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SUMMARY 

Solutions are presented for the lift and pitching moment on a two­
dimensional flat plate undergoing a step variation in pitch or vertical 
displacement. Resulting indicial lift and pitching-momentcurves are 
given for free-s tream Mach numbers equal to 0, 0.8, 1. 0, 1. 2 ,and 2.0. 
Considerable use is made of the analogy between the boundary values for 
a two-dimensional wing in unsteady motion and those for a three­
dimensional, lifting surface in steady motion. The incompressible, 
unsteady case, for which Wagner's classical treatment already exists, is 
shown to be analogous to a problem in slender wing theory. 

INTRODUCTION 

The response in lift for a two-dimensional airfoil that starts sud­
denly from rest and moves forward at a constant velocity in'an inco~ 
pressible fluid was studied originally by Wagner (reference 1). It is 
well known that such a response, referred to as the indicial lift due to 
angle of attack, can, by suitable superposition, be used to find the lift 
on a wing undergoing an arbitrary variation of angle of attack with time. 
In particular, Garrick (reference 2) showed that Wagner's results were 
consistent with those obtained by Theodorsen (reference 3) for a harmoni­
cally oscillating wing. 

Subsequently, aerodynamicists have become interested in the effect 
of compressibility on the unsteady motion of a wing. Most. of this inter­
est, however, bas been focused on the problem pf wing flutter which 
involves harmonic motion. Hence, the analysis' of the compressibility 
effects has usually commenced with the immediate assumption that the 
motion is harmonic. Such studies which,_'in·general, can be considered as 
an extension of the work of Theodorsen, have been particularly successful 
in the case of supersonic flow (e.g., referen~e 4). In subsonic studies, 
however, these methods have proven to 'be _ s omerwha t cumbers ome. 
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The purpose of this report is to calculate the effects of compress-
ibility on the indicial responses. At supersonic speeds (e.g., refer­
ence 5) some of these indicial curves have been obtained. The material 
presented here, h~ever, will provide a complete set of indicial 
responses (C2~' c~t, C2qt, Crnql) f~r supersonic speeds and, what is 

more important, will also provide these same responses for subsonic 
speeds; the particular case of a free-stream Mach number equal to 0.8 
having been chosen for detailed consideration. Results are also pre­
sented for a wing traveling at the speed of sound. 

The analysis required to formulate these indicial curves is based 
on the two-dimensional wave equation having boundary conditions speci­
fied over the plane in which the wing moves. The part icular boundary­
value problems involved are, in fact, completely analogous to certain 
three-dimensional, steady-state, supersonic, lifting-surface problems. 
The latter field has received much attention during the last few years 
and analytical techniques have been developed by means of which many 
supersonic lifting-surface problems have been solved. Because of the 
analogy, these techniques can be applied to the field of two-dimensional, 
unsteady flow. The analogy even extends to the pOint where a two­
dimensional wing moving unsteadily in an incompressible field has for 
its analog a three-dimensional, lifting surface moving steadily in a 
compressible medium at ,the speed of sound. By means of this correspond­
ence, Wagner's classical result can be rederived as a problem in slender­
wing theory. 

The part of the analysis pertaining to the response of an unsteady 
wing traveling at a subsonic speed is lengthy and somewhat tedious 
regardless of the method of approach. With the use of indicial functions, 
however, the calculations are reasonably straightforward, especially for 
Mach numbers around 0.8 to 1.0. Further, the use of indicial ~ctions 
sheds considerable light on the manner in which Mach number variations 
affect the section aerodynamic characteristics. 

c 

LIST OF IMPORTANT SYMBOLS 

velocity of sound in the free stream 

chord of wing 

section lift coefficient ( 2 ) 
qoc 

section moment coefficient (~) 
, qoc 

indicial section lift coefficient due to angle-of-attack 
change (Without pitching) 
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c ' IDa. 

m 

p 

q 

r ,s 

t' 

t 

t 
o 

u,v,w 

.6.u 

indicial section lift coefficient due to pitching on a wing 
rotating about its leading edge 

indicial section pitching-moment coefficient due to angle-of­
attack change (without pitching) measured about the leading 
edge 8.nd considered posi ti ve when the trailing edge is 
forced down 

indicial section pitching-moment coefficient due to pitching 
measured about the leading edge for a wing rotating about 
its leading edge; considered positive when the trailing 
edge is forced down 

indicial section pitching-moment coefficient due to pitching 
measured about the leading edge for a wing rotating about 
its 3/4-ehord point 

section lift 

s€'ction moment 

flight Mach number 

static pressure 

dynamic 

oblique 

pressure (~OV02) 

coordi:na te~ 
2 

(r ~ t-x 
- .12' 

time 

a t' o 

t 
c 

perturbation velocity components in the x,y,z directions, 
respectively 
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X,y,z 

r 

o(t' ) 

0(0) 

e 

u 

1. 

flight velocity 

Cartesian coordinates 

;!, 
c 

angle of attack in radians 

jll~o21 

circulation strength 
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Dirac 0 function, normalized with respect to t', thus 

f
oo 

o(t' )dt' = 1 
-00 

lim B( t t) 
t'->O 

angle of pitch in radians 

density in undisturbed air 

perturbation velocity potential 

Subscripts 

upper side of z=O plane 

lower side of z=O plane 

variable of integration 

part of a response multiplied by.a 0 function 

METHOD 

A basic linearized form of the partial differential equation which 
governs the. flow field surrounding a thin wing moving through the air 
can be written in ·t"ermsof the perturba ti on velocity potential, cp, as 

(1) 
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where 

x,y,z spatial coordinates 

t' I true time 

speed of sound 

Equation (1) is applicable when the fluid at infinity is at rest with 
respect to the x,y,z coordinate system and the wing or body traces 
certain space curves for which time is the parameter; moreover the per­
turbation velocity components u=e&, v=cry, w=q>z must be 'small relative 

to the flight velocity Vo of the wing. 

In the following analysis a flat-plate wing moving in the z=O 
plane away from the origin along the negative x axis will be studied. 
Since the variations in the flow along the span will be neglected and 
the slope of the stream lines at the wing surface will be taken as the 
ratio of wu ' the vertical induced velocity in the z=O plane,l to Vo, 

the constant forward velocity of the wing, the analysis is consistent 
with the assumptions of two-dimensional thin-airfoil theory. Hence, for 
the incompressible case, the partial differential equation reduces to, 

q>xx + q>zz = 0 (2 ) 

since the speed of sound is very large with respect to the velocity of 
the wing, and for the compressible case ~t reduces to 

where t equals aot'. 

The boundary conditions reduce to the specification of Wu over 

that portion of the xy plane occupied by the wing as time, progresses .. 

The solution in terms of cp can be converted into the loading 
coefficient by means of the equation 

.6p = ~ ~ = _4_ ~ 
qo V0 2 at' vd'Io at 

(4) 

The results for section lift and pitching moment can then be evaluated 
by appropriate integrations • 

. ~he subscript u indicates the value. of w as z approaches zero 
from above. Since the discussion is limited to flat-plate surfaces 
without thickness, this is the same as the value of w obtained 
as z approaches zero from below, and thus Wu simply refers to the 
value of w in the z =0 plane. 
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Boundary Conditions for the Indicial Functions 

«,1111111111111111111111111111 • 
o tf 

o t' 

(0) 

The fundamental boundary­
value problem to be considered in 
this report is the one generating 
the so-called indicial curves for 
loading, lift, and pitching moment. 
By definition, an indicial function 
is the response to a disturbance 
which is applied abruptly at time 
equals zero and is held constant 
thereafter; that is, a disturbance 
given by a step fUnction. For 
example, if the angle of attack 
of a wing varies with time as 
shown in sketch (a), the resulting 
lift coefficient, also shown in 
sketch (a), is designated as the 
indicial lift coefficient due to 
angle of attack. Four such indi­
cial functions will be evaluated, 

namely: 

c ' IDa, 

c 7, , 
q 

c ' II1q 

the indicial section lift coefficient due to angle-of-attack 
change (without pitching) 

the indicial section pitching-moment coefficient due to angle-of­
attack change (without pitching) measured about the leading 
edge and considered positive when the trailing edge is forced 
down 

the indicial section lift coefficient due to pitching on a wing 
rotattng about its leading edge 

the indicial section pitching-moment coefficient due to pitching 
measured about the leading edge for a wing rotating about its 
leading edge and considered positive when the trailing edge is 
forced down 

The equations which transform these functions to those for a wing 
pitching about a point a distance ac back-from the leading edge and 
having its moment center a distance bc back from the leading edge are 
simply 
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= cIDa,' + b c la, 

cm = cm ' + b c l '- a cm_' - ab c l 
q q q -u a, 

The boundary condition which applies to the indicial functions due 
to angle of attack is simply that 

over a certain planar area in xzt 
space representing the area occupied 
by the wing, and elsewhere pressure 
is continuous. For a wing of chord 
length c, this area, shown shaded 
in sketch (b), is bounded by the 
traces of the leading and trailing 
edges, x = -vot' and x = c-Vot', 
and the line along which the motion 
started (i. e., the x axiS). 

In.the case of the indicial 
function due to pitch for a wing 
rotating about its leading edge, the 
boundary condition requires that the 
upwash be given by the expression 

(6 ) 
(b) " 

x 

"'of' X = C "I 

over the same region in the xt plane as for the angle of attack case 
and, again, that pressure be continuous elsewhere. The angle of pitch, e, 
is taken as positive when the trailing edge is lower than the leading 

edge, and e is the time derivative, de/dt', positive, when the trailing 

edge is falling with reference to the leading edge. 
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Direction of wing motion 

Flight path of leading 

edge 

of arbitrary point 

rc) 

rd) 

re) 

&=0=0 
ex = sin lilt 

B = sin flJt 

OC = 0 
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The difference between e and ~ 

is illustrated in sketch (c). The angle 
of attack ~ is the angle between the 
flat wing surface and the tangent to the 
flight path of the leading edge. The 
angle e is the angle between the flat 
wing surface and the horizontal. 
Sketch (d) shows a wing undergoing a 
sinusoidal angle-of-attack variation 
with a zero angle of pitch throughout. 
For convenience and in order to distin­
guish from the pitching Wing, ,such a 
wing will be referred to as a sinking 
wing. Sketch (e) shows a wing undergo­
ing a sinusoidal angle-of-pitch varia­
tion taken about the leading edge at a 
constant (zero) angle of attack. 

The variable q to which the lift 
and pitching-moment coefficients of the 
pitching wing are referred is equal to 
8c/Vo, a dimensionless form of expression 

'for rate of pitch. 

Adaptation of 'the Indicial 
Functions to Maneuvers 

When the wing is undergoing a maneu­
ver in which a and e make small but 
arbi trary de via ti'ons from zero, the bound­
ary condition in the region of the xt 
plane traversed by the wing becomes 

Since the theory is linear, the lift and moment on the wing are calcu­
lated from the indicial fUnctions by the principle of superposition. 
For example, the lift and pitching-moment coefficients developed by an 
arbitrary variation of a and e are 
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Equation (8) is derived for an angle-of-attack variation measured 
with respect to the flight path of the leading edge and the primes on ~he 
derivatives indicate that the wing is pitching about and the moments are 
measured with respect to the wing leading edge. If the angle of attack 
is measured with respect to the flight path of some other point on the 
wing (as, for example, the center of gravity), then it can be shown for 
small deflections that 

where ~1 and e1 are the angles measured with respect to the new 
flight path and c~ is the distance from the leading edge to the new 
reference point. (See sketch (c).) The total'value of the section lift 
and pitching-moment coefficients fo~ an arbitrary variation of ~1 

and e 1 would be 

Adaptation of the ~ndicial Functions to 
Flutter Derivatives 

The notation adopted in this report does not coincide with the 
usual notation used in the study of fluttering wings; however, it should 
be sufficient to relate the present notation to the one used in refer­
ence 4. Thus, the values of the terms L1, L2, Ls', L4' and M1', M2', 
Ms'; M4' used in reference 4 can be evaluated as follows: 

-iwt' t' 
-{e lim d 1 iwtl' L,+iL2 =' -~--T--- (t' t ') 

~ 4k t'->oo dt' , Cl~ - 1 e 
, 0 
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L l+iL ' = 
3 4· 
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-i wt I . jt' [ ] iwt ' 
e tli~ ~ CZ,..(t l-t1.' )+iW C7 ,(t'-t1.') e 1. dt1.' 

4k2 1 ~ dt' '" ~q 
o _ 

TEE SOLUTION FOR TEE INDICIAL FUNCTIONS 

The boundary conditions which represent a wing undergoing a sudden 
jump in pitching velocity or angle of attack have been discussed and 
presented in equations (5) and (6). Their application to wings flying 
at several Mach numbers will now be presented. The incompressible case 
will first be discussed, anQ then the cases in which Me equals 0.8, 
1.0, 1.2, and 2.0 will be considered. 

Incompressible Case, Mo = 0 

(9) 

The solution for the incompressible case is applicable when the 
forward speed of the wing is small compared with the speed of sound so 
that the ratio Vo/ao can be neglected in comparison to Unity. The 

basic partia~ differential equation governing the flow field was presented 
in equation (2) as 

q>xx + q>zz = 0 

subject to the boundary conditions discussed, and the equation for the 
loading coefficient was given in equation (4) as 

6:n /q = ~~ 
~ 0 2 dt' Vo 

This boundary-value problem corresponds precisely to that which is 
studied in three-dimensional, steady-state, lifting-surface theory under 
the classification "slender-wing theory." (See references 6 and 7.) 
Such an analogy is useful since well-established concepts in one theory 
can be immediately carried over into the other. (It should be re­
emphasized, perhaps, that the subsequent treatment of the incompressible 
case is not intended to be an improvement on Wagner's original deriva­
tion but rather it is a rederi vation along lines that 1-Till be used later 
in the analysis of the compressible cases.) 
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The initial pulse.- The first analogy 
with slender-wing theory which will be used 
concerns the initial pulses that occur in the 
values of lift and pitching moment. It is a 
well-known result (reference 6) that the 
total lift, as given by slender~ing theory, 
on the wing shown in sketch (f) is a func­
tion only of the maximum span and the value 
of Wu along the section of maximum span 
(section AA). It is, therefore, independent 
of the wing twist and leading-edge shape 
ahead of section AA. This'· concept has been 
extended in s~ender-wing theory to the extreme 
case shown in sketch (g) of a rectangular 
wing. The lift on such a wing is concen­
trated entirely along the leading edge and is 
a function only of the span of that edge and 
the value of Wu there. By the analogy 
existing between the two theories, therefore, 
it is evident that the solution to the indi­
cial problems in two-dimensional, incompress­
ible, unsteady flow (sketch (h» will contain 
a pulse at t!=O. 

The evaluation of this pulse will be 
treated briefly. A solution to 'equa-
tion (2) for the vertical induced velocity 
in the z=O plane can be written in terms 
of the jump in u across the z=O' plane 
(see reference 7), thus, for the shaded 
area in sketch (i) this is 

b 

Wu (x) = - ~ J 6u(Xl) dx l (10) 
21t. X-Xl 

-a 

The general inversion of equation (10) 
can be written 

~u(x) = A . + 2 
1t J (x+a) (b-x) 1t J (x+a) (b-x) 

where, 

. b 

A=J 6udx 

-a . 

.y 

A-+-
(f) X 

Pulse in 

liff along 
leading 
edge 

(g) x 

11 

y 

Pulse in lift of f': O. 
X 

(II ) 
I' 

x= b(I') 

x 

I' 

ti) 
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In the present case A is zero, since ~~ is zero at x= -a and x=b, 
and an integration of both sides of equation (11) with respect to x . 

. between the limits b and. x gi ves 

.6.cp( t' ,x) ~ _ ~ Jb w(t' ,x,) In j (b-x,) (au) + j(au,)(b-x) 

-a j (X-Xl) (a+b) 

Adoption of the notation 
./ 

and integration by parts leads to the equation2 

rb 
__ 2"; (b-x)(a+x) 

1f J 
(12 ) 

-a 

The loading can now be determined by us ing equa ti on (4). If the 
shaded area in sketch (i) is allowed to vanish, all the loading accumu­
lates along the x axis in the region 0 ~ X ~ c. - Therefore, the inte­
gral of the loading with respect to' t' over the shaded ,Portion must be 
considered. The final result for the pulse loading (.6.p / qo )o at t'=O 

can be expressed in terms of the 0 fUnction (see list of symbols) as 

( ~~) 
o 

(13 ) 

The boundary conditions for the Sinking and pitching wing given by 
. equations (5) and. (6), when inserted into equation (13), yield 

(14) 
(c+2x)o(O) j = (c-x) X 

V0
2 

2 
The constant gives zero when placed in equation (12), provided 

b > x > - a. 
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After integration; the pulse values for lift and pitching moment 
may also be obtained. Hence, 

(C1J
5 

= ..1!.S 0(0) 
2Vo 

( cma' ) 
J(C 

= - 4" 0(0) 
Vo 

13 

0 (15) 

(CI ' J = 1{C 0(0) 

, q 0 4Vo 

(c ,'\ 
\, ~ / 

5 

= _ 2.. 1{C 0(0) 
64 Vo ..J 

where the primes indicate that the wings are pitching about and the 
moments are measured about the leading edge. These expressions may be 
inserted in equations (8) and (9) and, since the integrand becomes zero 
everywhere except at the point t 1 '=t', the expressions for the lift and 
pitching-moment coefficient developed by an arbitrary variation of .~ 

and e with time are 

1{c· 1{C2 " 
CI=--~+--e 

2V 4v 2 
o 0 

The variation for t' > 0.- The integral equation (10) is still per­

fectly valid when applied to the flow field for t' > o. It is convenient 
to rewrite the equation in this case, however, so that the effects of the 
vorticity on the wing and in the wake are separated. Thus , 

C 

dx 1 _l....J 
21{ 

c-V t' o 
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t' b 
(jj 

x 
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where Du*(Xl) is the value of 6u in the 
starting vortex wake. It is independent 
of t r since its value at all points along 
the line ab in sketch (j) is the same as 

at the point a. 

A reduction of equation (16) can be 
obtained for the case of the sinking wing, 
where wu= -Voa, by using the inversion 
given by equation (11). Thus, 

J
c 

6u*(xd 

c-Vot t 

fl + JXl.+Vott )(x-c+Vott) ] dxl. 

L (x-Xl.) 

Since A is given by the relation 

e-V tt 

A = J 0 6u(tt ,Xl) 

-V tt o 

it follows that 

Voa(2x+2Yot t-c) 1 
6u(tt ,x) - - -;:========== + -;::=========== 

j(X+Vott )(e-yott-x) :re j(x+vott )(e-yott-x) 

j~C 

e-V tt 
o 

According to the Kutta condition 6u(tt,x) 
e-Vott; the integral equation for 6U*(Xl) 

. YeP- = - .!...JC 
:rec 

c-Vott 

vanishes as x approaches 
thus becomes . 

(18) 
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which was derived and studied originally by Wagner (reference 1). 

The section lift and pitching moment can be derived in terms of 
6U*(X1) in the following manner. By definition, the section lift l 

is 

i

c-votl A· . ie-Votl ~"([) 
l=lpv

2 
~dx=p .s!Ldx 

2 0 0 q 0 dt1 
-V t I 0 -V tt 

o 0 

(19) 

Since the value of 6~ is zero at the leading edge and at the trailing 
edge is equal to the total circulation r, two alternative forms for the 
lift can be written 

• l (20 ) 

and 

l x LID(tt ,x) dx (21) 

By substituting equation (17) into (21) and integrating, it can be shown 
that 

c' 

l = :rep cV a, + --2 PocVo J 
o 0 . 

2 c-V tl 
o 

Since the. value of LID*(X1) has 
been determined by Wagner, equa­
tion (22) represents a solution 
for the section lift. A plot 
of its variation in coefficient 

. form is shown in sketch (k). 
Initially there is the pulse 
having an intensity defined by 
equation (15). After 'the pulse 
at tt=O, the value of the sec­
tion lift coefficient starts at 
one-half its asymptotic value. 
It then increases, slowly 
approaching its asymptote of 2:re. 

(22) 

2v 

2 4 

Vof'/c 

(k) 
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By definition, the pitching moment can be written 

(23 ) 

___ PolC-Vot ' 

-v t' o 

(Votl+X) .~~ dx 

where the moment is taken about the leading edge and is positive when • 
the trailing edge is forced down. A development, similar to the one 
given for the lift, gives 

(24) 

This result, that for t>O the indicial center .of pressure remains con­
stant at the quarter ch9rd throughout the motion, is classical. 

If the boundary condition for a pitching wing, Wu = -(x+Vot I) e, 
is substituted into equation (16) and the inversion given by equation (11) 
is again used, it can be shown in the same manner used in the derivation 
of equation (18) that for x = c-Vot I the relation 

3 2· 
'4 c e 

applies. This integral equation applies to a wing pitching about its 
leading edge. If, instead, the wing is pitching about the three­
quarter-chord position, a~ essential simplification is achieved. In this 
latter case, downwash is given by the expression 

and the resulting integral equation becomes 

o = I
C 

c-V tl o 

(25 ) 

(26) 
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where 6U3*(X1) represents the vorticity in the wake following such a 
motion. The solution to equation (26) is simply 

From equation (27) it follows that the total indicial lift for tt >0 

17 

on a wing pitching about the three-quarter chord point is zero, and that 
the wing wake is free of vorticity. Further, it can be shown that the 
tota~ indicial pitching moment (still measured about the leading edge) 
is 

(28) 

The transfer of equations (27) and (28) back to the case in which 
the wing is pitching about its leading edge can be readily accomplished 
by means of the boundary conditions shown in sketch (I). Hence, if 

..,. 

(I) 

3 
-Ct 
4 ~ 

= 

(
q ) refers to the lift coefficient on a wing pitching about the 

q 3/4 

three-quarter chord point and (cIIlq t )S/4 refers to the pitching-:..moment 

coefficient measured about the leading edge of a wing pitching about the 
three-quarter chord pOint, then 

(C
l q)S/4 

cI t 
3 

- '4 cIa. q 

(29) 

(Cnqt)S/4 cIllq 
I _l c t 

4 ma. 
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By means of equations (24) 
indicial functions, cma', C2q ', 

the indicial lift function for 

and (29) the expressions for the three 
and Cnq' can all be written in terms of 

t> O. Hence, 

(30) 

The variations of the four indicial functions are shown in figure 1. 
For values of vot'/c larger than those shoWn in the figure the approxi­
mate equation suggested in reference 2 can be use~, namely, 

This alternative result has, according to reference 2, an error of 2 per­
cent or less for the entire range of time from 0+ to infinity. 

Subsonic Case, Me 0.8 

When the ~ach number is no longer small, the analysis in the pre­
ceding section must be modified. As an example of this modification, the 
calculations for a wing traveling at a Mach number equal to 0.8 will be 
carried out in detail. 

Equation (3) presents the basic partial differential equation of 
the flow field, and equation (4) gives the expression "for the loading 
coefficient. The analogy which existed in the incompressible case 
between the theory for the unsteady, two-dimensionalwing'and slender­
wing theory exists in this case between the theory for the unsteady, 
two-dimensional wing and the theory for a steady-state, three-dimensional 
wing traveling at a supersonic speed. Thus, in the three-dimensional, 
steady-state case the partial differential equation governing the flow is 

2 
qlyy +qlzz = 13 qlxx 

and the equation for the loading coefficient is 

(31) 
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The boundary conditions are in both cases that ~z is given over a 
portion of the z=O plane. It is evident by a comparison of equa­
tions (3) and (31) and equations (4) and (32) that results from the 
three-dimensional, supersonic, steady-state study (hereinafter referred 
to as the steady-state case) can be transferred to the two-dimensional, 
unsteady study (hereinafter referred to as the unsteady case) simply by 
replacing x, y, and ~ in the former case by t, x, and 1, respectively, 
and by dividing the result for the 
loading coefficient by Mo. 

The analog to the boundary 
condition for the problem of 
finding the indicial loading on a 
two dimensional wing flying at a 
Mach number equal to 0.8 
(sketch (m)) is the boundary con­
dition for the problem of finding 
the loading on a constant-chord, 
swept-forward wing tip with a 
subsonic trailing edge such as 
that shown in sketch (n). The 
Hach cones in the steady-state 
case, traces of which are shown 
as dotted lines in sketch (n), 
become, in the unsteady-state 
analog, the locus of the sound 
waves which started at t=O from 
the leading and trailing edges of 
the two-dimensional wing 
(sketch (m)). Finally, the 

- analog in ·the steady-state field 
of the unsteady wing would be a 
flat plate for the unsteady 
sinking wing and a plate with a 
linear variation of twist for 
the unsteady pitching wing. 

A detailed analysis of an 
unsteady, two-dimensional wing 
flying at a Mach number equal to 
0.8 will be presented. Just as 
in the section on incompressible 
flow, the study will be divided 
into two parts. In cases for 
which Mota, however, the indi­
cial functions contain no pulse 
at t=O. Hence, the first part 
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of the MQ=0.8 study will be concerned with the behavior of the indicial 
functions in an interval for which t' is small but finite (actually 
o ~ t ~ 5c) and the second part, with their asymptotic behavior. 

The early stage.- The analog which exists between the steady-state 

and unsteady cases may be utilized to great advantage since the large 
number of special methods and techniques developed for the solution of 
problems in the former case may be applied to the solution of the 
analogous problems in the latter field. In this manner an exact solu­
tion for the loading over the five regions shown in sketch (0) may be 
obtained for both the sinking and the pitching wing in an unsteady flow 

. field by the use of methods such 

" , , x 

f=~ 
I+Mo 

f= --L 
I-Mo, 

as those presented in reference 8. 
Solutions for larger values of 
time could also be obtained, but 
the labor involved in calculating 
such cases becomes prohibitive and, 
as will be shown later, approx-
imate methods can be developed 
which extend the solutions for the 
indicial lift and pitching-moment 
curves to their asymptotic values. 

(0) 
The analysis used to calculate 

the loading in terms of Xo = x/c 
and to = t/c over the five 

regions shown in sketch (0) on both the sinking and pitching wings is 
outlined in appendix A. Plots of the loading on a sinking wing are 
shown in sketch (p) and, in more detail, together with the loading on a 

pitching wing, in figure 2: At to=O the 

AP 
q. 

loading is constant,S and as time increases 
the loading-coefficient curve approaches the 
familiar two-dimensional, steady-state shape 
given, for the sinking wing, by the equation 

(p) 

3 
The result that the initial shape of the load distribution is the same 
as the shape of the given curve for Wu also applies to all three­
dimensional wings of arbitrary plan forms traveling at subsonic or 
supersonic Mach numbers. 
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where x is the distance from the leading edge which is at the point 
x=O. Sketch (q) shows that the distribution at to = tic = l/(l-Mo) = 5 
is already essentially the same distribution as that obtained at to=~ 

(i.e., the agreement is good with the curve produc~d by multiplying the 
right side of equation (33) by a constant factor). The use of this fact 
simplifies subsequent analysis concerning the asymptotic behavior of the 

indicial lift curve. 

12 

4 

o 
o 

(q) 

Lood distribution of 

'0=5 

4 J'-xo 
- - 'ztS) 
/J Xo tit 

.5 1.0 

The indicial lift and pitching-moment functions were also calculated 
(see appendix A) in the range O~ to S l/(l-Mo). Their variation in 
this interval is shown in sketch (r) for Me = 0.8. It is evident that 
the calculations· must be extended beyond the point t o=5 since the 
asymptotic values are not yet even closely approached. 

Before studying the nature of these curves for large values of to, 
however, it is useful to examine them with reference to the discussion 
in the previous section on incompressible flow. For example, it was 
pointed out that the indicial center of pressure on the sinking wing 
remained at the quarter-chord point for t'>O. It is, therefore, per­
tinent to consider the location of the center of pressure on the sinking 
wing whE;~1 Me = 0.8. By means of the curves given for C7. and cllb. ' 
and by the relationship a 

4 
A similar result was noted in the study of the load distribution on 

swept-back wings with subsonic leading edges (reference 9). 
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the variation of {x/c)c.P. is easily evaluated ({x/c)c.P. is the dis­
tance between the leading edge and the'center of pressure divided by the 
total wing chord). This variation i"s shown in sketch (s). It is 

,25 - -- --- - -----.~-~---

o 
o 5 

(5) 



NACA TN 2403 23 

apparent that the center of pressure is very close to the quarter-chord 
point for values of t o >5. Hence, at Me = 0.8 the significant effect 
of compressibility on the location of the center of pressure is contained 
in the interval 0 ~ to ~ 5. This leads. immediately to the further use­
ful conclusion that for values of to greater than 5 the value of the 
pitching-moment coefficient is given essentially by the equation 

Likewise, it is apparent from the discussion of the incompressible 
case that the indicial functions for the pitching wing can also be 

-1.6 

-.8 

o ~------------------~::====~-~-~-~-_-~-_=~w= .. -wm .. m~ o 5 
fo 

(f) 

.8 

.4 

or;--------------~------ __ -s 

(u) 
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expressed in a more convenient form by shifting the axis of rotation 
from the leading edge to the three-quarter-chord point. Using the values 
of cI~' c~t, Clq ', and cmq

t presented in sketch (r), the variation of 

(Clq )S/4 and (cmq')3/? may be calculated from the definitions given in 

equation (29). These curves are presented in sketches (t) and (u) and 
again it is apparent that at a Mach number equal to 0.8 the compressi­
bility effects are contained in the interval 0 ~ to ~ 5. 

The later stage.- It follows from the preceding discussion that when 

to is large, the values of the indicial functions cm~l, cl
q 
I, and cmq

t 

for compressible flow can also be expressed adequately in terms of cI 
by equations similar to equations (30) which were derived for incompre~s­
ible flow. Thus for to > 5, one can write 

cI t 
q 

= - CI /4 
~ 

The four indicial responses have all been shown to depend only on 
the value of the function cI if to is large. It remains, therefore, 

~ 

to determine the asymptotic behavior of cI~. This can be accomplished 

in the following way. Consider the steady-state solution for the lift on 
a two-dimensional, flat lifting surface traveling at a subsonic Mach 
number. As was pOinted out by Wieghardt (reference 10), if the lift on 
such a surface is represented by placing at the quarter-chord point a 
vortex which has the same circulation as that developed by the wing, the 
angle of attack measured at the three-quarter-chord point will be the 
same as that of the simulated lifting surface. Extending this concept to 
include the unsteady effects, an investigation will be made of the varia­
tion with time of the vortex strength which will maintain a constant 
angle of attack at the three-quarter-chord station following an impulsive 
start at to=O. 

. The analogous problem in steady-state theory becomes one o~ finding 
the strength of the vortex system, shown in sketch (v), which gives a 
constant value of w along the line CD. s 

Each vortex compOSing this system lies along the line AB, extending 
from the minus infinity toward the origin, and trails back parallel to 

SIn the vicinity of the origin, of course, this representation gives a 
poor approximation to the original boundary-value problem; hence, use 
of the results must be limited to the regions in which to is large. 



NACA TN 2403 

A 

o 

C 
Vortex sheet 
11111111111111111111111 x, 

tv) Steady - state analog 

25 

I 

C 
,:: 2 -MJ, 

" 
tw) Unsteady cos~ 

the Xl axis to form the trailing vortex sheet. Note that, for con­
venience, the origin of the axis system has been located at the quarter­
chord point. The solution to such a problem in st'3c.dy-state, lifting­
line theory would result from the solution of the integral equation6 

(for a development using the notation adopted here, see reference 11): 

where ~~ is not a function of Xl since the strength of a trailing 
vortex is, of course, constant. The area of integration T is the 
region within the forecone springing from the point x,y. 

If the above equation is transformed by means of the analogy to 
represent the solution of the unsteady problem (see sketch (w)), 

6 The sYmbols f and J are used to indicate that the finite part is to 

be taken. Thus (see reference 11 or 12), 

b . 

1 f(y)dy == - ~ Ib f(y)dy = G (x,b) - G (x,a) 
a (x_y)2 dX a (x-y) 

where G (x,y) is the indefinite integral of f(y) /(X_y)2. Further, 

r x f(y)dy == -2 ~lx f.U.L dy 
J
a 

(X-'Y )3/2 dX a J x-y 
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~, x, and yare replaced by 1, t, and x, respectively; and 6~, the 
total jump in potential at a given section, is replaced by the circula­
tion r. Hence. 

1 
w = - 2')'( 

where T, as indicated in sketch (w), is the area in the forecone from 
the point P which lies always along the line x = (1/2)c - Mot. 
Int~gration with respect to t1 reduces the last equation to 

f
o 

1 
w = 2')'( Mo(x-t) 

1 + Me 

which, by means of the substitution X1/C = X2/2 becomes along the line 
c 

x ~ '2 - Mot 

rAo (A.O+j..LO-X2) r(x2) 

w = c;~ fa . (1-12-A.O+X2)2 j (A.O- X2)(A.o+j..L1-X2) 

where A.o = 2 Moto - 1-10, 1-10 = Mo/(l+Mo), 1-11 = 2 Mo/(1-MQ2), 1-12 = l/(l+MQ), 
to = tic, and where, of course, w is a constant eq~al to -V~. 

A solution for r(X2) in the integral equation (35) may be obtained 
by expanding r in a series of the form 

Place equation (36) into (35) and expand in powers of l/A.o. There 
results the expression 

w --= 
Voo, 

in which 
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Hence, if ao and b1 are chosen so that c1 is equal to zero, an 
expression for r will'be obtained which represents the solution to the 
integral equation (35) correct to the first order in, lito (i.e., l/~o) 
for large values of to. Further, if equation (36) is expanded in 
powers of 1/x2, there results 

which becomes, using the condition for C1 and relating X2 and to 
by the equation of the leading edge, 

. . . J 

The relation between circulation and lift in incompressible flow 
has been derived and presented as equation (20). For compressible flow, 
this expression becomes 

where Xo = x/c. In order to obtain a complete expression for the sec­
tion lift, it is obviously necessary to know the chordwise variation of 
~~. The asymptotic behavior of 2 can be calculated, however, by 
applying the results presented in sketch' (q). This result suggests that 
for large values of to the value of ~~(to,xo) used in the equation 
for 'section lift can be expressed by the product of L:lCP( w,xo) and 
qto)/r(w). In other words, for large values of to the shape of the 
chordwise distribution of vorticity is the same as the two-dimensional, 
steady-state value. An indication of the accuracy of such an approxima­
tion is shown in sketch (x) where the precise value of ~~(to'xo) is 
compared with the approximation at t o=5. 

Since r(QQ) = naVoc/~, the substitution of 

gives for the lift 
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Place equation (37) in the above equation and it is evident that, to the 
first order in lito, the section lift is given by PoVof~ Hence, it 
follows that for large to 

(38a) 

There remains the problem of joining the above result for cIa with 
the one derived in the preceding section and valid for 05to55. To 
accomplish this end the equation 

C., rv = 2f31C [1 - '""h-o-....,l="",...,---=-= 
~VJ + 2Motof3 2 

( 38b) 

was used to express c1a, for the range 5 ~to. Obviously the value of 
cIa given by equation (38b) has, to the first order in lito, the same 

asymptotic variation as that given by equation (38a) regardless of the 
values of the constants h 0 and hI. These constants can be chosen, 
therefore, so that both the magnitude and slope of the indicial cl

a 
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curve given by equation (38b) are continuous at t o=5 with the exact 
c~a curve obtained for 0 $ to $ 5 in the previous section. 

The curves for cIlb.'·, C~q', and cIIlq" as previously discussed, can 

be calculated from c~ by the use of equations (34). In each of these 
a . 

three cases, the magnitude of h1 was modified slightly so the resulting 
curve would be continuous at to=5 with the exact results presented in 
the preceding section. The final expressions are 

2rc [ 1 1. 736 131.2 l '\ 

c~a = 
13 - 17.06 + to - (17.06 + t c) 2 J 

cIDa,' 
-rc [1 1. 736 121.8 ] 

= -
2f3 - 17.06 + to (17.06 + to)2 

(39) 

c~ , 3rc [ 1. 736 134 • 3 ] =-
1 - 17.06 + to - (17.06 + t o )2 q 2f3 

clDq' 
-rc [1 1.302 90.53 ] 
2f3 17.06 + to (17.06 + t o )2 

The final inqicial section lift and pitching-moment.curve$ are 
shown in figure 1 plotted against the,parameter Vot'/c, the number of 
chord lengths traveled (vot'/c = Moto). Tabular results of the indi­
cial curves are also presented in table I •. 

Sonic Case, Mo = 1.0 

The general results, obtained in the preceding section and pre­
sented in appendix A, for the indicial loading over the sinking and 
pitching wing may be extended to the sonic case. Furthermore, the two 
intervals for which analytic results in a closed form were presented in 
appendix A now cover the complete time range since 0 ~·to ~ 1/(1+Mo) 
becomes 0 ~ to $ 0.5 and 1/(1+MQ) $to ~ l/(l-MQ) becomes 
0.5 ~ to ~~. Hence, by an appropriate limiting process equations (A8), 
(A9), (AIO), and (All) become for 0 ~ to $ 0.5 

c1a = 4 

cma' = -2 + t o
2 

2 
qq' = 2 + to 

cmq' = -( 4/3) - (2/3)to 
3 

(40a) 
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and. for o. 5 ~ to::; IX) 

( 
t -1) 

(4/rt) 2 J2to-l + arc. cos ~o 

[
It 2) to-l l 

CIlIa. r = -( 2/rt) 3~to J 2to-l + \ 1- T arc cos to j 

CI t 
q 

C r 
IDq 

(40b) 

Since the magnitude of the functions in equation (40b) grows indef­
initely with increasing time, the assumptions of linear theory are even­
tually violated. However, for moderate values of to, these functions 
have the same order of magnitude as similar indicial curves for Mach 
numbers other than 1. These effects are ~llustrated in figure 1. 

Supersonic Case, Me 1.2 and 2 

The method of obtaining solutions for the indicial functions at 
supersonic Mach numbers parallels the development present~d for Me = 0.8. 
The steady-state analog to the supersonic unsteady wing problem is a 
constant-chord wing tip with a supersonic trailing edge. See sketches (y) 
and (z). It is well known that the problem of finding the loading over 
wing plan forms with all supersonic edges is one of the simplest in three­
dimenSional, lifting-surface theory. In fact, since the upper and lower 
surfaces are noninteracting, the solution is determined by integrating 
sources within the Mach forecone. The analysis for cI has already . a. 
been carried out in reference 5. 
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The analysis used to calculate the loading in terms of xo=x/c and 
to=t/c over the three regions shown in sketch (aa) is outlined in 
appendix B. An example of the manner in which the loading varies with 
time over a sinking wing traveling at a Mach number equal to 1.2 is given 
in sketch (ab) and, in more detail, 'together with the, loading over a 
pitching wing, in figure 3. 

(00/ 
t fob) 

The expressions for the indicial lift and pitching-moment coeffi­
cients are given analytically in appendix B, and plotted in figure 1. 
It can be shown that the results given in appendix B reduce to the 
expressions given by equations (40) when Me is allowed to approach one, 
so that there is no discontinuity in the theory in passing through the 
sonic range. 

CONCLUDING REMARKS 

The use of the analogy between the basic flow equations in steady­
state, lifting-surface theory and in uhsteady-state, airfoil theory has 
resulted in a method of calculating two-dimensional indicial functions 
throughout the subsonic and supersonic flight range. The results are, 
of course, subject to the restrictions of linearized, compressible-flow 
theory and, for example, the calculated responses given in figure 1 for 
sonic speeds must be considered as being outside the,realm of validity 
within a few chord lengths of travel. In application to high-frequency 
OSCillations, however, the initial portions of the indicial curves 
dominate the response characteristics of the airfoil and calculations 
near 'Me equal to one need not be invalid. 

In the supersonic range, the expressions in appendix B are calcu­
lated for arbitrary Me. It is apparent that no fixed Mach number effect 
can be used in transient responses except at high values of flight Mach 
number. In the subsonic range, however, the expressions apply only for 
the period of time 0 ~ to ~ ll( l-Mo). For values of to ~ 1/( l-Mo), 
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the method outlined in the report appears to be satisfactory for Mach 
numbers equal to or greater than 0.8. Preliminary calculations made at 
Mach numbers less than 0.8 indicate that it is necessary to extend the 
exact solutions past to = l/(l-Mo). This extension is feasible if the 
cancellation techniques outlined in reference 13 ~re employed and the 
more difficult integrals are expanded into series form. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif., April 12, 1951. 
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APPENDIX A 

DETERMINATION OF SUBSONIC, INDICIAL, SECTION LIFT AND 

PITCHING410MENT CURVES 

TEE LOAD DISTRIBUTION 

The following results for the indicial load distribution on sinking 
or pitching wings can be obtained in two ways. One of these methods will 
be outlined in the subsequent paragraphs. The other is outlined in 
references 13 and 14 and is referred to as the lift-cancellation techni­
que. The latter method has been used to check the load distributions 
originally obtained by the former so that an independent check of these 
results has been carried out. 

It was shown that the lifting­
surface analog to the solution for 
load distribution over an unsteady, 
two-dimensional wing traveling at a 
constant subsonic speed involved the 
calculation of load distribution 
over a swept-forward wing tip with 
subsonic edges. Sketch (ac) indi­
cates the geometry associated with 
the boundary conditions, and the 
solut,ions are calculated for the 
various regions shown. 

In the notation of the unsteady 

/ 
/ 

/ 
/ 

/ 

fac) 

/ 

/ 
/ 

/ 

x 

c 
---I :--

I-M o 

problem the expre,ssion for the velocity potential can be written 

(AI) 

where T is the area on the wing plan form included in the Mach fore­
cone from the point (t,x). Equation (AI) is applicable only for cases 
in which Wu is known at all points within the forecone, as is the case 
when the edge of the wing within the forecone is everywhere supersonic 
(i.e., region I in sketch (ac)). However, Evvard (reference 8) has 
extended the solution provided by equation (AI) to include cases such as 
shown in sketches (ad) and (ae) in which the forecone intersects a sub­
sonic edge and includes a region of unknown upwash. As was pointed out 
in reference 8, equation (AI) applies in these instances if the area of· 
integration T is limited to the shaded regions shown in the sketches. 
It is apparent, therefore, that the potential (and thus the loading) 
over a sinking or pitching'wing can readily be determined for regions 1, 
2, and 4 in sketch (ac). 
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x 

x 

(ad) 
f t 

(ae) 

Points in regions 3 and 5 have forecones which intersect two sub­
sonic edges, and the method just discussed can no longer be directly 
applied. In reference 8, however, a method was given of evaluating the 
upwash in the region between the Mach cone from the apex and the leading 
edge (region 6 in sketch (af)). Thus, the plan form has become, effec­
tively, one such as shown in sketch (ag) in' which only one edge is sub­
sonic. This reduces the problem of finding the potential in these 
regions to the same problem as was involved in region 4. The analysis 
used in finding the loading over the various regions will now be 
considered. 

x 

(of) ( °9) 
t 

First, introduce a new coordinate system in which the lines x = -t 
and x = t are taken as the r and s axes, respectively, (see 
sketch (ah)). (This amounts to a rotation of the original axial system 
through an angle of 450

.) The transformations relating the r,s to the 
x,y system are 



NACA TN 2403 35 

I 
r = - (t-x) 

~!2 

I 
t = - (r+s) 

,J2 
s 

I I 
s = - (t+x) 

.f2 
x = J 2 (s-r) sfl+Mol _ cJ2 

/- Mo /- Mo 

In the new coordinate system equa­
tion (AI) is written s: c/./2 

(A2) 
1-4---+ S = elF 

/+Mo 

The vertical induced velocity 
Wu over the wing plan form is given 
in equations (5) and (6) for the sink­
ing wing and pitching wing, respec- . 
tively. The method developed in 
reference 8 was used to obtain the 

r 

(ahl 

/+Mo 
r: S /-Mo 

value of . Wu over the area between the lines 
(region 6 in sketch (af). The results for the 
are, respectively, 

s=O and r=s(I+MQ)/(I-Mo) 
sinking and pitching wing 

w = ~ [ j 2s I- 2s· l 
u 1{ (r-s)-Mo(r+s) - arc tan j{r-s)--Mo(r+s) J 

Wu = 29 ..L {[ (r-s)-Mo(r+s) - 2s ] j 2s 
1{ .f2 3 (r-s')-Mo(r+s) 

[ 
(r-s)-Mo(r+s) l arc tan j( ) 2s ( ) 

, j r-s -Me r+s } j 
In terms of the r,s coordinate system, the expression for the 

loading can be written 

(A3) " 

(A4) 

If the subsonic trailing edge is not included in the forecone from the 
point at which the loading is being determined, the expression for ~ 

may be substituted directly into equation (A4). However, if the trailing 
edge is included in the forecone, and if the Kutta condition is to apply 
along such an edge, it can be shown that the equation for the loading 
coefficient assumes the form 



36 NAeA TN 2403 

Sinking Wing 

The preceding method can be applied to the sinking wing to obtain 
the following integral/relationship for the loading over the various 

regions. The subscripts one ~~) indicate the region for which the 

particular equation applies. 

I! Dop / ) 
a '\ qo 3 

2 (d d) 'Irs 

= rcMo dr + dS ~ r{ l-Mo) 

2 
- dsl. rc 

(l+Mo) 

1
0 dr ./ d d) s 

rd· Jr-: l drl. + dS iTl. l. \ 
J dsl. } 

S-8l. 

+ 
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1; 2 
- - dS1 

n: 

37 

[ ~(r-1-_-S-1...,..)~_S-"1~(-r-1+S-1-:-) - arc tan J(r1-i31)~(r1 +Sl) 1 
J S-Sl 

where 

s( l+Mo)-cj2 

l-Mo 

Most of these integrals can be readily evaluated to give 

8 
= - arc sin 

n:Mo 

4 
=Mo 

2xo-to(l-Mo) 
arc sin + 

(l+Mo) to 

(A6a) 

(A6b) 

(A6c) 

(A6d) 



NACA TN 2403 

2 . x 4 . 2x-t( l-Mo) + - arc s~n - + - arc s~n ~.....;,."l.';;;'_~~ 

:n:Mo t:n:Mo (l+Mo)t 

32K l-xo-Moto _ L arc sin 2-t o(l+Mo) + G~ 
(1-MQ2) (xo+to) :n:Mo to(l+ Mo) 

where· 

k' = Jl-k2 

'IT = arc SinJ xo+Moto 

] 

Pitching Wing 

A similar analysis of the pitching wing yields the following 
results for the loading coefficient: 

(A6e) 

(A7a) 
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1 (boP '\ 
q qo~ 

3(M t +x ) arc tan jMoto+xo 1 
000 to-xo 

8 
=-

(Moto+xo) I 'arc tan 

L 

-' 

l-(Moto+xo) 

to+xo-l 

J (to+xo-l)[l-(Moto+Xo )] } 

= Mo
8 {No [ J l-(Moto+Xo) + 

1( J l-Mo2 

39 

(ATb) 

to-xo ] 1 
Moto+Xo J 

(A7c) 

(A7d) 
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tanh-1 (A7e) 

{ 
(-2Mo JT+S;. _ 2S 1

) 

\. . J r+sl 

arc tan +?!. -
[ 

-4s1(r+sl) + (rd+s l)[r(l-MQ) + sl(I+Mo) + 2s1(1-MQ)] l 
2 J2s1( r+sl)( r-r d)[r d( I-M

O
)-Sl( I+Me)] 2 J 

LIFT AND PITCHING-MOMENT COEFFICIENTS 

The lift and pitching-moment coefficients may be obtained by suit­
able integrations of equations (A6) and (A7) and are given in the time 
intervals indicated in sketch (aa) by the following expressions: 

Sinking wing 

I 0:5 to:5--
I+Mo 

c 2a = ~ [l-to(l-MQ) J 

Cm~ t = - ~ I 1: - to (I-Me) + $ (Mo-2)] 
-\1, MoL2 2 '+ 

I .::: < I 
I+Mo - to - I-MQ 

(ABa) 

(A9a) 
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2-to(14fo2) + 

2to(1+Mo)-2 

( 
t 2) 1+3Mo 

If 0 - l+Mo + (1+Mo)2 

4-2to(l+Mo) 

l+Mo 
arc sin 

to(l+Mo)-l 

to(l+Mo) 

41 

arc tan ~+ 
.j 1 t 

to(l+Mo)-l J 

1
1

-Mo
t

o (.6.P \ dx
o _2 __ t qoJs 

l+Mo 0 

where (~~)5 is given by equation (A6e) 

B {r to2(5-1BMO+9Mo
2

) + 2to(Mo-l) 2] 
cIlb,' = - lfMo L 16· l+Mo + (l+Mo)2 

(ABb) 

arc tan 
2-t o(14fo2) + i-5t o

2
(l-Mo)2 + t o(Mo

2
-4Mo+3) + Mo

2
+2Mo-3 1 

2[to(1+Mo)-1] L 16 2(1+Mo) 2(1+Mo)2 J 

1+5Mo ] + ~ Jt (l+Mo)-l [5t O(1-Mo) - - 5+3Mo ]}-
4(1+Mo)2. l+Mo 0 16 B(l+Mo) 

rJ--Moto (xo+Moto) ( ~~)5 dxo 
J-L. - to 

l+Mo 

Pitching wing 

0< t < _1_ 
- 0 - l+Mo 

(A9b) 

(AIOa) 
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j 1 (t 2 1) [ arc tan - l ~4 + - arc tan 
to+toMo-l \ 2 

NACA TN 2403 

(AlIa) 

to+l-toMo ] 
to+toMo-l 

( ~ '\(to+toMo-l)] } + f l~to G2 dx
o l+MoJ to+l-toMo -t +_2_ c 

. 0 l+MQ 
(AlOb) 

where G2 is defined under equation (A7e). 
~~~-----------

(
l-Mo) (to(l+Mo)-l) _ 
l+Mc to(l-MQ)+l 

(Allb) 
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APPENDIX B 

DETERMINATION OF SUPERSONIC, INDICIAL, SECTION LIFT AND 

PITCHING MOMENT CURVES 

THE LOAD DISTRIBUTION 

In the case of the unsteady supersonic wing the expression for the 
velocity potential may be readily obtained by placing the values of Wu 
given by equations (5) and (6) in the equation 

(Bl) 

where T is the area on the plan form included in the Mach forecone. 
The loading may then be calculated from the relat-ionship given in 
equation (.4). 

Sinking Wing 

The load distribution over the regions A, B, and C shown in 
sketch (aa) are given by the following expressions: 

3 

(00) 
t + 

1/ ~p \ 4 
Ci\~o 4. = Me 

(B2a) 
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4 

Pitching Wing 

For the case of the pitching wing the values of 1 
q 

regions A, B, and C are, respectively, 

1 (~p \ 
q qO)B 

j t o2_X o2 ] 

~(~:1 

LIFT AND PITCHING-MOMENT COEFFICIENTS 

NACA TN 2403 

(B2c) 

(~~ in regions 

(B3a) 

(B3b) 

(B3c) 

The lift and pitching-moment coefficients may be obtained by suitable 
integrations of equations (B2) and (B3) and are given in the time 
intervals indicated in sketch (aa) by the following expressions: 

S inking wing 

o < t < _1_ 
- 0 - l+Mo 

4 
CIa. = Me (B4a) 

(B5a) 
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_1_<t <_1_ 
I+Mo - 0 - Me-I 

= - -- arc cos + arc cos 4 [ 1 Mot 0-1 1 
n: 140 to JMo2-1 

~ Jt 02-(I-Mot o)2 ] 

= _ ~ [~ (1 _ t~2 ) ~rc cos Mo!~-1 + 1 
•. ~ JMo2 -1 

C I 
.IIh. 
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(B4b) 

arc cos (to+Mo-toMo2) + zt ( l+~to) Jt 02-(l-Mot o)2 ] 

(B5b) 

1 
-- ~ to ~ CXI 

Mo-l 

c • = _ 2 
IIh. -J:::Mo::;2;:-=1 

Pitching wing 

1 o < to <--- - 1#10 

I ~ to ~~ 
l+Mo Me-I 

cz • = g [..!. (1+t02) arc COB Mot o-l + 1 
q n:. Mo 2 . to JMcP-l 

(B4c) 

(B5c) 

(B6a) 

(B7a) 

arc cos (to+14o-toMo2) + (3~0) Jt02_(l-Moto)2 ] (B6b) 
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. 4 [I ( Mot 3) Moto-I I 
c I = - - - I + ~ arc cos --- + -;:::;::::::;;~ 
IlIq 31f Me 2 to J Mo2-I 

arc cos 
(A..J.A t 2t 2..J"L2t 2) ] 

(to+Me-toMo2 ) + ~.'O o-6~ -~.'O 0 jto 2-(141ot o)2 . 

(B7b) 

I 
-- $. to $. IX) 

Me-I 

(B6c) 

C I 

Illq 
(B7c) 
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TABLE I 

TABULAR VALUES OF SUBSONIC INDICIAL 

LIFT AND PITCHING MOMENT CURVES 

Mo = 0.8 

NACA TN 2403 

f3 2f3 2i3 2i3 , 
2n CZ a. -c"l ' n cIlla,' -Cm 3n q n q 

0.478 0·318 -0·955 -0.637 
.468 ·314 -.931 -.618 
.458 ·312 -.898 -.601 
.449 ·313 -.857 -.587 
.439 ·317 -.805 -.578 

.430 ·325 -.745 - ·575 

.423 .336 -.689 ~.580 

.42,3 ·359 -.639 -.600 

.442 .383 -.621 -.620 

.479 .438 -.608 -.664 

.515 .484 - .613 -.694 

.542 ·525 -.619 -.716 

.574 .558 - .625 -·727 .. 
·599 . 586 -.635 -.735 
.619 .610 -.645 -.740 . 
:637 .630 -.658 -.747 
.652 .645 -.671 -.755 
.678 .672 . -.696 -·773 
.701 .696 -.718 -.790 
.722 ·717 -.737 -.804 

. 
.740 . 736 -.754 -.817 
.757 .752 -.769 -.828 
.818 .815 -.827 -.871 
.858 .855 -.,%5 -.899 
.885 .883 -.890 -.918 

.904 ·903 -·908 -·932 
·929 ·928 -·932 -.949 
·945 ·944 -·947 -·961 
·955 ·955 -·957 -·968 
·968 ·968 -·969 -·977 

·976 ·975 -.976 -·982 
. : .,' 

1.000 1.000 -1.000 -1.000 
. " 
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