has the .
equivalence covering property.

(3) If a is a cardinal number such that /*<oc and F is any family of

subsets Y of V such that \Y\ = u, then P has a-character.

Proof. Since As XKJA s V for each Xc V, then P has extensiveness.

Assume that A£ Y£ V. Either Z£ X—A for some ZeF or not. If so, then

Zg Y-A; hence, P(X)=V=P(Y). If not, then P(X)=XVJA^ Y\JA<^

P{Y). It follows that P has monotonicity. Since F^ 0 , then 7£ V—A for

some YeF. Therefore, P(V)=V. It follows that P(P(X))=P(X) if P(X)=

V. If P{X)=X\JA, then Y^X-A for all YeF; hence Y$(X*JA)-A for

all YeF, and it follows that P{X\jA) = {XkjA)kjA=P{X). It follows that
P has idempotence. Since T^ 0 for all YeF, then T4: 0 —A for all

YeF; hence, P(0)=0 (JA=A. This completes a proof of the first state-

ment in the lemma. Assume that p is a cardinal number such that pg\V\.

Suppose that F is the family of all subsets Y of V such that | Y\=/x while

ZsK, yeV, xeP{X\J{y}) and x$P{X). It follows that Ye [X\J{y}}-A

for some YeF or not. We consider the case that Fc [^u{y}]—A for some

YeF. Since P has extensiveness and xeP(XVJ{y}) while x$P(X), then

x$Xandy$X. Therefore, if Y^X, then ye Y. It follows that

[T-{y}]U{r)cz [XVJ{x}]-A

while, also \[Y—{y}]\J{x}\=p; hence P(XV{x})=V and, therefore,
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jeP(Xu{x}). In case for all YeF, Y£[Xv{y}]-A, then P{XKJ{y))-

P(X) = {y) and, therefore, y=x so yeP(X(J{x}). This proves that (1) is

satisfied. Assume that F is any family of subsets Y of V such that | Y\ =fi

while X and Tare subsets of V such that P(X)=P(Y). It follows that

Z, cX— A for some Z±eF if and only if Z2£ Y—^4 for some Z2eP; hence,

P(X) = Vif and only if P( Y)= V. Therefore, P has the equivalence covering

property. This proves that (2) is satisfied. Assume that a is a cardinal

number such that p<a, and that F is any family of subsets Y of V such

that \ Y\=p while As V. If Y^X-A for some YeF, then 7cx and

fg T-^, so that P(F)= Awhile | Y\=/*<«.. Ifforall YeF, Y^X-A [so
that fi^l] and x<£P(X), then xe(XU/l); hence, either k{i}cJ while

xe({x} (JA)=P({x}) or xe/1 =P( 0 ). It follows that P has a-character. This

proves that (3) is satisfied. The lemma follows.

Theorem. The following axioms are independent: (It is to be understood

that the restriction on a appearing alongside a given axiom is needed to prove

the independence of that axiom.)

(a) The property of sending 0 onto 0 («>1).

(b) Monotonicity (<x>2).

(c) Idempotence (oc>2).

(d) Extensiveness (a 5^ 2).

(e) The exchange property (a> 1).

(f) a-character (a> 1).

(g) The equivalence covering property (a>co, where 00 denotes the

first infinite cardinal number).

Proof. Excluding the case of the independence of idempotence, it is

assumed that V is a nonempty set. It is also assumed that p, is a cardinal

number such that 2ga<\V\. If Pis a nonempty family of nonempty sub-

sets of V— A for some A^V, then the symbol PF,A shall denote the

structure P defined in the lemma.

Independence of the property of sending 0 onto 0. Let A be a non-

empty subset of V, a be a cardinal number such that p<a and Fbe the

family of all Ys V—A such that | Y\=ß. It follows from the lemma that

the independence of the property of sending 0 onto 0 is demonstrated

with PF A.

Independence of monotonicity. Let a be a cardinal number such that

H < 3 £j a. Let F be the family of all fg V such that \Y\=p. Let a, b, and c

be distinct elements of V. Let P=PF 0 and define a structure Q in V as

follows:

If A £ V, then Q(X) = {a, b}   if 0 ^ A c {a, b},

= P(A) otherwise.
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Then P({d]) = {a, b}^{a, c}=P({a, c}); hence, since {a}^{a, c), it follows

that ß is not monotone. If X is a nonempty subset of {a, b}, then it

follows that X<=Q(X) = Q(Q(X)) [since Q(X)={a, b} = Q({a, b})]. Since
i>(0) = 0 , then 0 £ ß(0) = ß(ß(0)). If A" is a nonempty subset of V

such that A$ {a, A}, then Q(X)=P(X) while P(X) is either X or F; hence,

Xcß(X)=ß(ß(A)). It follows that ß is extensive and idempotent.

Assume that Ac V,yeV, x$Q(X), and xeQ(X(j{y}). If Iu(j} is a non-

empty subset of {a, b}, then it follows that ß(AU{j})-ß(A)c {a, b};

hence, x=a or x=b, and it follows thatjeß(AU{x}) [since j must also be

either a or 6 and Au{x} must be a nonempty subset of {a, b}]. We con-

sider the case that Iu{j}^ 0 and Au{y} is not a subset of {a, b}. Then

ß(A u {y}) - Q(X) = P(X u {j}) - ß(A).

Either ß(A)={a, b} or ß(A)=P(A). In the latter case it follows that

yeß(XU{x}) [since P has the exchange property]. In the former case it

follows that x${a,b} and, hence, Iu{x}${a, J}, so that ß(Au{x}) =

P(XVJ{x}) while P has the exchange property. Therefore, jeß(XU{x}) in

either case. It follows that ß has the exchange property. The sets which

are ß-equivalent to {a, b} are precisely {a}, {b}, and {a, b} while P has the

equivalence covering property. It follows that ß has the equivalence

covering property. Since P has oc-character and a^3, then ß has a-

character. The independence of monotonicity follows.

Independence of idempotence. In this example we consider V as a

vector space over a division ring F and assume that V has dimension at

least two. We let a and b be linearly independent elements of V and

z=0 be the identity in the Abelian group V. If xeV and yeV, then we let

L(x,y) be the set of all rx+xy such that reF, seF, and r+s=l. We let

Q(X)=\J{L(x,y):xeX,yeX} for all As K. Then Q(Q({a, b, z})) is the
subspace spanned by {a, A} while ß({a, A, z}) is the proper subset

L'a,b)\JL(a,z)VJL{b,z) of Q(Q({a, b, z})). It follows that ß is not

idempotent. It is clear that ß(0) = 0. Assume that As V. It follows that

{x}cL(x, x)cß(l') for all xeX; hence, it follows that ß is extensive. If

xeX and yeX while Ts K such that As Y, then xg T and ye Y; hence, it

follows that ß(A)cß(T). Therefore, ß is monotone. Assuming, further,

that yeV, xeß(AU{y}) and x$Q(X), choose elements c and d of AU{j}

such that xeL(c, d). Since x^Q(X), then one of c and d must be j, say

d=y. Choose reF and seF such that = 1 and x=rc+sy. It is necessary

that j#0. Solving for _y, one obtains the equation y=s~1x+(—s~1r)c

with sr^+i—s^r)^!. It follows that yeQ(X(J{x}). Therefore, ß has the

exchange property. If Ais a nonempty subset of Kand xeQ(X), then one

chooses yeX and weAsuch that xeL(y, w) = Q({y, w}) while \{y, w}|<oc

if a is a cardinal number at least three. It follows that ß has a-character if
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a is a cardinal number at least three. Finally, if X and 7 are subsets of V

such that P(X)=P(Y) and xeQ(X), then xeL(y, w)=Q({y, w}) for some

{y, w}s Y while \{y, w}\5=|A|. It follows that Q has the equivalence

covering property. The independence of idempotence follows.

Independence of extensiveness. Let a be a cardinal number such that

fjL<a. and F be the family of all Ts y such that | 71=^. Let Q(X)= 0 if
7$ As y for some 7gF, and let Q{X)=V if 7s As K for some 7gP.

Let xeK. Then {x}$ö({x}) if //^2, so that Q is not extensive. It is easy

to verify that Q has all other properties listed in the statement of the

theorem. Observe that the constant structure Q such that Q(X)= 0 for

all Jg V suffices also.

Independence of the exchange property. Let B be a nonempty subset of

V such that [5|<<x (with a being a cardinal number) and F={B). Since

j&v0, we let beB. For aSj|F|, we let ae(V-B). It follows that

ae[V— (B-{b})], V—(B— {b}) =i>([5-{6}] U{6})and6£[(5-{Z>})U{a}] =

/*([#— {6}]U{a}). It follows that PF,0 does not have the exchange

property. It is clear that PF_0 has the remaining properties listed in the

statement of the theorem. The independence of the exchange property

follows.

Independence of en-character. Let a be a cardinal number less than | V\

and F be the family of all 7s V such that | Y\ = a. If PFtZ has a-character,

then

JW*)£ \}{PF.ziY):Y <=> X,\Y\ < *} = \J{Y:Y ^ X,\Y\ < «.} = X

for all As V. But PF 0{X)= V for some XeF; hence, Ks A for some XeF,

so that |K| = a<|F|. It follows that PF%0 does not have a-character. It is

clear that PFi0 has the remaining properties listed in the statement of the

theorem. The independence of a-character follows.

Independence of the equivalence covering property. Assume that a is a

cardinal number such that V includes two infinite subsets Ax and A2 such

that \Ax\<\A2\<o.. Let F be the family of all As V such that At — X is

finite and \X—Ai\>\Air-X\ for some z'e{l,2}. Let P=PF.0. Since

P(A1)=P(A2) and x$P(Z) for all Z<^A2 such that IZI^MjI and all xeV

such that xe( V—Ax) while V—Ax 0, then P does not have the equivalence

covering property. Assume that As V, yeV, xeP(X\J{y}) and x$P(X).

It is clear thatyeP(XKj{x}) if AU{7}=P(AU{y}). Consider the case that

Au{y}#P(AU{y}). Then P(XU{y}) = V; hence, we choose Y<=F such that

Ys[X(J{y}]-0. It follows that Ak— Y is finite and | Y-Ak\^\Ak- Y\

for some ke{l, 2} and, therefore, Ak— (Fu{i}) is finite and

|(7 u {*})- A-l ̂  \Ak-(Yu{x})\

while, also, 7u{x}s (Au{x»— 0. Therefore, Zs (AU{x})— 0 for some
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ZeF and, hence, P(X(J{x}) = V. It follows that yeP(AU{x}). Therefore,

P has the exchange property. Excluding the exchange property and the

equivalence property, it is clear that P has the remaining properties listed

in the statement of the theorem. The independence of the equivalence

property follows. It remains to be shown that the restrictions on a are

needed.

Assuming that P is a structure in a set V, then by definition, a subset X

of V is P-independent if and only if x$P(X— {x}) for all xeX; a subset X

of V is P-equivalent to a subset Y of V if and only if P(A)=P( Y).

The following propositions regarding structures P in sets V are known.

(See, e.g., [3] and [4] in which other references are also cited.)

(I) If P is a span, then any two P-independent P-equivalent subsets of

V have the same cardinal number.

(II) If P is a closure structure having the exchange property, then any

two P-independent P-equivalent subsets of V, one of which is finite, have

the same cardinal number.

(III) If P has monotonicity and finite character, then every subset of V

has a maximal P-independent subset.

(IV) If P has the exchange property and A is a P-independent subset

of V, then the following condition is satisfied:

x e [V — P(X)] implies X U {x} is P-independent.

The following proposition will be proved:

(V) If P is a structure in a set V such that (i) and (ii) below are true,

then P has the equivalence covering property.

(i) Every subset X of V has a P-independent subset which is P-

equivalent to X.

(ii) Any two P-independent P-equivalent subsets of V have the same

cardinal number.

Assume that P is a structure in a set V such that (i) and (ii) are true

while P does not have the equivalence covering property. Choose P-

equivalent subsets X and Y of V such that there is an xeP(X) such that

x$P(Z) for all Zs Y such that |Z|^|JT|. Using (i), choose P-independent

subsets Zx of X and Z2 of Y such that Zx is P-equivalent to X and Z2 is

P-equivalent to Y. Then |Z2|>|A|^|Z!|. This contradicts (ii). It follows

that P has the equivalence covering property.

We will use (I) through (V) to explain certain restrictions in the case

of the equivalence covering property. Assume that P is a closure structure

in a set V, that P has a-character and the exchange property, and that P

does not have the equivalence covering property. Since P is a closure

structure having the exchange property, it follows from (IV) that if

IS Ts V, then X is P-independent and P-equivalent to Y if and only if
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X is a maximal P-independent subset of Y. Therefore, it follows from (I),

(III), and (V) that a> co. This shows that the restriction on a in the case

of the equivalence covering property is needed. It follows from (II) that

the two infinite independent and equivalent sets used in the proof of the

independence of the equivalence covering property are needed.

To explain the restrictions on a in the remaining cases, it suffices to

consider the constant structure Q having 0 as its only value in a non-

empty set V along with a structure P in V defined as follows:

If X £ V, thenP(X) = \J{P(Z):Z £ X, \Z\ < 2}.

It is obvious that Q is the only structure sending 0 onto 0 and having

1-character. Moreover, Q has monotonicity, idempotence, the exchange

property, and the equivalence covering property while Q does not have

extensiveness. Furthermore, the following is true:

(VI) P has monotonicity, 2-character, and the equivalence covering

property.

Also, the following conditions are satisfied:

(VII) P has extensiveness if and only if xeP({x}) for all xeV.

(VIII) If P(0)=0, then P has the exchange property if and only if

the following condition is satisfied by all yeV:

P({y}) * 0 implies y e (]{P({x}):x eP({y})}.

(IX) P is idempotent if and only if P(P({x}))=P({x}) for all xeV.

(X) If A£ V, then P(X)=P(0)\J[\J{P({x}):xeX}].
The truth of (VI) follows immediately from the definition of P. It is

obvious that (VII) is satisfied, and that (X) is satisfied. Suppose that

P(0)=0. Assuming that P has the exchange property while yeV and

xeP({y}), then it follows that xeP(0(j{y}) while x$P{0); hence,

yeP(0kj{x}). Therefore, the condition in (VIII) is satisfied by all yeV.

Conversely, assuming that the condition in (VIII) is satisfied by all yeV

while A£ V, yeV, xeP(Au{y}) and x$P(X), choose ze(XU{y}) such that

xeP({z}). It follows from the monotonicity of P thaty=z; hence, xeP({y}).

Apply the condition in (VIII) to deduce that yef]{P({z}):zeP({y})};

hence, since xeP({y}) and P has monotonicity, it follows that jeP({x})£

P{Xkj{x}). Therefore, P has the exchange property. This completes a

proof of (VIII). Assume that P(P({x}))=P({x}) for all xeV while A£ V

and xeP{P(X)). Choose yeP(X) such that xeP({y}); then choose zeX

such that yeP({z})). Since P has monotonicity and idempotence, it follows

that P({j})£P(P({z}))=P({z})£P(Z). Therefore, xeP(X). It follows that

P(P(A))£P(A). Since P has monotonicity, it follows that P(A)£P(P(A)).

Therefore, it follows that P has idempotence. It is obvious that if P has
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idempotence, then P(P({x}j)=P({x}) for all xeV. This completes a proof

of (IX).
We begin a discussion of the remaining restrictions on a in the statement

of the theorem by assuming that P(0)=0 while P has the exchange

property and idempotence. If P({y})9^ 0 for all yeV, then it follows from

(VIII) and the monotonicity of P thatyef\{P({x}):xeP({y})}^P(P({y}))=

P({y}) for all yeV; hence, it follows from (VII) that P is extensive. Since

P(0)= 0 , then it follows that {x} is P-independent for all xeV. Consider

the case that P({y})= 0 for some yeV. Suppose that P({z})^ 0 for some

zeV. It follows from (VIII) that y$P({zj). Since {x} is P-independent

for all xeV, it follows from (IV) that {y, z} is P-independent. Since P has

monotonicity, it follows that P({z})cP({y, z})=P({y})uP({z})=P({z});

hence, it follows that {y, z} is not P-independent. Therefore, the supposi-

tion that P({z})#0 for some zeV is false. It follows that P({z})=0 for

all zeV; hence, it follows that P(A)=0 for all As V. Therefore, P=g.

But Q does not have 2-character while P has 2-character. Consequently,

the case that P({y})=0 for some yeV is not possible. This shows that

there is a structure having a-character and which can be used to demon-

strate the independence of extensiveness if and only if a^2.

We now explain the restriction on a in the case of idempotence. Assume

that P(0)—0 while P is extensive and has the exchange property. Then

P({x})£P(P({x})) for all xeK. Either P(P({x}))^P({x}) for some xeV or

not. Consider the case that P(P({x}))^P({x}) for some xeV. If P({y})= 0

for all yeP(P({x})) such that y£P({x}), then P([P(P({x}))-P({x})])= 0;

hence, it follows from the extensiveness of P that P(P({x}))=P({x}). It

follows that P({y})^ 0 for some yeP(P({x})) such that y<£P({x}). For such

an element y of P(P({x})), it follows that y<=(\{P({z}):zeP({y})} while

yeP({y}) [since P is extensive] and jg[P(P({x}))—P({x})]; hence, it follows

from the monotonicity of P thatjeP([P(P({x}))-P({x})]). SinceP(0)= 0,

it follows from (X) that P([P(P({x}))-P({x})])=P(P(P({x})))-P(P({x}));

hence, y$P(P({x})). This latter result is contrary. It follows that there

is no element y of P(P({x})) such that y$P({x}). Therefore, it follows that

P(P({x}))£P({x}) and, hence, P(P({x}))=P({x}). Then, it follows from

(IX) that P is idempotent. It has already been observed that no structure

having 1-character can be used to demonstrate the independence of

idempotence. Therefore, the restriction a>2 is needed to prove the

independence of idempotence.

It has already been observed that the restriction a> 1 is needed to prove

the independence of the property of sending 0 onto 0 , the independence

of the exchange property and the independence of monotonicity. It follows

from (VI) that the restriction a>2 is needed to prove the independence

of monotonicity. The theorem follows.
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