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Abstract. This article presents an exposition and synthesis of the theory and
some applications of the so-called indirect method of inference. These ideas
have been exploited in the field of econometrics, but less so in other fields
such as biostatistics and epidemiology. In the indirect method, statistical
inference is based on an intermediate statistic, which typically follows an
asymptotic normal distribution, but is not necessarily a consistent estimator
of the parameter of interest. This intermediate statistic can be a naive
estimator based on a convenient but misspecified model, a sample moment
or a solution to an estimating equation. We review a procedure of indirect
inference based on the generalized method of moments, which involves
adjusting the naive estimator to be consistent and asymptotically normal.
The objective function of this procedure is shown to be interpretable as an
“indirect likelihood” based on the intermediate statistic. Many properties of
the ordinary likelihood function can be extended to this indirect likelihood.
This method is often more convenient computationally than maximum
likelihood estimation when handling such model complexities as random
effects and measurement error, for example, and it can also serve as a basis
for robust inference and model selection, with less stringent assumptions
on the data generating mechanism. Many familiar estimation techniques
can be viewed as examples of this approach. We describe applications
to measurement error, omitted covariates and recurrent events. A dataset
concerning prevention of mammary tumors in rats is analyzed using a
Poisson regression model with overdispersion. A second dataset from an
epidemiological study is analyzed using a logistic regression model with
mismeasured covariates. A third dataset of exam scores is used to illustrate
robust covariance selection in graphical models.
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1. INTRODUCTION

Methods of “indirect inference” have been devel-
oped and used in the field of econometrics where
they have proved valuable for parameter estimation
in highly complex models. However, it is not widely
recognized that similar ideas are extant generally in a
number of other statistical methods and applications,
and there they have not been exploited as such to the
fullest extent.

This article was motivated by our experience in an-
alyzing repeated events data for the Nutritional Pre-
vention of Cancer (NPC) trial (Clark et al., 1996). The
results reported there were quite controversial, suggest-
ing substantial health benefits from long term daily
supplementation with a nutritional dose of selenium,
an antioxident. Early on, it was recognized that the
subject population was heterogeneous and that there
were sources of variability and biases not accounted
for by standard statistical analyses—these included co-
variate measurement error, omitted covariates, missing
data and overdispersion. However, the dataset, being
large and complex, did not lend itself well to statisti-
cal methods that required complicated computations.
Instead, convenient available statistical software was
used that was based on fairly straightforward (nonlin-
ear) regression models. The outputted results based on
these naive models were then examined in the light of
known and putative deviations from the model and in-
ferences were adjusted accordingly. The details of this
case study were described in Jiang, Turnbull and Clark
(1999).

This is an example of a general approach, termed
indirect inference (Gouriéroux, Monfort and Renault,
1993), which was motivated by complex dynamic fi-
nancial models. Here maximum likelihood (ML) esti-
mates are difficult to obtain despite modern algorithms
and computing power, due to the presence of many la-
tent variables and high-dimensional integrals. Another
consideration in these applications is the desire to ob-
tain estimates that are robust to misspecification of the
underlying model.

1.1 Indirect Inference

Suppose we have a dataset consisting ofn indepen-
dent units. The essential ingredients of the indirect ap-
proach are as follows.

1. There is a hypothesized true model M for data
generation, with distributionP (θ) which depends
on an unknown parameter of interestθ , which is of
dimensionp.

2. One first computes anintermediate or auxiliary
statisticŝ = �(P (n)) of dimensionq ≥ p which is
a functional of the empirical distribution function
P (n), say.

3. A bridge (or binding) relationship s = �(P (θ))

is defined. Theunknown quantity s is called the
auxiliary parameter.

4. With the auxiliary estimatês replacings, the bridge
relationship above is used to compute anadjusted
estimateθ̂ (ŝ) for θ .

The goals to be achieved in this approach include the
following. We would like the estimator̂θ(ŝ) to be (1)
robust to model M misspecification, in the sense that
θ̂ (ŝ) remains a consistent estimator ofθ under a larger
class of modelsM that includes M, and (2) relatively
easy to compute. To attain these two goals, we will base
our inference on the auxiliary statisticŝ which may not
be sufficient under model M. Therefore, a third goal is
that the estimator̂θ(ŝ) have high efficiency under M.

The starting point is the choice of an intermediate
statistic ŝ. This can be chosen as some set of sample
moments or the solution of some estimating equations
or the ML estimator (MLE) based on some convenient
model M′, say, termed theauxiliary (or naive) model.
If the last, then the model M′ is a simpler but mis-
specified or partially misspecified model. The choice
of an intermediate statistiĉs is not necessarily unique;
however, in any given situation there is often a natural
one to use. The theory of properties of estimators ob-
tained from misspecified likelihoods goes back at least
as far as Cox (1962), Berk (1966) and Huber (1967),
and is summarized in the comprehensive monograph
by White (1994). The use of̂s (based on an auxil-
iary model M′) in indirect inference aboutθ (under
model M) appeared recently in the field of economet-
rics to treat complex time series and dynamic mod-
els (see, e.g., Gouriéroux, Monfort and Renault, 1993;
Gallant and Tauchen, 1996, 1999), as well as in the
field of biostatistics to treat regression models with
random effects and measurement error (see, e.g., Kuk,
1995; Turnbull, Jiang and Clark, 1997; Jiang, Turnbull
and Clark, 1999).

The econometric applications of the indirect ap-
proach have been primarily motivated by goal 2; for ex-
ample, to perform inference for financial data based on
stochastic differential equation or stochastic volatility
models, where the usual maximum likelihood-based
approach is intractable (see, e.g., Mátyás, 1999, Chap-
ter 10; Carrasco and Florens, 2002, for reviews). In
contrast, the goal of robustness as described in goal 1
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has been an important consideration in recent biosta-
tistical applications (e.g., see Lawless and Nadeau,
1995, and further references in Section 2.5). Recent
work (Genton and Ronchetti, 2003) has shown how in-
direct inference procedures can also be made robust
in the sense of stability in the presence of outliers.
Both senses of robustness are discussed further in Sec-
tion 2.5.

1.2 Method of Moments as Indirect Inference

The method of moments can be formulated as indi-
rect inference. Consider an intermediate statisticŝ =
�(Fn) = (X,S2, . . . )T with components that contain
some sample moments such as the meanX and the
varianceS2. Then the bridge equation iss = s(θ) =
�(Fθ) = (µ(θ), σ 2(θ), . . . )T with components of pop-
ulation moments, that is, meanµ(θ), varianceσ 2(θ)

and so on. The vector ofq population moments is the
auxiliary parameters.

In the usualmethod of moments (MM), dim(s) =
q = p = dim(θ), we solveŝ = s(θ̂) for θ̂ , the MM es-
timator. (We assume the solution is uniquely defined.)
If q > p, then we can instead takêθ as

θ̂ = argmin
θ

{ŝ − s(θ)}T v−1{ŝ − s(θ)},
wherev is a positive definite matrix, such as a sample
estimate of the asymptotic variance (avar) ofŝ. This
is an example of thegeneralized method of moments
(GMM; Hansen, 1982). In thesimulated method of
moments (SMM; McFadden, 1989; Pakes and Pollard,
1989), the momentss(θ) are too difficult to compute
analytically. Instead,s(θ) is evaluated as a function
of θ by Monte Carlo simulation.

Now, the full GMM method is a very broad approach
to estimation which includes maximum likelihood,
estimating equations, least squares, two-stage least
squares and many other estimation procedures as
special cases (see, e.g., Imbens, 2002). Since the
indirect method is also a unifying framework for
estimation procedures, it is not surprising that there
is a strong connection between it and GMM. This
connection is described further in Section 2.7.

1.3 Three Pedagogic Examples

The steps involved in the indirect method are illus-
trated in the following simple pedagogic examples. In
fact, in all three of these examples, the adjusted esti-
mators can be viewed as MM estimators; however, it
is instructive to consider them in the indirect inference
framework of Section 1.1.

EXAMPLE 1 (Exponential observations with cen-
soring). Consider lifetimes{T1, . . . , Tn}, which are
independent and identically distributed (i.i.d.) accord-
ing to an exponential distribution with meanθ . The
data are subject to Type I single censoring after fixed
time c. Thus the observed data are{Y1, . . . , Yn}, where
Yi = min(Ti, c) (i = 1, . . . , n). We consider indirect in-
ference based on the intermediate statisticŝ = Y . This
choice can be considered either as the basis for an MM
estimator or as the MLE for a misspecified model M′ in
which the presence of censoring has been ignored. The
naive estimatorY in fact consistently estimates notθ ,
but the naive or auxiliary parameter

s = θ[1− exp(−c/θ)],(1)

the expectation ofY . Equation (1) is an example of
what we term a bridge relationship. We can see the
obvious effect of the misspecification, namely thatŝ

underestimatesθ . However, a consistent estimatêθ
of θ asn → ∞ can be obtained by solving (1) forθ
with s replaced byŝ = Y . (Note that this is not the
MLE of θ , which isnY/[∑n

i=1 I (Yi < c)].) In the later
sections we will see how to obtain the standard error
for the adjusted estimatêθ .

EXAMPLE 2 (Zero-truncated Poisson data). The
zero-truncated Poisson distribution{(exp(−θ)θy)/(1−
exp(−θ)y!); y = 1,2, . . . } is a model for positive count
data—the number of articles by an author, for exam-
ple. SupposeY1, . . . , Yn is an i.i.d. sample from this
distribution. Suppose, however, that the zero trunca-
tion is overlooked and the standard Poisson likelihood∏n

i=1{exp(−θ)θyi /yi !} is used. The naive estimator
ŝ = Y is consistently estimatingE(ŝ) = s = θ/[1 −
exp(−θ)]. This is the bridge relationship and, witĥs
in place ofs, it can be inverted to obtain a consistent
estimatorθ̂ of θ . In this case, it coincides with the MLE
based on the true likelihood and is asymptotically effi-
cient.

EXAMPLE 3 (Multinomial genetic data). Dempster,
Laird and Rubin (1977, Section 1) fitted some pheno-
type data given by Rao (1973, page 369) to a genetic
linkage model described by Fisher (1946, page 303).
The sample consists ofn = 197 progeny which are dis-
tributed multinomially into four phenotypic categories
according to probabilities from an intercross model M
of the genotypes AB/ab× AB/ab: (1

2 + 1
4θ, 1

4(1− θ),
1
4(1 − θ), 1

4θ) for someθ ∈ [0,1]. The corresponding
observed counts are

y = (y1, y2, y3, y4) = (125,18,20,34).
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For the first step, we define an intermediate statistic
as a naive estimate ofθ from a “convenient” but mis-
specified model M′ in which it is wrongly assumed
thaty is drawn from a four-category multinomial distri-
bution with probabilities(1

2s, 1
2(1 − s), 1

2(1 − s), 1
2s).

This corresponds to a backcross of the genotypes
AB/ab× ab/ab. The naive model is convenient be-
cause the naive MLE is simply calculated asŝ =
(y1 + y4)/n = (125+ 34)/197= 0.8071. In the sec-
ond step, we derive a bridge relationship which relates
the “naive parameter”s (large sample limit ofŝ) to
the true parameterθ . Here the bridge relationship is
s = (1 + θ)/2, since, under the true model, this is the
almost sure limit of̂s asn → ∞. The third step is to in-
vert the bridge relationship to obtain the adjusted esti-
mateθ̂ = 2ŝ −1 = (y1 +y4−y2−y3)/n = 0.6142. Of
course, in this case the maximum likelihood estimate
based on the true model,θ̂ML say, can be computed ex-
plicitly as

θ̂ML = (
y1 − 2y2 − 2y3 − y4

+
√

(y1 − 2y2 − 2y3 − y4)
2 + 8ny4

)
/(2n)

= 0.6268,

which can be obtained directly from solving the score
equation. Alternatively, the expectation-maximization
algorithm can be used as in Dempster, Laird and Rubin
(1977, Section 1). The MLÊθML is biased, unlike
the adjusted estimator̂θ , but has smaller variance
thanθ̂ . We have Var̂θ = 4 Varŝ = 4s(1− s)/n, which
can be estimated as 4ŝ(1 − ŝ)/n = 0.0032. This
compares with Var̂θML = 0.0026, obtained from the
sample Fisher information. The asymptotic efficiency
of θ̂ relative to θ̂ML is therefore estimated to be
0.0026/0.0032= 0.81. The loss of efficiency is due
to model misspecification;̂s is not sufficient under
model M.

Whenθ̂ is not efficient, a general method for obtain-
ing an asymptotically fully efficient estimatorθ̃ is via a
one-step Newton–Raphson correction or “efficientiza-
tion” (e.g., see Le Cam, 1956; White, 1994, page 137;
Lehmann and Casella, 1998, page 454). Specifically,
sinceθ̂ is consistent and asymptotically normal, the es-
timator

θ̃ = θ̂ − {∂
θ̂
S(θ̂)}−1S(θ̂ ),(2)

whereS(·) is the true score function, is asymptotically
the same as the ML estimate and hence achieves full
efficiency. For complicated likelihoods, the one-step
efficientization method, which requires the evaluation

of S(θ̂ ) and ∂
θ̂
S(θ̂ ) only once, can greatly reduce

the computational effort compared to that forθ̂ML . In
our genetic linkage example the true log-likelihood
function is

L = Y1 log
(

1

2
+ θ

4

)
+ (Y2 + Y3) log

(
1

4
− θ

4

)

+ Y4 log
(

θ

4

)
.

First- and second-order derivatives ofL can easily be
evaluated, leading to the one-step correction estimator

θ̃ = θ̂ + Y1(2+ θ̂ )−1 − (Y2 + Y3)(1− θ̂ )−1 + Y4θ̂
−1

Y1(2+ θ̂ )−2 + (Y2 + Y3)(1− θ̂ )−2 + Y4θ̂
−2

= 0.6271.

This estimate is closer to the MLÊθML = 0.6268 and
has the same asymptotic variance of 0.0026. Thus we
have obtained a consistent and asymptotically efficient
estimate.

Another way to increase efficiency is to incorpo-
rate more information into the intermediate statistics.
For example, all information of the data is incorpo-
rated if we instead define the intermediate statistic
ŝ = (y1/n, y2/n, y3/n)T [the last cell frequency is de-
termined by(1 − ŝ1 − ŝ2 − ŝ3)]. Here q = dim(ŝ) =
3 > 1 = p = dim(θ). The new bridge relationship is
s = s(θ) = (1

2 + 1
4θ, 1

4(1 − θ), 1
4(1 − θ)). If we use

the generalized method of moments and choosev to
be an estimate of the asymptotic variancêvar(ŝ) of
ŝ with the jkth element being(ŝj δjk − ŝj ŝk)/n (δjk

is the Kronecker delta), then the adjusted estimate is
θ̂ = arg minθ {ŝ −s(θ)}T v−1{ŝ−s(θ)}. This expression
yields

θ̂ = (
Y−1

1 + Y−1
2 + Y−1

3 + Y−1
4

)−1

· (−2Y−1
1 + Y−1

2 + Y−1
3

)
= 0.6264,

which is closer to the ML estimator. Later, in Propo-
sition 1(ii), we will show that the asymptotic vari-
ance ofθ̂ can be estimated bŷvar(θ̂) = 2(∂2

θ H)−1|
θ=θ̂

,
where ∂2

θ H is the Hessian of the objective function
H = {ŝ − s(θ)}T v−1{ŝ − s(θ)}. In this example, upon
evaluation, we obtain

v̂ar(θ̂) = 16

n2

(
Y−1

1 + Y−1
2 + Y−1

3 + Y−1
4

)−1

= 0.0029.

The avar estimate now is very close to that of the ML
estimator. In fact, herêθ is fully efficient because now
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it is based on an intermediate statisticŝ that is sufficient
under model M. The difference of the avar estimates
arises because of the finite sample size. One should
note that the method here is the minimum chi-square
approach of Ferguson (1958) recast in terms of the
indirect method.

1.4 Outline of the Article

The approach described has been used in a variety of
statistical problems, but has not really been exploited
on a systematic basis, with the exception of the consid-
erable work in the field of econometrics. The present
article is intended to provide a synthesis of a num-
ber of different ideas from different fields, illustrat-
ing them with examples from various applications (in
fields other than econometrics).

Our unifying concept is inference using the frame-
work of an approximate likelihood based on the in-
termediate statistic (theindirect likelihood), instead of
one based on the full data. The current article may
be viewed as an attempt to extend an analysis based
on “complete data plus a complete probability model”
to an asymptotic analysis based on “some compressed
data ŝ plus a model for its asymptotic mean.” This
extension allows flexibility for a spectrum of trade-
offs between robustness and efficiency. Often, a more
compressed intermediate statistic leads to a lower effi-
ciency under model M, but produces a consistent indi-
rect likelihood estimator that relies on less assumptions
about M. This indirect approach offers the following
advantages:

1. Ease of computation. The indirect method is often
computationally simpler or more convenient (e.g.,
ŝ often can be computed with standard software if it
is based on a standard auxiliary model M′).

2. Informativeness on the effect of model misspecifi-
cation. When ŝ is a naive estimate obtained from
a naive model M′ by neglecting certain model
complexity, the current approach is very informa-
tive on the effect of model misspecification—the
bridge relationships = s(θ) provides a dynamic
correspondence between M′ and M. In fact, such
a relationship is of central importance in, for ex-
ample, errors-in-variables regression, where such a
relationship is sometimes termed an attenuation re-
lationship (see, e.g., Carroll, Ruppert and Stefanski,
1995, Chapter 2), which tells how the regression
slope can be underestimated when neglecting the
measurement error in a predictor.

3. Robustness. We will see that the validity of the
inference based on an intermediate statistic es-
sentially relies on the correct specification of its
asymptotic mean. This is often a less demand-
ing assumption than the correct specification of a
full probability model, which would be generally
needed for a direct likelihood inference to be valid.
Therefore, the inferential result based on the ad-
justed estimatêθ often remains valid despite some
departure of the data generation mechanism from
the hypothesized true model M. Another, perhaps
more traditional, sense of robustness is that of pro-
tection against outliers. It is possible to make indi-
rect inference procedures resistant to outliers. Both
senses of robustness are further discussed in Sec-
tion 2.5.

In Section 2 we summarize the theory, integrat-
ing literature from different fields. In Section 3, we
present some applications of the bridge relationship
in assessing the robustness and sensitivity of an un-
adjusted naive estimator regarding model misspeci-
fication (when M is misspecified as M′). Examples
include Poisson estimation, omitted covariates, mea-
surement error and missing data. Section 4 includes
three analyses: a carcinogenicity dataset is modelled
by a Poisson regression model with random effects
(overdispersion); an epidemiological dataset concerns
a mismeasured covariate; a well-known multivariate
dataset of mathematics exam scores illustrates robust
model selection. In the Conclusion, we list some more
statistical procedures that can be recast as examples of
indirect inference, including importance sampling and
applications to gene mapping.

2. THEORY

2.1 Auxiliary Statistic

Under the hypothesized true model M, we suppose
that the observed dataW come fromn subjects or
units, independently generated by a probability distrib-
ution P (θ), which depends on an unknownp-dimen-
sional parameterθ . It is desired to make inferences
concerningθ .

The indirect method starts with anauxiliary or in-
termediate statistic ŝ = ŝ(W), which can be generated
by the method of moments, least squares (LS) or a
likelihood analysis based on a convenient misspecified
model M′, for example. Most such intermediate sta-
tistics can be defined implicitly as a solution,s = ŝ,
of a (q-dimensional) estimating equation of the form
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G(W, s) = 0, say. [Clearly this includes any statistic
ŝ = ŝ(W) that has an explicit expression as a special
case, by takingG = s − ŝ(W).] The estimating equa-
tion could be the normal equation from an LS analysis,
the score equation based on some likelihood function
or the zero-gradient condition for a GMM analysis.

Note thatŝ is typically asymptotically normal (AN)
and

√
n consistent for estimating somes = s(θ), the

auxiliary parameter (see, e.g., White, 1994, Theo-
rem 6.4, page 92, for the case whenG is a score func-
tion based on a naive/misspecified likelihood). In our
exposition, the theory of indirect inference methods
will be based on this AN property for the intermedi-
ate statistiĉs alone, noting that this property can hold
even if the complete original modelP (θ) for the dataW
is invalid. Our intermediate model is now

n1/2{ŝ − s(θ)} D→ N(0, ν).(3)

Here ŝ and s(θ) are of dimensionq, where the
auxiliary parameter s = s(θ) is the asymptotic mean
of ŝ. (When ŝ is based on a naive model M′, we
sometimes alternatively terms a naive parameter.)
Also, n−1ν = var(ŝ) is theq × q asymptotic variance
(avar) of ŝ. In general, the avar of̂s has a sandwich
form:

var(ŝ) = n−1ν

(4) = (E ∂sG)−1 var(G)(E ∂sG)−T |s=s(θ).

Here we use superscriptsT for transpose, and−T

for inverse and transpose. The derivative matrix is
defined by [∂sG]jk = ∂skGj , j, k = 1, . . . , q, G =
(G1, . . . ,Gq)

T ands = (s1, . . . , sq)
T .

2.2 The Bridge Equation

Note that, as an asymptotic mean ofŝ, s(θ) is
not unique:s(θ) + o(n−1/2) would do as well. We
usually choose a version ofs(θ) which does not depend
onn, if available. Alternatively, we may use the actual
expectation,s(θ) = EW|θ ŝ. Now s(θ), the consistent
limit of ŝ, is not equal to the true parameterθ in
general and not even necessarily equal in dimension.
For problems with model misspecification, the naive
parameters(θ) establishes a mapping which plays
a central role in bias correction and is referred to
as the binding function (Gouriéroux, Monfort and
Renault, 1993) orbridge relationship (Turnbull, Jiang
and Clark, 1997; Jiang, Turnbull and Clark, 1999),
because it relates what the naive model really estimates
to the true parameter.

Now we turn to the problem of derivings(θ) in two
cases:

CASE A. When the naive estimator̂s = ŝ(W) has
an explicit expression, it is sometimes possible to use
the law of large numbers to find its limit directly, as in
the examples of Section 1.

CASE B. More commonly,ŝ does not have an
explicit expression. When̂s maximizes an objective
function, its large sample limit may be obtained by
maximizing the limit of the objective function. When
ŝ is implicitly defined as a solution of an estimat-
ing equationG(W, s) = 0, and G(W, s) converges
in probability to EW|θG(W, s) = F(θ, s), say, as
n → ∞, we can find the naive parameters(θ) by look-
ing for the solutions = s0(θ), say, of the equation
F(θ, s) = 0, and takes(θ) = s0(θ).

Note that Case A is a special case of Case B with
G(W, s) = s − ŝ(W).

More generally,̂s = ŝ(W) is defined as a procedure
which maps the data vector to�q , andŝ is asymptot-
ically normal. Thens(θ), being an asymptotic mean
of ŝ, can be computed byEW|θ ŝ(W). If necessary, this
expectation, as a function ofθ , can be estimated by
a Monte Carlo method: SimulateW(k), k = 1, . . . ,m,
i.i.d. W|θ , and uses(θ) ≈ m−1 ∑m

k=1 ŝ(W(k)). For
examples, see McFadden (1989), Pakes and Pollard
(1989) and Kuk (1995).

2.3 The Adjusted Estimator and the
Indirect Likelihood

We now consider inference for the parameterθ under
model M based on the intermediate statisticŝ. From the
assumed AN approximation (3) ofŝ, we define anin-
direct likelihood L = L(θ |ŝ) ≡ |2πv|−1/2 exp(−H/2),
whereH = H(θ, ŝ) = {ŝ − s(θ)}T v−1{ŝ − s(θ)}, v is
(a sample estimate of ) the avar ofŝ and| · | denotes de-
terminant. More generally, when̂s is defined implicitly
as the solution to an equation of the formG(W, s) = 0,
in the definition of the indirect likelihoodL, H is de-
fined byH(θ, ŝ) = F(θ, ŝ)T v−1F(θ, ŝ), with F(θ, s) ≡
EW|θG(W, s). Here v is (a sample estimate of ) the
avar ofF(θ, ŝ), which can be evaluated by the delta
method (e.g., Bickel and Doksum, 2001, Section 5.3)
and found to be the same as var(G) evaluated ats =
s(θ) (the auxiliary parameter).

We then define theadjusted estimator (or theindirect
MLE) θ̂ to be the maximizer ofL or the minimizer
of H . This maximizer ofL bears properties that are
analogous to the usual MLE under mild regularity
conditions. The most important condition is the correct
specification of the bridge relationships = s(θ), or
implicitly of F(θ, s) = 0, for the asymptotic means of
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the intermediate statistic. These results are summarized
in the following proposition. We will outline theproof
in the explicit form. The proof in the implicit form is
similar and is actually asymptotically equivalent after
applying the implicit function theorem to the partial
derivatives onF .

PROPOSITION 1. Analogy of the adjusted estima-
tor to the MLE. Suppose:

(a)
√

n{ŝ − s(θ)} D→ N(0, ν);
(b) ν is positive definite and symmetric and nv

p→ ν;
(c) s(·) is second-order continuously differentiable

in a neighborhood of θ and the derivative matrix s′
is full rank at θ . [In the implicit form this condition
involves the following: F is bivariate continuously
differentiable to the second order in a neighborhood
of (θ, s(θ)), ∂sF and ∂θF are full rank at (θ, s(θ)) and
F takes value zero at (θ, s(θ)).]
Then we have the following:

(i) Indirect score function: The asymptotic mean
and variance of the indirect likelihood score function
satisfy the usual relationships E(∂θ logL) = 0 and
var(∂θ logL) + E(∂2

θ logL) = 0.
(ii) Asymptotic normality: There exists a closed

ball � centered at the true parameter θ , in which
there is a measurable adjusted estimator θ̂ such that

θ̂ = argmaxθ∈� logL and
√

n(θ̂ −θ)
D→ N{0, (s′(θ)T ·

ν−1s′(θ))−1}. Alternatively, θ̂ is AN with mean θ , and
with avar estimated by −(∂2

θ logL)−1 or 2(∂2
θ H)−1,

where consistent estimates are substituted for parame-
ter values.

(iii) Tests: Likelihood-ratio statistics based on the
indirect likelihood for testing simple and composite
null hypotheses have the usual asymptotic χ2 distribu-
tions (e.g., under H0 : θ = θ0, 2 logL(θ̂) −
2 logL(θ0)

D→ χ2
dimθ ).

(iv) Efficiency I: The adjusted estimator has small-
est avar among all consistent asymptotically normal
(CAN ) estimators f (ŝ) of θ , which are constructed
from the naive estimator ŝ by continuously differen-
tiable mappings f .

PROOF. (i) From Assumption (a), we note that

n−1∂θ logL = −0.5n−1∂θH

= s′(θ)T ν−1{ŝ − s(θ)} + op(n−1/2)

and

−n−1∂2
θ logL = s′(θ)T ν−1s′(θ) + Op(n−1/2).

Then

n−1/2∂θ logL
D→ N{0, s′(θ)T ν−1s′(θ)}

and

−n−1∂2
θ logL

p→ s′(θ)T ν−1s′(θ).

In this sense, the asymptotic mean ofn−1/2∂θ logL

is zero, and the asymptotic variancen−1 var(∂θ logL)

and the asymptotic mean of−n−1∂2
θ logL are both

equal tos′(θ)T ν−1s′(θ).
(ii) The AN result is proved by using a usual linear

approximation and using the results in (i). The validity
of the linear approximation depends on the consistency
of θ̂ and a zero-gradient condition, which are justified
below.

By conditions (a), (b) and (c) we can choose a closed
ball � centered at the true parameterθ , such that

supt∈� |n−1H(t, ŝ) − h(t)| p→ 0 and the limiting cri-
terion functionh(t) = {s(θ) − s(t)}T ν−1{s(θ) − s(t)}
has a unique minimumt = θ located in the interior
of �. Therefore, the minimizer̂θ = arg mint∈� n−1 ·
H(t, ŝ)

p→ θ and satisfies a zero-gradient condition
∂tH(t, ŝ)|

t=θ̂
= 0 = ∂ logL(θ̂) with probability tend-

ing to 1. Now we expand this zero-gradient condition
aroundθ̂ ≈ θ and use the just-established consistency
of θ̂ to characterize the remainder. We obtainθ̂ −
θ = −{∂2

θ logL(θ)}−1∂θ logL(θ) + op(n−1/2). Apply-
ing the results obtained in the proof of (i) and Slutsky’s
theorem, we obtain̂θ −θ = {s′(θ)T ν−1s′(θ)}−1s′(θ)T ·
ν−1{ŝ − s(θ)} + op(n−1/2), from which the AN result
of (ii) follows.

(iii) Since the AN result (ii) for the parameter
estimates has been established, the standard treatment
in likelihood-based inference (e.g., Sen and Singer,
1993, Section 5.6) can be applied, based on a second-
order Taylor expansion. This results in the the limiting
χ2 distribution of the likelihood-ratio statistics.

(iv) The delta method can be applied to derive
nvar(f (ŝ)) = f ′(s)νf ′(s)T , while result (ii) gives
nvar(θ̂) = (s′(θ)T ν−1s′(θ))−1. The consistency of
f (ŝ) as an estimator ofθ implies thatf (s(θ)) = θ for
all θ , implying the constraintf ′(s)s′(θ) = I , which in
turn implies that a positive semidefinite matrix(

f ′ − (s′T ν−1s′)−1s′T ν−1)
· ν(

f ′ − (s′T ν−1s′)−1s′T ν−1)T
= f ′(s)νf ′(s)T − (

s′(θ)T ν−1s′(θ)
)−1

.

This last equation shows thatnvar(f (ŝ)) is never less
thannvar(θ̂ ) in the matrix sense.�
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This proposition represents a summary of results
that have appeared in varying forms and generality
and tailored for various applications. For example,
(iv) is a stronger version and synthesis of various op-
timality results in the existing literature such as the
optimal quadratic criterion function in indirect infer-
ence (Gouriéroux, Monfort and Renault, 1993, Propo-
sition 4), the optimal linear combination of moment
conditions in GMM (Hansen, 1982, Theorem 3.2;
McCullagh and Nelder, 1989, page 341), the method
of linear forms (Ferguson, 1958, Theorem 2) and the
regular best AN estimates that are functions of sample
averages (Chiang, 1956, Theorem 3).

Recognizing that the maximization ofL is the same
as minimizingH , we can often view the method of
minimumχ2 or GMM as likelihood inference based on
an intermediate statistic. For example, in the simulated
method of moments and indirect inference, either the
explicit (McFadden, 1989; Pakes and Pollard, 1989;
Gouriéroux, Monfort and Renault, 1993; Newey and
McFadden, 1994) or the implicit form (Gallant and
Tauchen, 1996, 1999; Gallant and Long, 1997) of
the GMM criterion functionH is used, and applied
to econometric and financial problems. Applications
of GMM in the settings of generalized estimating
equations from biostatistics were discussed by Qu,
Lindsay and Li (2000).

In a special case when the dimension of the interme-
diate statistic (q) equals that (p) of the parameterθ ,
ands(·) is a diffeomorphism on the parameter space�

of θ , maximization ofL is equivalent to the bias correc-
tion θ̂ = s−1(ŝ) [from solving F(θ, ŝ) = 0], which is
AN and consistent forθ (see, e.g., Kuk, 1995; Turnbull,
Jiang and Clark, 1997; Jiang, Turnbull and Clark,
1999, for biostatistical applications). In fact, whenŝ

is itself already asymptotically unbiased, the above ad-
justment procedure can still be used to remove small-
sample bias of orderO(1/n) by solving for θ̂ from
ŝ − EW|θ ŝ(W) = 0 (MacKinnon and Smith, 1998).

When q < p, there are more unknown true para-
meters than naive parameters. In this case, the bridge
relationship is many-to-one and does not, in general,
permit the construction of adjusted estimates. It is
mainly of interest for investigating the effects of mis-
specification when the naive estimators are constructed
under misspecified models; see Section 3.3, for exam-
ple. However, in such situations it may be possible to
construct consistent estimates for a subset of true pa-
rameters, which may be of interest. In other situations,
some components of the higher-dimensional true para-
meter are known or can be estimated from other out-
side data sources. This enables the other components

to be consistently estimated by inverting the bridge re-
lationship. Examples of this kind arising from errors-
in-variables regression models are given in Sections
3.2 and 4.2.

2.4 Efficiency of the Adjusted Estimator

In general, the intermediate statistiĉs is not a
sufficient statistic ofθ under the true model M and
the indirect MLEθ̂ based on the intermediate dataŝ is
not as efficient as the MLÊθML based on the complete
dataW. However, Cox (1983) and Jiang, Turnbull and
Clark (1999) provided examples of situations when the
efficiencies of θ̂ are quite high for some parameter
components; see also the example of Section 4.1.

Proposition 1(iv) has already given our first result
concerning the efficiency of̂θ . Further results on the
efficiency of θ̂ under model M are summarized in
the following two propositions. Proposition 2 provides
necessary and sufficient conditions for the entire vec-
tor of θ̂ [parts (i) or (ii)] or some of its components
[part (ii)] to be as efficient as the MLE. Proposition 3
provides a geometric view of the relative efficiency
and avars for the three CAN estimators considered in
this article, with their avars decreasingly ordered:f (ŝ)

(any CAN estimator ofθ smoothly constructed from
the intermediate datâs), θ̂ (indirect MLE based on̂s)
and θ̂ML (MLE based on the complete dataW). The
results in Propositions 2 and 3 have appeared in dif-
ferent forms in the literature. For example, part of the
geometry was given by Hausman (1978, Lemma 2.1);
result (ii) of Proposition 2 can be recognized as a con-
sequence of the Hájek–Le Cam convolution theorem
(Hájek, 1970); result (i) is used in the efficient method
of moments (e.g., Gallant and Tauchen 1996, 1999;
Gallant and Long, 1997) for choice of auxiliary mod-
els to achieve full or approximate efficiency in indirect
inference.

Some notation and background knowledge for the
propositions are the following. Let the intermedi-
ate statisticŝ be defined in a general implicit form
G(W, ŝ) = 0. Denote the indirect likelihood based on
the intermediate datâs asL(θ |ŝ) and denote the like-
lihood based on the complete data asL(θ |W), which
are maximized by the indirect MLÊθ and the MLE
θ̂ML , respectively. We adopt the following notation.
Two ordern−1/2 quantities are said to be asymptot-
ically equal(≈) when their difference is of a lower
order and are said to be orthogonal(⊥) to each other
if their covariance elements have a lower order than
n−1. All function or derivative values are evaluated
at the asymptotic limitsθ and/or s(θ) (for s). For
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a generic column vectorv, v⊗2 denotesvvT . Sub-
scripts onF denote partial derivatives, for example,
Fθ = {∂θF (θ, s)}|s=s(θ).

PROPOSITION 2. Efficiency II. Assume that the
usual regularity conditions hold so that θ̂ and θ̂ML are
both AN. (Assume, e.g., conditions in Proposition 1 for
the AN of θ̂ , and the conditions in Sen and Singer, 1993,
Section 5.2, for the AN of the MLE θ̂ML .) Denote the
score function as S = ∂θ logL(θ |W) and denote the
indirect score function as T = ∂θ logL(θ |ŝ). Then we
have the following results:

(i) The difference of the “ information” matrices
satisfies

var(S) − var(T )

= var(θ̂ML )−1 − var(θ̂)−1

= inf
p×q matrix C

var(S − CG) = var(S − T ).

(ii) The difference of avarmatrices satisfies

var(θ̂) − var(θ̂ML )

= E{(ET T T )−1T − (ESST )−1S}⊗2.

Therefore, for any direction vector a, aT θ̂ is efficient
for estimating aT θ iff the standardized score functions
for the true likelihood and the indirect likelihood are
asymptotically equal at θ when projected onto a.

PROOF. Note that

θ̂ML − θ ≈ −{E ∂2
θ logL(θ |W)}−1∂θ logL(θ |W)

≈ (ESST )−1S.

On the other hand, from the linear approximation
and the results about the indirect score function in
Proposition 1, we have

θ̂ − θ ≈ −{E ∂2
θ logL(θ |ŝ)}−1∂θ logL(θ |ŝ)

≈ E(T T T )−1T .

These relationships imply that var(θ̂) = var(T )−1 and
var(θ̂M) = var(S)−1 as used in (i).

(i) We first derive a relationship between the indi-
rect score functionT and the estimating functionG.
By taking the derivative

∂θ logL(θ |ŝ) = ∂θ {−F(θ, ŝ)T (var G)−1F(θ, ŝ)/2}
and a linear approximation in(ŝ − s), we obtain

T ≈ −FT
θ E(GGT )−1Fs(ŝ − s)

≈ −E(GST )T E(GGT )−1{G(W, ŝ) − G(W, s)}
= E(GST )T E(GGT )−1G(W, s),

noting thatG(W, ŝ) = 0 and thatE(GST ) = Fθ (an
identity derivable assuming the interchangeability of
the derivative and the integration). Then the indirect
scoreT is asymptotically equivalent to the projection
of the direct score function (S) onto the span of the
estimating functionG. Then (S − T ) ⊥ T and it
follows that (i) is a direct consequence of Pythagoras’
theorem.

(ii) Note that θ̂ML − θ ≈ (ESST )−1S and θ̂ − θ ≈
E(T T T )−1T . Also note that

{E(T T T )−1T − (ESST )−1S} ⊥ (ESST )−1S

is a consequence of(S − T ) ⊥ T . Now (ii) follows
from Pythagoras’ theorem.�

Result (i) was used by Gallant and Tauchen (1996,
1999) and Gallant and Long (1997) for the choice
of the auxiliary model M′ (a “score generator”) that
generates a naive score functionG(W, s) to which the
intermediate statistiĉs is a root, to guarantee full or
approximate efficiency in indirect inference. Gallant
and Tauchen (1996) showed thatθ̂ is fully efficient
if the auxiliary model M′ includes the true model M
as a submodel by a smooth reparameterization. They
claimed high efficiency can be achieved if the auxiliary
model can well approximate the true model. They
proposed the use of flexible families of auxiliary
models such as semi-nonparametric models and neural
network models to generateG andŝ.

Some geometric relationships are established from
the proof of the above proposition. The orthogonality
argument in the proof of (ii) essentially says(θ̂ −
θ̂ML ) ⊥ (θ̂ML −θ). When similar arguments are applied
to the situation of comparinĝθ with any CAN estimate
f (ŝ) smoothly constructed from̂s in Proposition 1(iv),
we arrive at the following results that summarize
the geometric relationships amongf (ŝ), θ̂ and θ̂ML ,
where we assume standard regularity conditions as in
Proposition 2.

PROPOSITION3. Geometry. θ̂ML −θ , θ̂ − θ̂ML and
f (ŝ) − θ̂ are mutually orthogonal (see Figure 1). The
following Pythagoras-type result holds and summa-
rizes the efficiency results geometrically:

E{f (ŝ) − θ}⊗2

≈ E{f (ŝ) − θ̂}⊗2 + E(θ̂ − θ)⊗2

≈ E{f (ŝ) − θ̂}⊗2 + E(θ̂ − θ̂ML )⊗2

+ E(θ̂ML − θ)⊗2.
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FIG. 1. Geometry of efficiency results. Note that θ is the true parameter, θ̂ML is the MLE, θ̂ is the optimal adjusted estimator based on
ŝ and f (ŝ) is any CAN estimator smoothly constructed from the intermediate statistic. The plane represents all CAN estimators constructed
from the full dataset; the line across θ̂ and f (ŝ) represents all CAN estimators constructed from the intermediate statistic ŝ. The geometry
uses the covariance as the matrix of inner products and uses the variance as the matrix of norms, and is accurate up to order n−1/2. The
closer a point is to θ , the less is the asymptotic variation. The distance from θ to the plane goes to zero as the size of the data increases.

2.5 Robustness of the Adjusted Estimator

In the indirect approach, with the freedom of choos-
ing what aspect of data information to be incorporated
via the intermediate statistic, the inferential results can
sometimes be made robust against certain departures
from the hypothesized true model M, possibly at the
cost of losing some efficiency when the true model is
indeed M. The asymptotic properties of inferential pro-
cedures based on the indirect likelihood remain valid
as long as the asymptotic mean of the intermediate
statistic is correctly specified. In comparison, proper-
ties of the MLE usually depend on the correct spec-
ification of a full probability model. Thus inferences
based on indirect likelihood are typically more robust
to model misspecification. [This type of robustness has
been considered by many authors, e.g., Box and Tiao
(1973, Section 3.2), Foutz and Srivastava (1977) and
Kent (1982).] It is typical to take robustness into con-
sideration when choosing an intermediate statistic. For
example, when one is only willing to assume a mean
model for a response, then an intermediate statistic that
is linear in the response variable is often used. Further
such examples are illustrated in Sections 3 and 4.

The robustness discussed above refers to the con-
sistency of estimators under violations of certain as-
sumptions on the distribution of data. This sense of
robustness has been the focus of much recent work in
biostatistics. For example, the Poisson process estima-
tion is termed robust by Lawless and Nadeau (1995)
because the consistency holds regardless of the as-
sumptions on higher order moments and correlations of
the recurrent events. The generalized estimating equa-
tions (GEE; Liang and Zeger, 1986) allows consis-

tency regardless of the assumptions on higher order
moments or correlation structures of longitudinal data.
The marginal method of Wei, Lin and Weissfeld (1989)
is a popular method for achieving consistent estimation
without modelling the dependence structure for multi-
ple events in survival analysis.

Another sense of robustness refers to estimators that
are resistant to outliers or gross errors (e.g., Huber,
1964; Hampel, 1968). Indirect inference procedures
can also be made robust against outliers. A sequence
of recent articles (Genton and de Luna, 2000; de Luna
and Genton, 2001, 2002; Genton and Ronchetti, 2003)
investigated the robustness of indirect inference in this
sense of protecting against outliers and described many
applications.

The key to robustness in the sense of resistance to
outliers lies in the influence function (IF) of the es-
timator. Let b̂ be a

√
n-consistent estimator of the

parameterb based onn i.i.d. copies of dataW =
(W1, . . . ,Wn). Then the IF is defined such thatb̂ − b =
n−1 ∑n

i=1 IF(Wi)+ op(n−1/2). One can often compute
IF via the Gateaux differential (Hampel, Ronchetti,
Rousseeuw and Stahel, 1986, page 84). Note that
supw |IF(w)| shows how much one outlying obser-
vation can influence the value of̂b. Therefore, the
robustness of a consistentb̂ against outliers can be
characterized by a bounded IF(·). Note that a bounded
IF prevents a large loss of asymptotic efficiency un-
der perturbations of the distributions assumed for
Wi ’s (e.g., gross error), since the asymptotic variance
var(b̂) = n−1 var{IF(Wi)} will be bounded if IF(·) is,
whatever distributionWi actually follows. For more
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discussion on the general notion of influence func-
tion and robust estimation, see Bickel (1988) and Reid
(1988).

Genton and de Luna (2000, Theorem 1) presented
the key fact that relates the influence function IFθ of the
indirect estimator̂θ to the influence function IFs of the
auxiliary estimator̂s:

IFθ (w) = {s′(θ)T ν−1s′(θ)}−1s′(θ)T ν−1IFs(w).(5)

This result follows from the relationship̂θ − θ =
{s′(θ)T ν−1s′(θ)}−1s′(θ)T ν−1{ŝ − s(θ)} + op(n−1/2)

derived in the proof of Proposition 1(ii). Therefore,
θ̂ will have bounded influence and be resistant to out-
liers if a robust auxiliary statistiĉs, having bounded in-
fluence, was used in the first place. (For the generalized
method of moments procedure, there are parallel re-
sults that relate the influence function and the moment
conditions; e.g., see Ronchetti and Trojani, 2001.)

Relationships between various norms of IFθ (·) and
IFs(·) are then derived from (5). Additional variation
due to simulated approximation ofs(θ) are accounted
for in Genton and Ronchetti (2003). These ideas were
applied in Genton and de Luna (2000), de Luna
and Genton (2001, 2002) and Genton and Ronchetti
(2003) to a variety of problems including stochastic
differential equations models, time series and spatial
data.

For one example in Genton and Ronchetti (2003),
the assumed model M is the stochastic differential
equation (geometric Brownian motion with drift). The
auxiliary model M′ is based on a crude Euler dis-
cretization. The auxiliary estimators computed asŝml,
the maximum likelihood estimators under M′, or ŝr, the
robust estimators under M′ after using the “Huberized”
estimating functions that have bounded influence. In-
direct inference based on adjusting these auxiliary esti-
mators then generates (respective) estimatorsθ̂ml andθ̂r
that are both consistent under M. However, as might be
expected, simulation experiments reported by Genton
and Ronchetti (2003) showed that, generally in their
applications, when there is gross error contamination
on the assumed model M,θ̂ml, obtained from adjusting
the naive MLE, behaves poorly, but the estimatorθ̂r,
obtained from adjusting a robustified auxiliary estima-
tor, still behaves very well in terms of bias and variabil-
ity.

2.6 Model Selection

Since the leading order properties of the crite-
rion function H(·) are completely determined by its

quadratic approximation around̂θ , which is analyt-
ically simpler, in this section we will denote by
H(θ, ŝ) the quadratic functionH(θ̂, ŝ) + 2−1(θ −
θ̂ )T ∂2

θ H(θ̂, ŝ)(θ − θ̂ ). For model selection, we can
continue the process of the analogy and construct a
Bayesian information criterion (BIC; Schwarz, 1978)
based on the indirect likelihoodL(θ |ŝ) ∝ exp(−H/2).
Suppose that a submodelM of the original saturated
model claims thatθ lies in adM - (≤ p) dimensional
submanifold�M of the original parameter space (�,
say). (Note thatθ̂ is the minimizer of H in the
original parameter space.) The BIC criterion function
−2 supθ∈�M

logL(θ |ŝ) + dM logn is, up to a constant
of M , equal to theBayesian cost

C(M) ≡ inf
θ∈�M

H(θ, ŝ) + dM logn.

For a set
 (called thescope) of candidate modelM ’s,
the BIC (based on the intermediate statisticŝ) chooses
M̂ = arg minM∈
 C(M). This choiceM̂ enjoys the
desirable frequentist property of consistency, when a
single parameter (θ0, say) is the true parameter based
on which the data are generated. A true model in this
case is a model which proposes a parameter space�M

that contains the true parameter.

PROPOSITION4. Consistency of BIC. Assume the
conditions hold for the AN result in Proposition 1(ii).
Then, with probability tending to 1 as the sample size
n increases, M̂ chooses a simplest true model (with
lowest dM ) in the search scope 
. If there is no true
model in 
, then M̂ converges in probability to a model
in 
 that is closest to the true parameter θ0, that
is, with smallest distance d(θ0,�M) ≡ infθ∈�M

(θ −
θ0)

T ν−1
θ (θ − θ0), where νθ = p limn→∞{nvar(θ̂)}.

PROOF. This consistency result is easily proved
by noting that infθ∈�M

[H(θ, ŝ) − H(θ̂, ŝ)] is positive
and of ordern when θ0 is outside�M , and is of
order 1 whenθ0 ∈ �M . These observations imply that,
asymptotically, a true model is favored against a false
model; when true models (M ’s for which θ0 ∈ �M )
are compared, the complexity penalty dominates and a
simplest model will be chosen. When all models in


are false, the behavior of the leading term ofC(M)

is essentiallynd(θ0,�M) and the closest false model
will be chosen. �

Continuing the Bayesian approach, conditional on
the intermediate statistiĉs, we define the posterior
probability of a model and the Bayes factor (BF)
for comparing two models. Suppose under modelM

θ can be parameterized asθ = θ(φM), where φM
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lies in a dM -dimensional manifold
M . Then we
can writeP (ŝ|M) = ∫


M
P (ŝ|θ(φM))P (φM |M)dφM,

whereP (φM |M) is a prior for the parameterφM .
The posterior conditional on̂s is defined as

P (M|ŝ) = P (ŝ|M)P (M)/P (ŝ),

and the Bayes factor BF12 for two modelsM1 andM2
is defined by BF12 = P (ŝ|M1)/P (ŝ|M2).

The following proposition is a straightforward appli-
cation of the Laplace approximation:

−2 logP (ŝ|M)

= dM log(n) − 2 sup
tM

logP (ŝ|θ(tM)) + O(1)

(see, e.g., Draper, 1995, equation 11), and of the nor-
mal approximation−2 logP (ŝ|θ) = H(θ, ŝ)+ log|2π ·
v̂ar(ŝ)| coming from (3).

PROPOSITION 5. Indirect posterior for a model
and the Bayes factor.

(i) −2 logP (ŝ|M) = C(M) + log|2π ˆvar(ŝ)| +
O(1) and −2 logP (M|ŝ) = −2 logP (ŝ|M) −
2 logP (M) + 2 logP (ŝ).

(ii) −2 logBF12 = C(M1) − C(M2) + O(1) and if
−2 log{P (M1)/P (M2)} = O(1), then −2 log{P (M1|
ŝ)/P (M2|ŝ)} = −2 logBF12 + O(1).

(iii) Let M̂ = argminM∈
 C(M). Suppose
−2 log{P (M1)/P (M2)} = O(1) for all M1, M2 in 
.
Then

M̂ = arg max
M∈


logQ(M|ŝ),
where logQ(M|ŝ) = logP (M|ŝ) + O(1).

Roughly speaking, Proposition 5 implies that models
with small Bayesian costs tend to have high leading
order posterior probability. Together with the previous
proposition, this implies that it may be desirable
to report the models in the searching scope that
have the smallest costs. We propose to reportM̂ , as
well as models that haveC(M) ≤ C(M̂) + 6, which
corresponds roughly to reporting models with leading
order posterior probability at least 0.05 times that
of M̂. We give an application of graphical model
selection in Section 4.3.

2.7 Generalized Method of Moments and
Indirect Inference

The generalized method of moments is an extremely
general method of estimation that encompasses most
well-known procedures, such as maximum likelihood,
least squares,M estimation, instrumental variables and

two-stage least squares (e.g., see Imbens, 2002). It is
defined as follows (e.g., Mátyás, 1999, Chapter 1).
Suppose the observed dataW consist ofn i.i.d. copies
(W1, . . . ,Wn) of W from n units. Suppose also that
under our model M,Eθ [h(W,θ)] = 0 for all θ . Here
h ∈ �q and theq equationsEθ [h(W,θ)] = 0 are called
the moment conditions. Define the sample analog
hn(θ) = n−1 ∑n

i=1 h(Wi, θ). The GMM estimator ofθ
is then defined as

θ̂GMM = arg min
θ

hn(θ)T Anhn(θ),(6)

whereAn is a positive definite weight matrix.
In Sections 2.1 and 2.3 we saw that indirect inference

(II) was essentially a two-step procedure. In the first
auxiliary step we obtained an intermediate statistic
ŝn, which can often be defined implicitly from a set
of q estimating equationsG(W, s) = 0. The indirect
estimatorθ̂II is then obtained in the second adjustment
step as

θ̂II = arg min
θ

F (θ, ŝn)
T v−1F(θ, ŝn),

where F(θ, s) = EW|θG(W, s) and v is a sample
estimate of the avar ofF(θ, ŝ). This includes the
explicit case whenF(θ, ŝn) = ŝn − s(θ).

In the definition of θ̂GMM, we may identifyAn =
v−1 and hn(θ) = F(θ, ŝn). The moment conditions
for this choice are satisfied approximately because
E{F(θ, ŝn)|θ} ≈ F {θ,E(ŝn|θ)} ≈ F {θ, s(θ)} = 0.
These approximate equalities become exact if we in-
terpret theE operator to denote theasymptotic mean.
Thus the adjustment step of indirect inference can be
considered as a GMM procedure where the moment
conditions are asymptotically satisfied.

Conversely, it can be argued that GMM is a special
example of the complete two-step procedure of indirect
inference. Suppose we take the intermediate statisticŝn
as a GMM estimator̂sGMM based on some auxiliary
model M′. We can then go on to obtain an adjusted
estimator θ̂II under a true model M as described
in Section 2.3. This possibility was suggested by
Carrasco and Florens (2002) above their equation (15).
The GMM becomes the same as indirect inference
when the bridge relationship is trivial, so thatθ̂II =
ŝGMM even after the adjustment. This will happen if
ŝGMM was obtained from a moment conditionhn(θ)

that is correctly specified even under the true model M,
that is,E{hn(θ)|θ} = 0 under (both M′ and) M.

Although closely connected, the indirect inference
approach, with its emphasis on an auxiliary (or inter-
mediate) statistic and an indirect likelihood function,
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gives a viewpoint that is somewhat different from the
GMM approach. This viewpoint has been productive,
leading to contributions in various application areas,
especially econometrics.

3. APPLICATIONS OF BRIDGE RELATIONSHIPS

Often the auxiliary statistiĉs is constructed as a
naive estimator ofθ based on a simplified or naive
model M′. The bridge relationship of Section 1.1 can
be viewed as an expression for the large-sample limit
of this naive estimator in terms of the true parameter.
The relationship is then useful for assessing how sensi-
tive or robust a naive analysis is against potential model
misspecification. If the bridge relationship is trivial
(i.e., s = θ ), the naive estimator obtained from M′ re-
mains consistent forθ , even when the true model is
M instead of M′. This demonstrates certain robust-
ness (of thenaive estimator). See examples in Sections
3.1 and 3.3. A number of estimating procedures can
be considered in this perspective, which are also clas-
sifiable as the pseudo-maximum-likelihood methods in
econometrics (Gouriéroux and Monfort, 1993; Broze
and Gouriéroux, 1998). Nontrivial bridge relationships
(biased naive estimates) reveal the effect of misspeci-
fication and are useful for sensitivity analysis and bias
correction. See examples in Sections 3.2 and 3.4.

3.1 Poisson Process Estimation for
Recurrent Events

For i = 1, . . . , n, suppose{Wi(t), t ≥ 0} aren inde-
pendent realizations of a point process (not necessarily
Poisson) with respective multiplicative intensity func-
tions fi(β)λ(t), wherefi(β) = exT

i β , say, andxi de-
notes a vector of covariates for theith process. Here the
true parameter isθ = (β, {λ(t)}), with λ(t) represent-
ing the nonparametric baseline intensity. It was shown
by Lawless and Nadeau (1995) that naively assuming a
model M′ in which theWi(t) follows a Poisson process
but with a correct specification of the intensity function
leads to a consistent naive estimatorŝ = (β̂, {λ̂(t)}) for
the true parameter(β, {λ(t)}). (The consistency of the
naive estimator is characterized by a trivial bridge re-
lationship s ≡ p limn→∞ ŝ = θ .) Here β̂ is the Cox
(1972) partial likelihood estimate and̂λ(t) is a dis-
crete intensity estimate for{λ̂(t)} that corresponds to
the Nelson–Aalen estimate of the cumulative inten-
sity (see Andersen et al., 1993, Section VII.2.1). Jiang,
Turnbull and Clark (1999) gave an application based
on an overdispersed Poisson process model, where the
overdispersion is caused by frailties (or random ef-
fects) that follow a gamma distribution. They showed

that the naive estimator̂β from ŝ not only remains con-
sistent, but can also retain high efficiency relative to the
MLE.

3.2 Measurement Error Problems

The main goal is to study the relationship between
the responseY and the (true) covariateX, when only
an error-contaminated versionZ of X is observed. The
regression model of interest is the one that relatesY

and the true covariateX, which may be described by
a conditional distributionpY |X(y|x; θ) that involves
some unknown parameter(s)θ . It is desired to make
inferences concerningθ . A common simplification
assumes thatZ is a “surrogate” ofX in the sense that
Y is independent of the surrogateZ when conditioning
on the trueX.

Let (Yi,Xi,Zi), i = 1, . . . , n, be i.i.d. copies of
(Y,X,Z), whereXi ’s are unobserved. The observed
data consist of pairsWi = (Yi,Zi), i = 1, . . . , n.

If we denotepY |X,Z, pX|Z andpZ as the probability
density functions (pdfs) of(Yi|Xi,Zi), (Xi |Zi) andZi ,
respectively, we have that the true likelihood based on
the observed data{(Yi,Zi)} is

∏n
i=1(

∫
pYi |x,Zi

px|Zi
×

pZi
dx), which involves integration over unobserved

Xi values. The maximization of the likelihood can be
difficult computationally and there is unlikely to be any
standard software available to be of aid. On the other
hand, if we adopt a model M′ that simply ignores the
covariate measurement error and treatsZi as Xi for
eachi, we are led to a naive regression analysis for
which standard software will very likely be available.
A naive estimator̂s then is simply constructed by ne-
glecting the measurement errors inZi , and maximizing
the naive likelihood

∏n
i=1 pY |X(Yi |Zi; s). The general

method of Section 2 is to try to find a large sample limit
ŝ → s(θ) and then obtain the adjusted estimatorθ̂ by
solving ŝ = s(θ) for θ .

For a simple example, consider the case when the
conditional distribution ofYi givenXi is N(θXi, σ

2
ε ),

that is, simple linear regression through the origin
with homoscedastic normal errors. A structural model
of normal additive measurement error structure is as-
sumed, that is,Zi = Xi + Ui , whereXi and Ui are
independent normal with variancesσ 2

X andσ 2
U , respec-

tively. Then the naive MLE or naive LS estimator is
ŝ = ∑

YiZi/
∑

Z2
i , andŝ → s(θ) almost surely, where

s(θ) = EYiZi

EZ2
i

= EXiZi

EZ2
i

θ = EX2
i

EZ2
i

θ = σ 2
X

σ 2
X + σ 2

U

θ.
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Note that |s| < |θ |, which is called the attenuation
phenomenon: the magnitude of the naive slope esti-
mate |ŝ| underestimates|θ |. This is a common fea-
ture when measurement error is ignored in analyzing
regression models (Fuller, 1987, page 3). By solving
ŝ = s(θ), a consistent adjusted estimator is easily found
to be θ̂ = ((σ 2

X + σ 2
U)/σ 2

X)ŝ. Of course, this adjust-
ment assumes that the measurement error parameters
σ 2

X andσ 2
U are known. In practice, they will not be, and

σX andσU should be considered as part of the parame-
ter vectorθ . We are in the situation discussed at the
end of Section 2.3, where (dimθ) > dim(s). However,
σX andσU can sometimes be estimated from a second
or “validation” dataset in which pairs(Xk,Zk), k =
1, . . . ,m, can be observed directly (Carroll, Ruppert
and Stefanski, 1995, page 12). These estimates can
then be plugged into the formula forθ̂ . The uncertainty
resulting from the fact that the measurement error
parameters are not known but estimated can be incor-
porated into an estimate of varθ̂ by the method of prop-
agation of errors [see Taylor, 1997, (3.4), and Jiang,
Turnbull and Clark, 1999, Appendix B]. Alternatively,
instead of using a validation study,σ 2

Z = σ 2
X + σ 2

U can
be estimated from the sample variance of the observed
Z values andσ 2

U can be treated as a tuning parameter
for a sensitivity analysis.

In the presence of covariate measurement error, sim-
ilar explicit formulae that relate naive regression pa-
rameters and the true parameters were established by
Jiang (1996) for Poisson, exponential and logistic re-
gression models, by Turnbull, Jiang and Clark (1997)
for negative binomial regression models and by Jiang,
Turnbull and Clark (1999) for semiparametric Pois-
son process regression models. In these articles it was
assumed that the distribution ofXi conditional onZi

follows a normal linear model. In the following dis-
cussion, we introduce a method which does not require
parametric assumptions on the distribution of(Xi,Zi).
In addition, only the first moment is specified for
the parametric model ofYi given Xi . This provides
an example where the bias correction is robust in
the sense that the consistency of the adjusted estima-
tor depends on the correct specification of the mean
function E(Yi|Xi) instead of a complete probability
model. We also generalize the notion of a naive co-
variate Zi to be a general surrogate ofXi . The di-
mensions ofZi andXi can differ. It is only assumed
that E(Yi|Xi,Zi) = E(Yi|Xi), which corresponds to
the assumption of nondifferential measurement error
(Carroll, Ruppert and Stefanski, 1995, page 16).

Let Y,X andZ be three random vectors of dimen-
sions dy, dx and dz, respectively. Assume a nondif-
ferential mean modelE(Y |X,Z) = µ(X, θ), where
θ is a p × 1 parameter. Suppose we observe a main
datasetW = (Yi,Zi)

n
i=1, that is, an i.i.d. realization

of (Y,Z), as well as an independent validation dataset
V = (Xj ,Zj )

m
j=1, that is, an i.i.d. realization of(X,Z).

The problem is to perform valid inference onθ based
on the observed datasets.

Suppose we start with a naiveq × 1 estimatorŝ
(q ≥ p), which solves aq × 1 linear estimating
equation of the formG(W, s) = n−1 ∑n

1 h(Zi, s){Yi −
m(Zi, s)} = 0, whereh(q×dy) and m(dy×1) are fixed
smooth functions. Typically,̂s is AN but not consistent
for θ . We could then use the methods from Section 2 to
adjustŝ to obtain a consistent estimatorθ̂ , for example,
by maximizing the indirect likelihoodL(θ |ŝ) in the
implicit form, or when dim(ŝ) = dim(θ), by solving
F(θ, ŝ) = 0, whereF(θ, s) is the expectation of the
estimating functionG.

Here, the functionF(θ, s) = EW|θG(W, s) can be
computed by noting thatEW|θG(W, s) = EX,Z

h(Z, s){µ(X, θ) − m(Z, s)} by first taking the con-
ditional mean givenX,Z and using the nondifferen-
tial assumption. Then the expectationEX,Z can be
approximated by the sample average based on the
validation dataV. Consequently,F is estimated by
F ∗(θ, s) = m−1 ∑m

1 f (Vj ; θ, s), wheref (Vj ; θ, s) =
h(Zj , s){µ(Xj , θ) − m(Zj , s)} andVj = (XT

j ,ZT
j )T .

UsingF ∗ to approximateF inflates the avar of the final
estimatorθ∗(ŝ). Jiang and Turnbull (2003) showed that
the avar can be estimated, in the limit of proportionally
largen andm, based on a sample estimate of

varθ∗(ŝ) = (Fθ)
−1(m−1Eff T

(7) + n−1EggT
)
(Fθ )

−T |s=s(θ),

wheref = f (Vk; θ, s) andg = g(Wi, s) = h(Zi, s) ×
{Yi −m(Zi, s)}. In Section 4.2 we will use an epidemi-
ological dataset to illustrate the methodology described
here.

3.3 Omitted Covariates

Gail, Wieand and Piantadosi (1984) considered the
effect of omitting covariates in randomized clinical tri-
als. Their method can be put into the formalism of
establishing bridge relationships. Consider a special
example whereW = (W1, . . . ,Wn) are i.i.d., Wi =
(Yi,Zi,Oi), and Yi is the response followingYi|Zi ,
Oi ∼ Poisson(eα+Ziβ+Oiγ ) under model M. HereZi is
a treatment assignment variable that takes value 0 or 1
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with equal probability and is assumed to be indepen-
dent of Oi , another covariate. The true parameter is
θ = (α,β, γ )T , andβ is the regression coefficient for
the treatment effect, which is of primary interest. Now
consider a naive or simplified regression model M′,
where the presence of the covariateOi is ignored, that
is, it is assumed thatYi |Zi ∼ Poisson(ea+Zib). The
(naive) parameter in this model iss = (a, b)T . Note
that this is again a situation where there are fewer
naive parameters than true parameters. The naive es-
timator ŝ = (â, b̂)T maximizes the naive likelihood∏n

i=1(e
a+Zib)Yi exp{−ea+Zib}/Yi !, which neglects the

covariateOi . Therefore,ŝ satisfies the naive score
equation

G(W, s) = n−1
n∑

i=1

(1,Zi)
T (Yi − ea+Zib) = 0

and its large sample limits = s(θ) satisfiesEG(W,

s) = 0 orE(1,Zi)
T (Yi − ea+Zib) = 0. Using

E(Yi|Zi) = E(eα+Ziβ+Oiγ |Zi) = eα+Ziβ(EeOiγ ),

we obtain

E(1,Zi)
T (

exp
(
(α + logEeOiγ ) + Ziβ

)
− ea+Zib

) = 0.

Hence

a = α + logEeOiγ and b = β,

establishing the bridge relationships = s(θ) between
θ = (α,β, γ )T and s = (a, b)T . In this situation,
neglecting the covariateOi still leaves the treat-
ment effect estimator̂b from ŝ = (â, b̂)T consistent,
sinceb = β. In a similar manner, Gail, Wieand and
Piantadosi (1984) considered other regression models,
for example, logistic and exponential regression mod-
els with various link functions, and presented a list of
results on how the treatment effect estimator behaves in
randomized clinical trials when covariates are omitted.

3.4 Missing Data

Rotnitzky and Wypij (1994) considered the bias of
estimating equation methods (MLE and GEE) with
missing data, when all available cases are used and
the missing data mechanism is ignored, in the situ-
ation when the data may not be missing at random
(Heckman, 1976; Little, 1994). The bias is obtained
from examining the limit of the estimating equation
and its solution—similar to finding the bridge rela-
tionships = s(θ) from F(θ, s) = EW|θG(W, s) = 0 in
Section 2.2.

Jiang (1996) considered the bridge relationship for
finding the effect of neglecting incomplete cases in
analysis of multivariate normal data. Assume that the
complete data consist ofr × 1 random vectorsYi , i =
1, . . . , n, which are i.i.d. Associated with each subject
there is a binary indicatorMi which takes value 1
if and only if all components ofYi are observed.
DenoteY c

j , j = 1, . . . , nc, as the subsample where the
Mj ’s are 1. A naive likelihood analysis is based on the
complete cases and the multivariate normal assumption

Y c
j

i.i.d.∼ N(m,S), where the naive parameters contains
all components ofm andS. Therefore, we take as our
intermediate statistic

ŝ = arg max
s

nc∏
j=1

{
1√

det(2πS)

· exp
(
−1

2
(Y c

j − m)T S−1(Y c
j − m)

)}
.

In fact, ŝ estimatess = (m,S), wherem = EYc
j =

E(Yi|Mi = 1) and S = varY c
j = var(Yi |Mi = 1),

which may be calculated according to different models
of the missing mechanism. In a normal selection model
(see Little, 1994), for example,Yi ∼ N(µ,�) and
Mi|Yi follows a probit regression modelP (Mi =
1|Yi) = 
(α + βT Yi), where 
 is the cumulative
distribution function (cdf) of the standard normal
distribution. For this model, the pdf ofYi|Mi = 1 is

PY |M=1(x) = 
(α + βT x)φµ,�(x)∫

(α + βT y)φµ,�(y) dy

= 
(α0 + βT (x − µ))φ0,�(x − µ)∫

(α0 + βT η)φ0,�(η) dη

,

whereφµ,� is the probability density for the multi-
variate normal random variable with meanµ and vari-
ance�, andα0 = α + βT µ. Note that whenβ = 0,
PY |M=1 = φµ,� = PY , which leads to the missing
completely at random (MCAR) model. In that case,
the bridge relationships are trivial,m = µ andS = �,
implying that ignoring incomplete cases leads to con-
sistent naive MLEs. This suggests that, for smallβ,
we can perform a Taylor expansion when evaluating
E(Yi|Mi = 1) and var(Yi |Mi = 1). Upon neglecting
terms ofo(β2) [or o(βT �β)], this leads to approxi-
mate bridge relationships

m = E(Yi|Mi = 1) = µ + 
(α0)
−1φ(α0)�β,

S = var(Yi |Mi = 1)(8)

= � − α0
(α0)
−1φ(α0)(�β)(�β)T ,



254 W. JIANG AND B. TURNBULL

whereφ is the standard normal pdf. In fact, an exact
formula form is available, namely

m = µ + (
(ξ))−1φ(ξ)(1+ βT �β)−1/2�β,

where ξ ≡ (1 + βT �β)−1/2(α + βT µ); see Jiang
(1996, equation 4.59).

We note that, in general, the bias of the naive mean
estimator is determined by the sign of�β, and the
naive variance estimator is typically biased downward,
that is,[S]kk < [�]kk for eachk, 1 ≤ k ≤ r , provided
α0 = α + βT µ > 0 (meaning that a majority of the
cases are complete). The bridge relationships in (8)
can be used to reduce the bias caused by the naive
analysis that neglects incomplete cases, provided that
the missing data parameter(α,βT ) can be estimated,
perhaps from other studies, where missing data are
tracked down with additional effort.

Alternatively, if such a dataset does not exist, but
the missing at random (MAR) assumption (see Little,
1994, equation 9, page 473) is reasonable, we could
estimate(α,β) from the original dataset. There we as-
sume that the missingnessMi is only dependent on
the complete components ofYi which are observed
for all subjects. For example, in the bivariate normal
incomplete data situation, supposeYi = (Yi(1), Yi(2))

T

and the first component,Yi(1), say, is always observed,
but the second componentYi(2) is sometimes miss-
ing, whenMi = 0. In the MAR model we writeβ =
(β(1), β(2))

T and may assumeβ(2) = 0. Hence(α,βT
(1))

can be obtained by performing a probit regression of
theMi ’s on theYi(1)’s, i = 1, . . . , n, which are all avail-
able in the original dataset. Of course the uncertainty in
estimating(α,βT

(1)) must be incorporated in the asymp-
totic variance of the adjusted estimates for(µ,�). This
can be done by a sensitivity analysis or, alternatively,
by use of the propagation of errors method [Taylor,
1997, (3.4); Jiang, Turnbull and Clark, 1999]. Here we
are more interested in assessing the effect of dropping
incomplete cases in the complete case naive analysis.
Notice that the MAR assumption does not ensure that
the complete case analysis will give a consistent an-
swer for estimatingµ, since�β is not necessarily zero
even ifβ(2) is assumed to be zero.

4. THREE DATASETS

We illustrate the ideas of indirect inference proce-
dures with analyses of three datasets. The first two use
estimates from a naive model M′ as intermediate statis-
tics as in the examples of Section 3. The third concerns
model selection and uses sample moments.

4.1 Poisson Regression with Overdispersion:
Animal Carcinogenicity Data

We use carcinogenicity data presented by Gail, Sant-
ner and Brown (1980) from an experiment conducted
by Thompson, Grubbs, Moon and Sporn (1978) to
illustrate our method for treating a Poisson regres-
sion model with random effects (overdispersion). Forty
eight female rats that remained tumor-free after 60
days of pretreatment of a prevention drug (retinyl ac-
etate) were randomized with equal probability into two
groups. In Group 1 they continued to receive treatment
(Z = 1); in Group 2 they received a placebo (Z = 0).
All rats were followed for an additional 122 days and
palpated for mammary tumors twice a week. The ob-
jective of the study was to estimate the effect of the
preventive treatment (Z) on number of tumors (Y ) di-
agnosed.

In the model, givenZ andε, Y is assumed to be Pois-
son with meaneα+Zβ+ε. HereZ is observed butε rep-
resents an unobserved random effect assumed normal
with zero mean and constant varianceσ 2, independent
of Z. This unobserved random effect or unexplained
heterogeneity could be caused by omitted covariates.
We observen i.i.d. pairs ofWi = (Yi,Zi), i = 1, . . . , n.
The likelihood for the observed data involves integra-
tion overε and is difficult to compute. We start with an
auxiliary statisticŝ = (â, b̂, t̂ 2)T , where(â, b̂) are the
regression coefficient estimates that maximize a naive
log-likelihoodR = ∑n

1{Yi(a + Zib) − exp(a + Zib)},
and t̂ 2 = n−1 ∑n

i=1 Y 2
i is the sample second moment.

Here the naive parameter iss = (a, b, t2) and the
true parameter isθ = (α,β,σ 2). The use of the naive
log-likelihoodR corresponds to estimating the regres-
sion coefficients by neglecting the random effectε.
The second sample moment is included in the inter-
mediate statistic to provide information for estima-
tion of the variance parameter. Therefore,ŝ is solved
from the estimating equationG(W, s) = 0, where (for-
mally) G = (n−1∂aR,n−1∂bR, t̂ 2 − t2)T . The solu-
tion can be computed easily. For the rat carcinogenic-
ity data, we obtain the naive estimatesâ = 1.7984,
b̂ = −0.8230 andt̂ 2 = 31.875. To obtain the adjusted
estimatesθ̂ = (α̂, β̂, σ̂ 2), we must derive the bridge
equation which comes from the large sample limit
of ŝ = (â, b̂, t̂ 2). Here, this limit is the solution of
F(θ, s) = EW|θG(W, s) = 0, which can be explicitly
solved to obtains = s(θ). This yields bridge equations
a = α + σ 2/2, b = β and t2 = 1

2(1 + eβ)eα+σ2/2 +
1
2(1+e2β)e2(α+σ2). These equations are inverted to ob-

tain the adjusted estimatorθ̂ = (α̂, β̂, σ̂ 2). Thusβ̂ = b̂
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and α̂ = â − σ̂ 2/2, where σ̂ 2 = log{(2t̂ 2 − eâ(1 +
eb̂))/(e2â(1+ e2b̂))}. For the rat data, this leads to ad-
justed estimateŝα = 1.6808 (0.1589), β̂ = −0.8230
(0.1968) and σ̂ = 0.4850 (0.1274). The estimated
standard errors shown in parentheses are obtained from
the sandwich formula (4) and the delta method.

Alternatively, the MLE of θ = (α,β,σ 2) can be
found by a somewhat tedious iterative numerical
maximization of the true likelihood which involves nu-
merical integration over the distribution ofε. These es-
timates areα̂ML = 1.6717 (0.1560), β̂ML = −0.8125
(0.2078) and σ̂ML = 0.5034(0.0859). For the MLEs,
the estimated standard errors are based on the inverse
of the Fisher information matrix, evaluated at the cor-
responding estimate values.

The estimated standard errors suggest that the effi-
ciency of the estimation of the treatment effect para-
meterβ is high here in this example. Related results
(Cox, 1983; Jiang, Turnbull and Clark, 1999) show that
such high efficiency is achievable if the overdispersion
is small or if the followup times are about the same
across different subjects. Also it should be noted that
the adjusted estimator̂β is robust in the sense that it re-
mains consistent essentially as long as the mean func-
tion E(Y |Z,ε) is correctly specified andε andZ are
independent. (Its standard error estimate from the sand-
wich formula is also model-independent and robust.)
In particular, the consistency property does not depend
on the specification of a complete probability model,
namely thatY is Poisson andε is normal.

Our approach, although formulated from the dif-
ferent perspective of using the naive model plus the
method of moments, is intimately related to the work
of Breslow (1990) based on quasi-likelihood and the
method of moments. Breslow used a different linear
combination ofYi ’s based on quasi-likelihood (Wed-
derburn, 1974; McCullagh and Nelder, 1989) that en-
joys general efficiency properties among linear esti-
mating equations. However, (i) our approach can be in-
terpreted as basing inference on the simple moments∑

Yi ,
∑

ziYi and
∑

Y 2
i (which can be easily seen

from writing out the naive score equations) and (ii)
our approach shows clearly, by the use of bridge re-
lationships, the sensitivity and robustness of parame-
ter estimates to the omission of overdispersion in mod-
elling. Also note that here we used a log-normal dis-
tribution to model the random effects and the variance
parameter also enters the mean model (unconditional
on ε), whereas Breslow (1990) focused on examples
such as those with gamma multiplicative random ef-
fects in which the mean model does not change. For the

only comparable parameterβ (the treatment effect), the
Breslow method [from his equations (1), (2) and (7)]
gives exactly the same answer as our adjusted analy-
sis: β̂Breslow= −0.8230(0.1968). This is because, for
this special two-group design, both methods essentially
use the log(frequency ratio) to estimate the treatment
effect.

4.2 Logistic Regression with Measurement Error:
Indoor Air Pollution Data

We consider data from Florey et al. (1979) on the
prevalence of respiratory illness in relation to nitro-
gen dioxide (NO2) exposure among primary school
children in Middlesborough, England. Whittemore and
Keller (1988) analyzed this dataset using a logistic re-
gression where the NO2 exposure variable is consid-
ered to be a covariate that is subject to measurement
error. They used estimates based on modifying the
estimates that result from a naive logistic regression
model. Our method differs from theirs in that (i) it does
not involve a small measurement error approximation,
(ii) no parametric assumption is made concerning the
measurement error distribution and (iii) adjustment is
made for the effect of measurement errors both from
the imperfection of the measurement method and from
the incomplete knowledge of (grouped) measured data.

The study population consists of 103 primary school
children and each child was classified into one of three
exposure categories of the nitrogen dioxide (NO2)
concentration in the child’s bedroom, which is a
surrogate for personal exposure to NO2. The response
variable Y is 1 if a child has prevalent respiratory
disease and 0 otherwise. A logistic regression model
is assumed in which log{EY/(1 − EY)} = α + βX,
whereX is the personal exposure to NO2. An imperfect
measurement method forX is to useZ̃, the bedroom
level of NO2, as a surrogate of the personal exposure.
However, the values of̃Z reported by Florey et al.
(1979) were only in three categories, namely less than
20 parts per billion (ppb), between 20 and 39 ppb, and
exceeding 40 ppb. Since the individual levels are not
published, Whittemore and Keller (1988, Section 6)
used a further surrogateZ of Z̃ to perform the logistic
regression analysis, where they codedZ = 10 if Z̃ <

20 ppb,Z = 30 if Z̃ ∈ [20,40) ppb, andZ = 60 if Z̃ ≥
40 ppb. Table 1 is a recasting of Table 1 of Whittemore
and Keller (1988) which summarizes the data.

Estimates and standard errors for the parametersα

andβ based on naive logistic regression analysis ofY

onZ are displayed in the first row of Table 2 and agree
with those of line 1 in Table 3 in Whittemore and Keller
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TABLE 1
Number of children with or without respiratory disease by

bedroom NO2 levels

Z = 10 Z = 30 Z = 60 Total

Cases (Y = 1) 21 20 15 56
Controls (Y = 0) 27 14 6 47
Total 48 34 21 103

NOTES. From Whittemore and Keller (1988).Y = 1 indicates the
existence of respiratory illness andY = 0 otherwise;Z = 10 if
bedroom NO2 exposure is under 20 ppb;Z = 30 if NO2 exposure
is between 20 and 39 ppb;Z = 60 if NO2 exposure is 40 ppb or
more.

(1988). However, two problems exist. First, bedroom
level (Z̃) of NO2 is only a surrogate for personal
exposure (X), due to limitation of the measurement
method. Second, the variableZ used in the analysis
is only a coded version of bedroom exposureZ̃ caused
by the grouping of this variable.

We proceed in a manner analogous to that outlined
in Section 3.2. The datasetW consists ofn = 103
i.i.d. pairs {(Yi,Zi)}, 1 ≤ i ≤ n. The naive estima-
tor ŝ = (â, b̂) is obtained from the logistic regression
of the Yi ’s on the Zi ’s, maximizing the naive like-
lihood

∏n
i=1 p

Yi

i (1 − pi)
1−Yi in which the true co-

variateXi is replaced by the surrogateZi . Thus the
naive estimator̂s = (â, b̂)T satisfies the naive score
equationG ≡ n−1 ∑n

1(1,Zi)
T (Yi − pi) = 0, where

pi = H(a + bZi), andH(u) = exp(u)/[1 + exp(u)].
Its large-sample limits = (a, b) satisfies the limit of
the naive score equationF(θ, s) = EW|θG = 0 or
E[(1,Z)T {Y − H(a + bZ)}] = 0. Note thatY is as-
sumed to satisfy a logistic regression model onX

(personal NO2 exposure) instead of onZ, that is,

E(Y |X) = H(α + βX). We also assume thatZ is a
nondifferential surrogate ofX (see Section 3.2), so that
E(Y |X,Z) = E(Y |X). Then we obtain

F(θ, s) = E[(1,Z)T {H(α + βX)

(9) − H(a + bZ)}] = 0.

This obviously is a special example of the situation
discussed at the end of Section 3.2, with the mean
functionsµ(·) and m(·) both being logit-linear, and
the naive estimator̂s having the same dimension as
that of the true parameterθ = (α,β). [Alternatively,
we may regard the true parameter as also including the
joint distribution (X,Z), which will be approximated
in some sense by use of a validation dataset.]

The development in Section 3.2 suggests we approx-
imateF in (9) by F ∗, where the expectation onX and
Z is approximated by a sample average based on a
validation dataset. We will consider a validation study
(Leaderer, Zagraniski, Berwick and Stolwijk, 1986)
also considered by Whittemore and Keller (1988).
Leaderer et al. (1986) discussed a dataset relating per-
sonal NO2 exposure (X) to bedroom NO2 concentra-
tion (Z̃) for 23 adults in New Haven, Connecticut. As
in Whittemore and Keller (1988), we assumed the val-
idation data are applicable to the English school chil-
dren. In Leaderer et al. (1986), the data ofX versusZ̃
were not published at the individual level, but their
Figure 7 displays a scatter plot ofX versus house
average NO2 level for the 23 subjects. To illustrate
our method, we simulated two validation datasets of
sizes m = 23 and 230 as follows. First, we simu-
lated a dataset of 23 independent(X, Z̃)’s to have the
same distribution shape as Figure 7 in Leaderer et al.
(1986). [We rescaled their data in Figure 7 to satisfy

TABLE 2
Logistic regression coefficients for respiratory illness versus personal NO2 exposure

α (standard error) Z value β (standard error) Z value

Naive −0.4536 (0.3490) −1.299 0.0240 (0.0112) 2.138
WKm=23 −0.5563 (0.3691) −1.507 0.0296 (0.0125) 2.368
RSWm=23 NAa NAa 0.0264 (0.0133) 1.983
Adjustedm=23 −0.5659 (0.4472) −1.265 0.0304 (0.0188) 1.617
RSWm=230 NAa NAa 0.0270 (0.0127) 2.124
Adjustedm=230 −0.6383 (0.4758) −1.342 0.0314 (0.0186) 1.688

NOTE. The row labeled Naive gives the results obtained in a logistic regression usingZ as the predictor and neglecting the presence of
measurement error. The row labeled WK contains the results obtained by the modified method of Whittemore and Keller (1988). The rows
labeled RSW contain the results obtained by themethod of Rosner, Spiegelman and Willett (1990). The rows labeled Adjusted were obtained
using the method described here.
aRSW did not provide a method for adjusting the intercept estimate. However, in case-control studies, as here, the intercept parameter is not
of particular relevance.
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the published regression fitX = 4.48 + 0.76Z̃ and
Var(X|Z̃) = 81.14.] From this simulated dataset, we
grouped and coded thẽZ values to obtainm = 23 pairs
(Xk,Zk), k = 1, . . . ,23, which form the first valida-
tion dataset. Then a second (larger) validation dataset
(m = 230) was obtained by sampling the first valida-
tion dataset with replacement.

Following Section 3.2, we approximateF in (9)
byF ∗ constructed from the validation sample(Xk,Zk),
k = 1, . . . ,m, with m = 23 or 230, that is,

F ∗(θ, s)

= m−1
m∑

k=1

(1,Zk)
T {H(α + βXk) − H(a + bZk)}.

Using the naive MLEŝ = (â, b̂) (from line 1 of Ta-
ble 2), consistent adjusted estimatesθ∗(ŝ) = (α∗, β∗)
are obtained by solvingF ∗(θ, ŝ) = 0; their values are
listed in the fourth and sixth rows of Table 2. The stan-
dard errors (in parentheses) incorporate the sampling
error from the validation data through use of (7), where
Vk = (Xk,Zk) and f (Vk; θ, s) = (1,Zk)

T {H(α +
βXk) − H(a + bZk)} for k = 1, . . . ,m.

For comparison, we have included results from some
alternative methods for treating covariate measurement
error in logistic regression. In the second row of Ta-
ble 2, we have included the parameter estimates that
result from the approximation method of Whittemore
and Keller (1988) (WK), which were listed in Table 3
of their article. In the third and fifth rows, we list the re-
sults from applying the method of Rosner, Spiegelman
and Willett (1990) (RSW) based on regression calibra-
tion (Carroll, Ruppert and Stefanski, 1995, Chapter 3).
Here a standard analysis was performed, but regres-
sion ofX on Z was used in place ofZ, the regression
being based on estimates from the validation datasets.
The method of RSW (1990) also provides a first-order
correction to the bias, which is valid if the disease
probability is small (RSW, 1990, Appendix 1) or if
the effect of measurement error is small (see Carroll,
Ruppert and Stefanski, 1995, page 65), which requires
βT var(X|Z)β to be small.

Our approach gives point estimates similar to those
from Whittemore and Keller (1988), but our stan-
dard errors (s.e.s) are larger. Note, however, that the
Whittemore and Keller (1988) results in the second row
were obtained by treatingZ (the coded values) as the
true bedroom NO2 levelZ̃, and the s.e.’s were obtained
by neglecting the sampling variation from the valida-
tion data. Our results are more comparable to those
in the RSW rows, where variation from the validation

data was incorporated using the delta method (RSW,
1990) and the coded values ofZ were used both in the
naive logistic analysis of the main data and in the linear
regression of the validation data.

Our estimates of the slopeβ are larger than those
obtained from the RSW method, showing that a cor-
rection based on regression calibration is not enough,
probably due to a nonlinear bridge relationship be-
tweenb andβ implied by (9). In the special case when
the distribution ofX givenZ is modelled as a normal
linear regression inZ, this nonlinearity feature can be
seen in the approximation formula (3.24) of Carroll,
Ruppert and Stefanski (1995); see also Figure 4.1 in
Jiang (1996). However, ourZ values are lower than
those obtained from the RSW method, due to an infla-
tion of variance which more than compensates for the
inflation of the parameter estimate. This is probably not
related to the extra variation from the validation data,
since in our approach as well as in the RSW approach,
the s.e.s change little (less than 10%) when the varia-
tion from the validation data is neglected, for example,
by removing the first summand in our (7) or the second
summand of (A4) in RSW (1990). The nonproportional
increase in s.e. is more likely due to the nonlinearity
of the bridge relationship betweenb andβ (see Jiang,
1996, equation 4.35).

Comparing the results derived from the two valida-
tion datasets, we see that the results are very similar
despite the tenfold increase inm. This is not surpris-
ing, since (i) from the previous paragraph, we see that
the changes in s.e. can be small even if we takem

to be∞, and (ii) this insensitivity probably is due to
the small size of̂bn (0.024). Point (ii) is easiest to un-
derstand by looking at avar(β∗

nm) = avar(λ̂−1
m b̂n), the

avar of the adjusted estimator using the antiattenuation
formula (i.e., the RSW approach). It is apparent from
the delta method that if̂bn is very small, the precision
of λ̂m (or the validation sample sizem) is not very
relevant to avar(β∗

nm).
In summary, our proposed adjustment method does

not require modelling the validation data, in contrast to
the WK and RSW methods, which both make use of
a linear regression ofX givenZ. Second, the validity
of our procedure is not restricted to the special cases
of small measurement error (WK) or small disease
probability (RSW).

4.3 Robust Covariance Selection: Mathematics
Examination Marks Data

For continuous multivariate data, graphical models
are attractive tools for summarizing visually the con-
ditional irrelevance relationship among the variables.
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However, most existing techniques for model selection
depend on a complete probability model of the data
such as joint normality. In the following example, an
approach based on joint normality may be question-
able due to the skewness and multimodality of some of
the variables. On the other hand, the proposed indirect
method can be used to produce inferential results that
are robust against nonnormality.

Whittaker (1990, Example 6.7.1) illustrated the
graphical Gaussian model (or the covariance selection
model) using a dataset of the examination marks of
n = 88 students in the five mathematics subjects me-
chanics, vectors, algebra, analysis and statistics, repre-
sentable asn =88 i.i.d. copies of a five-dimensional
random vectorX = (Xj ), j = 1, . . . ,5. The dataset
comes from Mardia, Kent and Bibby (1979) and is
displayed in full in Table 1.1.1 of Whittaker (1990).
Based on the matrix of partial correlations (Table 3),
a butterfly graph (see Whittaker, 1990, page 181 or
Model 6 in Figure 2 herein) that represents the condi-
tional independence relationships among the five vari-
ables was shown to be an “excellent fit to the data,”
using a goodness-of-fit deviance test based on a multi-
variate normal model for the responses. By examining
the histograms of the five variables (see Figure 3), it
can be seen that some of the variables can exhibit left-
skewness (analysis) and bimodality (mechanics). Be-
cause it is unclear how much the nonnormality affects

TABLE 3
Mathematics marks data: The sample partial

correlation matrix

mech vect alg anal stat

mech 1.0
vect 0.33 1.0
alg 0.23 0.28 1.0
anal 0.00 0.08 0.43 1.0
stat 0.02 0.02 0.36 0.25 1.0

the inferential results, it is desirable to investigate a ro-
bust method for selecting the graphical models for the
structure of partial correlations. Note that the essential
Markov properties of the graphs are preserved when
we consider the weaker property of conditional irrele-
vance (see Dawid, 1998, page 149), that is, zero partial
correlation, rather than the stronger property of con-
ditional independence of the random variables. In such
a graphical representation, a pair of vertices that repre-
sent two random variables is disconnected if and only
if the partial correlation of these two variables is zero
given the rest of the random variables. The concept of
zero partial correlation is distribution-free (e.g., not de-
pendent on a normal assumption on the vectorX), and
a corresponding distribution-free test is desirable, as is

FIG. 2. Mathematics marks data: Some robust graphical models with small Bayesian costs (C = BIC + const).
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FIG. 3. Histograms of mathematics examination marks.

a robust method for selecting graphical models for the
structure of partial correlations.

For such a distribution robust treatment, we con-
sider inference based on the intermediate statisticsŝ

composed of the(5+ 15) first- and second-order sam-
ple momentsn−1 ∑n

i=1 Xij andn−1 ∑n
i=1 XijXij ′ (1 ≤

j ≤ j ′ ≤ 5), and using the objective functionH = {ŝ −
E(ŝ|θ)}T v−1{ŝ − E(ŝ|θ)}; see Section 2.6. Here the
true parameter includes the five mean parametersµ =
(µ1, . . . ,µ5), as well as the elements of the symmetric
concentration matrix� = var(X)−1. The weightv is
chosen as a sample estimate of the variance matrix ofŝ,
that is,(v)lk = n−1 ∑n

i=1(Wil − W̄·l)(Wik − W̄·k) and
W̄·l = n−1 ∑n

i=1 Wil , whereWi is the 20-dimensional
concatenated vector ofXij ’s and XijXij ′ ’s for 1 ≤
j ≤ j ′ ≤ 5 for eachi (1 ≤ i ≤ 88). This functionH

is minimized at zero by the saturated (or unrestricted)
model with the same estimated means and concentra-
tion parameters as the MLEs derived using a multi-
variate normal specification for the distribution ofX.
When a subset of partial correlation parameters inθ is

constrained to be zero, the minimum value forH of
zero can no longer be achieved. For example, for the
butterfly graph chosen by Whittaker for this data (Fig-
ure 2, Model 6), the concentration matrix has a block
structure where elements that correspond to the index
pairs {mech–anal, mech–stat, vect–anal, vect–stat} are
constrained to be zero. The minimizedH under this
model equals 1.38 on 4 degrees of freedom and the
goodness of fit is excellent (a similar deviance statistic
of 0.895 was reported by Whittaker, 1990, page 182,
but is based on the normal model ofX).

Rather than using subjective judgment based on the
observed concentration matrix, we may select a graph-
ical model by considering a BIC analysis using the
methods of Section 2.6 based on the intermediate sta-
tistic, namely the first- and second-order sample mo-
ments. The selection process involves computing the
Bayesian costC(M) for all the modelsM in the en-
tire searching scope
 represented by the 210 = 1024
different graphs. For ease of illustration, we consider
a reduced random scope
r with just 10 models,
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M1, . . . ,M10 say, where modelMk allows only those
partial correlations with thek largest observed ab-
solute values to be nonzero and restricts the remaining
10 − k off-diagonal entries in the concentration ma-
trix to be zero. ThusM10 is the saturated model and,
from Table 3, we see that the butterfly graphical model
is M6. [In general, it can be shown that such a (much)
reduced scope, based on ordering the magnitudes of
the partial correlations, will contain the simplest true
model and the one with the lowest Bayesian cost al-
most surely in the large-sample limit.]

In Figure 4, the Bayesian costC(M) is plotted for
each of the 10 models in
r . The shape of the graph
here appears to indicate that the Bayesian cost criterion
penalizes overparametrization less than omission of
true nonzero partial correlations. The best model,
Model 6 (k = 6), corresponds to the butterfly model
of Whittaker (1990, Figure 1.1.2), but is here chosen
in a (somewhat) automated way. Model 6 suggests
that {mechanics, vector} marks and the {analysis,
statistics} marks are linearly related primarily through
the algebra mark. The Bayesian costs also suggest
some close competing models,M4, M5, M7, which all
have corresponding leading order a posteriori model
probabilities at least 0.05 times that of ModelM6,
as characterized by a Bayesian cost exceeding that of
Model M6 by no more than 6 (as represented by the
dashed horizontal line in Figure 4). The corresponding
graphical models ofM4, M5, M6, M7, which represent
the conditional linear irrelevance characterized by
zero partial correlations, together with the Bayesian
cost of each, are shown in Figure 2. Of course the

FIG. 4. Mathematics marks data: Bayesian cost versus number
of free partial correlation parameters in the model.

Bayesian cost can be converted to the scale of posterior
model probability. For example, with about 52% of
the posterior probability of the favored butterfly model
M6, modelM5 additionally proposes linear irrelevance
between students’ marks in the mechanics subject and
the algebra subject after controlling the vector subject
mark. The modelsM7 andM4, on the other hand, are
only about 19 and 10%, respectively, as likely as model
M6, based on the intermediate statistics of first- and
second-order sample moments.

5. CONCLUSION

A number of further applications of the indirect
method are discussed in Jiang and Turnbull (2003).
These include:

• The method of moment generating functions (mgf)
(e.g., Quandt and Ramsey, 1978; Schmidt, 1982)
can be regarded as indirect inference based on the
intermediate statistic composed of some sample mgf
values.

• Optimal linear combination of several consistent
estimators (e.g., Serfling, 1980, page 127) can be
regarded as the indirect inference based on an
intermediate statistic with components including all
those consistent estimators.

• The approximate relationship between the maxi-
mum likelihood estimates under the reduced model
and the extended model [e.g., (5) and (6) of Cox and
Wermuth (1990)] can be derived from indirect in-
ference based on an intermediate statistic (the MLE
from the extended model).

• The importance sampling estimator of a target dis-
tribution can be regarded as the indirect estimator
based on an intermediate statistic that is the empiri-
cal cdf based on simulated data from the instrumen-
tal (naive) distribution.

• The method of least squares can be regarded as in-
direct inference based on the MLE from a naive re-
gression model assuming independent normal errors
with equal variances.

• The method of Gaussian estimation (e.g., Whittle,
1961; Crowder, 1985, 2001; Hand and Crowder,
1996, Chapter 7) can be regarded as indirect in-
ference based on the MLE from a naive regression
model assuming normal errors that may be corre-
lated and have unequal variances.

There are other applications that are formally differ-
ent but similar in spirit to the indirect approach that we
discuss in this article. For example:
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• Several articles concerning gene mapping (e.g.,
Wright and Kong, 1997; Sen, 1998) studied infer-
ence based on intermediate statistics generated from
a naive single-gene normal quantitative trait locus
model, when the “true model” can include nonnor-
mality of phenotypic effect and polygenic traits.

• Some methods of nonparametric estimation of addi-
tive regression functions are built on marginal inte-
gration (e.g., Newey, 1994; Hengartner and Sperlich,
2002) or minimum L2-distance treatment (e.g.,
Mammen, Linton and Nielsen, 1999) of an inter-
mediate statistic, which is a full-dimensional local
polynomial regression smoother.
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