| 1  | The Indonesian Seas and their impact on the Coupled Ocean-                                                                |
|----|---------------------------------------------------------------------------------------------------------------------------|
| 2  | Climate System                                                                                                            |
| 3  |                                                                                                                           |
| 4  | Janet Sprintall <sup>1</sup> , Arnold L. Gordon <sup>2</sup> , Ariane Koch-Larrouy <sup>3</sup> , Tong Lee <sup>4</sup> , |
| 5  | James T. Potemra <sup>5</sup> , Kandaga Pujiana <sup>6</sup> , and Susan E. Wijffels <sup>7</sup>                         |
| 6  |                                                                                                                           |
| 7  | <sup>1</sup> Scripps Institution of Oceanography, U.C. San Diego, La Jolla CA, 92093-0230, USA                            |
| 8  | <sup>2</sup> Lamont-Doherty Earth Observatory of Columbia University, Palisades NY, 10964,                                |
| 9  | USA                                                                                                                       |
| 10 | <sup>3</sup> LEGOS, 18 avenue Edouard Belin, 31401, Toulouse Cedex 9, France                                              |
| 11 | <sup>4</sup> Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, USA                              |
| 12 | <sup>5</sup> SOEST/IPRC, University of Hawaii at Manoa, Honolulu HI, USA                                                  |
| 13 | <sup>6</sup> Physics of Oceans and Atmospheres, Oregon State University, Corvallis OR, USA                                |
| 14 | <sup>7</sup> CSIRO Marine and Atmospheric Research, Hobart TAS, 7000, Australia                                           |
| 15 |                                                                                                                           |
| 16 | Progress Article for Nature Geosciences                                                                                   |
| 17 |                                                                                                                           |
| 18 |                                                                                                                           |

19 Preface:

20 The Indonesian seas play a pivotal role in the coupled ocean and climate system as 21 they provide the only tropical pathway connecting the global oceans. Recent 22 observations show the Pacific input to the Indonesian seas throughflow is 23 characterized by a strong velocity core near 100 m depth, rather than within the 24 warm sea surface layer, as had earlier been assumed. Furthermore the depth of the 25 velocity core has exhibited significant variability over the past decade. Here we 26 show that intense vertical mixing within the Indonesian seas alters the temperature, 27 salinity and velocity depth profiles of the Indonesian throughflow. The mixing 28 induces net upwelling of thermocline water affecting the sea surface temperature 29 and so impacting the tropical atmospheric circulation and precipitation patterns of 30 the climate system. Despite considerable progress, there remain large gaps in our 31 knowledge of the physical processes that contribute to variability in the coupled air-32 sea climate system within the Indonesian seas, which in turn also affects the marine 33 ecosystem at the heart of the ecologically important Coral Triangle.

34 The tropical Indonesian seas play a central role in the climate system. They lie at 35 the climatological center of the atmospheric deep convection associated with the 36 ascending branch of the Walker Circulation. They also provide an oceanic pathway for 37 the Pacific and Indian inter-ocean exchange, known as the Indonesian Throughflow 38 (ITF), conveying the only link in the global thermohaline circulation at tropical latitudes<sup>1</sup>. 39 As such, the volume of heat and freshwater carried by the ITF are known to impact the state of the Pacific and Indian Oceans as well as the air-sea exchange<sup>2-6</sup>, modulating 40 41 climate variability on a variety of time scales. Sea surface temperature (SST) anomalies

42 over the Indonesian seas are associated with both the Pacific El Niño-Southern

Oscillation (ENSO) and the Indian Ocean Dipole (IOD), causing changes in the regional
surface winds that alter precipitation and ocean circulation patterns within the entire
Indo-Pacific region<sup>7,8</sup>. Indeed, proper representation of the coupled dynamics between the
SST and wind over the Indonesian seas is required for a more realistic simulation of
ENSO<sup>9</sup>.

48 The ITF had originally been thought of as occurring within the warm, near surface layer with a strong annual signal driven by seasonally reversing monsoons<sup>10</sup>. However 49 50 recent observations reveal the inter-ocean exchange primarily occurs as a strong velocity 51 core at depth within the thermocline and exhibits large variability over a range of time scales<sup>11,12</sup>. Ongoing *in situ* measurements indicate that the vertical profile of the flow has 52 53 changed significantly over the past decade. In particular there has been a prolonged 54 shoaling and strengthening of the ITF subsurface core within the Makassar Strait inflow 55 channel occurring in concert with the more regular and stronger swings of ENSO phases since the mid-2000s<sup>13</sup>. On longer time scales, coupled models reveal that reduced Pacific 56 57 trade winds will correspondingly reduce the strength and change the profile of the ITF. 58 These changes have important implications to the air-sea coupled system, since it is the 59 vertical profile of the ITF that is critical to the climatically relevant inter-basin heat  $transport^{12}$ . 60

In this article we discuss recent observational evidence supported by models that show how recent changes in the wind and buoyancy forcing affect the vertical profile and properties of the flow through the Indonesian seas. Intense vertical mixing through vigorous tides and strong air-sea interaction set the vertical stratification of the ITF

flow<sup>14</sup>, and is found to impact both ENSO and the IOD variability through thermocline
and wind coupling<sup>9,15</sup>. We highlight how these changes have direct consequences for the
ocean and climate system through their feedback onto the large-scale SST, precipitation
and wind patterns.

69

## 70 Ocean Circulation within the Indonesian Seas

71 Impact on the Pacific and Indian Oceans: Model experiments that contrast open and 72 closed ITF passages generally report warmer SST in the tropical Pacific and cooler SST 73 in the southern Indian Ocean when ITF passages are closed<sup>3</sup>. Blockage of the ITF 74 deepens the thermocline and reduces the warm pool-cold tongue SST gradient in the 75 tropical Pacific, and shoals the mean thermocline in the Indian Ocean. Oceanic 76 circulation changes when there is no ITF include less equatorward flow of subtropical 77 waters from the South Pacific, and a weaker Indian Ocean South Equatorial Current with 78 less flow into the Agulhas Current potentially decreasing the Indian Ocean inflow to the 79 Atlantic. Although the magnitude of the changes depend on model sensitivities, this may 80 alter the upper layer heat content, winds and the air-sea heat flux with subsequent consequences for the Indian Ocean monsoon and regional Indo-Pacific precipitation<sup>3,16,17</sup>. 81 82 Coupled ocean-atmosphere simulations have an eastward shift in the deep convection and precipitation in response to the warmer Pacific SST and upper ocean heat content<sup>18,19</sup> 83 84 when the ITF is absent.

Pathways. The inflow of ITF waters is drawn from the energetic Mindanao (mainly
North Pacific water) and Halmahera (mainly South Pacific) Retroflections (Figure 1). In

87 the primary inflow passage of Makassar Strait the ITF mostly consists of North Pacific

thermocline and intermediate water<sup>20</sup>. Secondary ITF portals permit water to enter via the 88 89 western Pacific marginal seas, such as through the Sibutu Passage connecting the 90 Sulawesi Sea to the Sulu Sea or from the South China Sea via Karimata Strait. Although 91 relatively shallow, these portals can provide a significant source of freshwater that influences the ITF stratification<sup>13</sup>. Smaller contributions of North Pacific surface water 92 93 may directly enter the Banda Sea via the channels to the north that mark the eastern 94 pathway of the ITF. The deeper channels east of Sulawesi primarily consist of saltier 95 South Pacific water that infiltrates (isopycnally) into the lower thermocline of the Banda Sea and dominate the deeper layers through density-driven overflows<sup>20,21</sup>. Shallower 96 97 waters from the South Pacific enter through the passages that line the Halmahera Sea. 98 The contribution of South Pacific waters to the ITF via these northeastern passages is not well resolved and represents one of the largest uncertainties of the ITF pathways<sup>22</sup>. The 99 100 ITF enters into the Indian Ocean through gaps along the southern island chain running 101 from Sumatra to Timor, but mostly via Lombok Strait and the deeper Ombai Strait and Timor Passage<sup>12</sup>. Observations show a clearly separated low salinity ITF surface core<sup>23</sup> 102 from a high silica, low salinity ITF intermediate depth core<sup>24</sup> that stretches from the 103 104 outflow passages across nearly the entire Indian Ocean between 10°S and 15°S. 105 Mixing of Water Masses. During transit through the Indonesian seas, the Pacific 106 temperature and salinity stratification is mixed and modified by the strong air-sea fluxes, monsoonal wind-induced upwelling, and extremely large tidal forces<sup>14,25,26</sup>, to form the 107 108 distinctly unique nearly isohaline ITF profile (Figure 2). The water masses appear mostly 109 transformed before entering the Banda Sea with the mid-thermocline salinity maximum 110 and intermediate depth salinity minimum clearly eroded in the Flores, Seram and Maluku

111 Seas. Strong diapycnal fluxes of fresher water are necessary to reproduce this 112 transformation and are induced by the internal tides<sup>27</sup>. This baroclinic tidal mixing 113 occurs preferentially above steep topography and within the narrow straits<sup>14,28</sup>. Recent 114 estimates of dissipation and vertical diffusivity reveal surprising hot spots of mixing at 115 various depths within the water column, with high diffusivity values of the order 1-10 116 cm<sup>2</sup> s<sup>-1</sup> in the thermocline and at the base of the mixed layer.

117 The enhanced and spatially heterogeneous internal tidal mixing in the Indonesian 118 seas not only alters the ITF water mass properties, but also impacts the SST distribution 119 that in turn modulates air-sea interaction, atmospheric convection and the monsoonal response<sup>15,29</sup> (Figure 3). Coupled models show that when tidal mixing is included, the 120 upwelling of deeper waters cools SST in the Indonesian seas by ~0.5°C, increases ocean 121 heat uptake by  $\sim 20$  W m<sup>-2</sup> and reduces the overlying deep convection by as much as 20%. 122 123 Changes in the Indo-Pacific coupled wind/thermocline system in response to tidal mixing 124 within the Indonesian archipelago influence the discharge and recharge of upper-ocean 125 heat content of the Indo-Pacific region and so regulate the amplitude and variability of both ENSO and the IOD<sup>15</sup>. We do not as yet fully understand which mixing processes are 126 127 responsible for the modification of the Pacific water masses. Climate model experiments 128 suggest the pattern and magnitude of precipitation and air-sea heat exchange in the entire 129 Indo-Pacific region is highly sensitive to the choice of model vertical diffusivity to represent mixing within the Indonesian seas<sup>30</sup>. Yet it is likely that the same processes that 130 131 form the ITF stratification also contribute to the relatively large vertical flux of nutrients 132 that support the high primary productivity of the Indonesian seas. Quantitative knowledge 133 of small-scale mixing processes is needed to properly model the regional circulation, to

identify the influence on larger and longer scale variability, and to understand its role inthe climate and marine ecosystems.

136 Volume Transport. Because of the unique role that the ITF plays as the "warm water pathway" for the global thermohaline circulation<sup>1</sup> there has always been a keen interest, 137 138 particularly from the modeling community, in knowing the total transport. Recent multi-139 year moorings in the major inflow and outflow passages suggest a total average ITF of about 15 Sy (1 Sy =  $10^6 \text{ m}^3 \text{s}^{-1}$ ) into the Indian Ocean. Of this, about 2.6 Sy exited via 140 141 Lombok Strait, 4.9 Sv via Ombai Strait and the remaining 7.5 Sv through Timor Passage<sup>12</sup>. Around 13 Sv was measured in the Makassar Strait inflow<sup>13</sup> suggesting the 142 143 remaining 2 Sv is contributed via the north-eastern passages that were not particularly well-resolved<sup>22</sup>. 144

145 Pacific, Indian and local wind-forced variability across a broad range of time 146 scales translates into a huge range of ITF variability. The seasonal variation is due to the 147 influence of the reversing wind of the Asian-Australian monsoon, although the phasing of this seasonal signal varies from strait to strait and over different depth levels<sup>11-13</sup> and is 148 further modulated by the intraseasonal Madden-Julian Oscillation<sup>31,32</sup>. On annual and 149 150 longer time scales, the westward Pacific tradewinds that form the lower limb of the 151 Walker Circulation pile up water in the western tropical Pacific, setting up a sea-level gradient between the Indian and Pacific basins that drives the ITF<sup>33</sup>. During El Niño 152 153 conditions when the Pacific tradewinds weaken or reverse, the Makassar ITF transport is weaker and the thermocline shallower<sup>34,35</sup>. However, the relationship to Pacific ENSO 154 155 variability at the exit portals of the ITF into the Indian Ocean is less clear since transport in these straits is also subject to Indian Ocean variability<sup>12,36</sup>. The oceanic response to 156

wind forcing is often accomplished through wave processes that propagate along the
equatorial and coastal wave guides within the Indonesian archipelago and impact the
water properties, thermocline and sea level over all time scales<sup>31,32,37</sup>.

160 **Heat transport.** It is the profile of the volume transport through each strait that is the key

161 to the climatically important heat transfer. Interocean heat transfer through the Indonesian

162 Seas had been thought to be surface intensified and warm<sup>10</sup>, around  $22^{\circ}C-24^{\circ}C$ .

163 However, the Makassar Strait transport profile was recently shown to have a subsurface

164 maximum<sup>4</sup> so the transport-weighted temperature is only  $\sim 13^{\circ}$ C. This is particularly so

165 during the rainy northwest monsoon when low-salinity buoyant water from the South

166 China Sea inhibits southward flow in the Makassar Strait surface layer<sup>38</sup>. The increase of

167 the South China Sea throughflow during El Niño also induces a cooler  $ITF^{13}$ . Subsurface

168 maxima transport profiles are similarly evident in the outflow passages and the deeper

169 subsurface maximum in Ombai Strait (~180 m) is subsequently colder (15.2°C)

170 compared to Lombok  $(21.5^{\circ}C)^{12}$ . Timor Passage heat transfer is relatively warm  $(17.8^{\circ}C)$ 

because it is more surface intensified. The much warmer temperatures of the outflow

172 passages can be largely reconciled with the cooler estimates from the inflow via

173 Makassar Strait by accounting for the local surface heat fluxes within the internal

174 Indonesian seas that warm the ITF during its  $passage^{39}$ .

175

## 176 Recent Changes in the Indonesian Seas Linked to the Climate System

177 Interannual Variability. Observational evidence points to a recent prolonged shoaling

and strengthening of the ITF within Makassar Strait: the thermocline velocity maximum

shifted from 140 m to 70 m depth and increased from 70 cm s<sup>-1</sup> to 90 cm s<sup>-1</sup> (Figure 4)

resulting in a 47% increase in transport over the 50-150 m depth range<sup>13</sup>. The dramatic 180 181 change in the transport profile began around 2007, occurring in concert with the return to 182 more regular and stronger swings of the ENSO phases after the extended warm El Niño 183 period from the 1990s to the mid 2000s. Model results showed that during the El Niño 184 episodes, freshwater enters from the Sulu Sea and pools as buoyant surface water in the 185 Sulawesi Sea, leading to a reduced surface layer contribution to the Makassar 186 throughflow<sup>13</sup>. In contrast, during La Niña the Sulu Sea exchange is small and the 187 freshwater pool dissipates, causing a shoaling and strengthening of the upper thermocline 188 layer of the Makassar Strait ITF such as observed in 2008-2009. While it is still unclear 189 how the Makassar Strait transport is partitioned through the main ITF exit passages and 190 to what extent its vertical profile is maintained, proxy transports derived from remotely 191 sensed sea level data show a concurrent change in the Lombok Strait outflow over the same period<sup>36</sup>. Lombok Strait provides the most direct link from Makassar to the Indian 192 193 Ocean, and the increased transport within the warm upper layer during these La Niña 194 events would act to warm the tropical Indian Ocean SST and so regulate the Indian Ocean stratification and surface heat fluxes<sup>16,17</sup>. 195

Decadal and Secular Trends. On multi-decadal time scales, changes in the Pacific
tradewind system have had direct bearing on the strength and circulation patterns within
the Indonesian seas and Indian Ocean. Weakening of the Walker Cell tradewinds in the
1970s<sup>40</sup> led to shoaling thermocline anomalies in the western Pacific that were
transmitted by planetary wave processes along the eastern boundary of the Indonesian
seas, similar to that which occur in response to ENSO induced wind shifts<sup>39</sup>. A
corresponding surface warming, subsurface cooling and net decrease in the volume

| 203 | transport was observed where the ITF enters into the Indian Ocean <sup>41</sup> . A companion study                  |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 204 | of 20 <sup>th</sup> century simulations from a suite of IPCC AR4 models showed subsurface cooling                    |
| 205 | in the tropical Indian Ocean was consistent with shoaling of the thermocline and                                     |
| 206 | increased vertical stratification <sup>42</sup> . Although the coarse grid spacing of these climate                  |
| 207 | models did not fully resolve the narrow Indonesian passages, a majority of the models                                |
| 208 | confirmed this trend was linked to the observed weakening of the Pacific tradewinds and                              |
| 209 | transmitted by the ITF <sup>42</sup> . The ITF profile changes resulted in the decreasing heat content               |
| 210 | and falling sea level in an isolated zonal band of the Indian Ocean that are at odds with                            |
| 211 | trends in the rest of the basin over the late 20 <sup>th</sup> century <sup>43,44</sup> . Since the early 1990s, the |
| 212 | Indian Ocean cooling trend has reversed <sup>44</sup> in response to a gradual intensification of the                |
| 213 | Pacific easterlies increasing the sea level in the western tropical Pacific <sup>44,45</sup> . As a                  |
| 214 | consequence models and proxy-derived transports have indicated a significant increase in                             |
| 215 | the $ITF^{36,44,46\cdot48}$ from the early 1990s through the first decade of the 21 <sup>st</sup> century.           |
| 216 | It is worth remembering that these decadal changes are embedded within much                                          |
| 217 | longer-term secular trends of the climate system. Most anthropogenic climate change                                  |
| 218 | simulations predict a weakening of the Walker Circulation in response to a warming                                   |
| 219 | world <sup>49</sup> and so project a decrease in the ITF transport <sup>50</sup> . This would likely have similar    |
| 220 | impacts on the Indian Ocean thermocline structure and sea level as observed when                                     |
| 221 | analogous conditions prevailed during the late 20 <sup>th</sup> century. What remains unclear is how                 |
| 222 | these changes in the Indian Ocean might impact the downstream Agulhas Current system                                 |
| 223 | and perhaps even the Atlantic Meridional Overturning Circulation <sup>1</sup> . The connectivity                     |
| 224 | between the ITF and the Agulhas system has remained fairly elusive, at least in terms of                             |
| 225 | direct observations. This is primarily because the fingerprint of the fresh ITF signature                            |

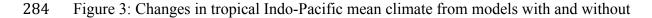
becomes more ambiguous in the western Indian Ocean where it mixes with the
hypersaline Red Sea water masses<sup>7,24</sup>. Model results using Lagrangian trajectory
experiments to trace particles from the Indonesian seas suggest around 88% of the ITF
water exits the Indian Ocean via the Agulhas Current after a 50-year period<sup>6</sup>.

230

## 231 Unravelling the ITF

232 Large uncertainties remain in our current understanding of many aspects of the 233 circulation in the Indonesian seas and its impact on the Pacific and Indian Oceans and 234 beyond. The contribution of the South Pacific water masses through the northeastern 235 passages of the Indonesian seas has been poorly measured in the past. Understanding the 236 governing physics that partition the North and South Pacific source waters through the 237 various inflow passages over a range of time scales is important since they transport 238 water masses with different physical and biogeochemical characteristics. In particular, 239 direct measurements of mixing of these different source waters within the Indonesian 240 seas are needed, with a focus on quantifying the level of energy available for mixing and 241 identifying where and when the mixing occurs. This latter effort will involve an iterative 242 process between the observational and modeling studies to shed light on the likely 243 mechanisms, the horizontal and vertical scales of the mixing, and the locations of 244 dissipation. In addition, focused process studies designed to measure the influence of 245 mixing on the marine ecosystem (specifically the nutrient and biogeochemical fluxes) are 246 required since the Indonesian seas lie within the heart of the Coral Triangle, a 247 recognizable center of marine biodiversity and a priority of high-level conservation 248 efforts. Finally, the recent unexpected changes observed in the Makassar Strait velocity

| 249 | profile and the feedback to regional climate variability highlight the need for sustained   |
|-----|---------------------------------------------------------------------------------------------|
| 250 | measurements of the velocity and property characteristics in all the major ITF passages.    |
| 251 | Understanding the variation in the Indonesian seas is crucial, not only for its role in the |
| 252 | coupled air-sea climate system, but also for the impact on regional ecosystems and the      |
| 253 | local economies of this populous region with a heavy reliance on the maritime               |
| 254 | environment resources.                                                                      |
| 255 |                                                                                             |
| 256 | Author Information:                                                                         |
| 257 | Correspondence and requests for additional materials concerning this article should be      |
| 258 | addressed to Janet Sprintall (jsprintall@ucsd.edu).                                         |
| 259 |                                                                                             |
| 260 | Acknowledgements:                                                                           |
| 261 | The material is partially based upon work supporting J.S. by the National Aeronautics       |
| 262 | and Space Administration (NASA) under award No. NNX13AO38G. ALG support is                  |
| 263 | derived from NA08OAR4320754 from the National Oceanic and Atmospheric                       |
| 264 | Administration, U.S. Department of Commerce. The research was carried out in part by        |
| 265 | TL at the Jet Propulsion Laboratory, California Institute of Technology, under a contract   |
| 266 | with NASA. SEW was partly funded by the Australian Climate Change Science Program.          |
|     |                                                                                             |


## 268 Figure Captions

269

270 Figure 1: Bathymetric and geographic features of the Indonesian Seas. The mean 271 pathway of the Indonesian Throughflow is shown by red lines, and the contribution to the 272 throughflow from the South Pacific is shown by the dashed lines. The pathways through 273 the seas north of the Banda Sea are poorly resolved and uncertain. 274 275 Figure 2: Changes in temperature and salinity as the Pacific inflow water traverses the 276 regional Indonesia seas. Each inset shows temperature (°C; y-axis) and salinity (PSS-78; 277 x-axis) color-coded by depth (m; see colorbar) averaged over the region indicated by the 278 dark gray dot. The salinity maximum (pink) and the salinity minimum (blue-green) 279 characteristic of the Pacific Ocean are mostly eroded in the Flores, Maluku and Seram 280 Seas before reaching the Banda Sea and outflow regions of Timor and Lombok. The data

- were derived from the World Ocean Data Base 2001 and additional regional CTD data
- 282 (provided by A. Atmadipoera).

283



tidal mixing parameterizations. a, Annual average outgoing long-wave radiation (OLR;

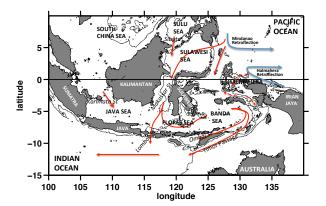
286 Watts per m<sup>2</sup>) from the NOAA NCEP Climate Prediction Center (upper panel), and the

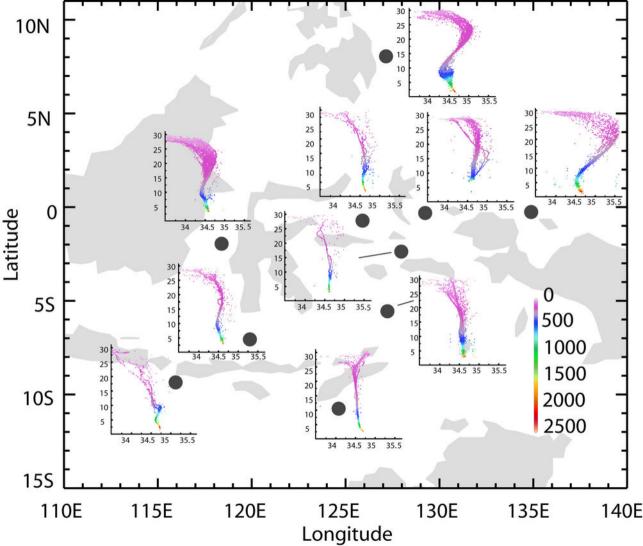
- 287 SINTEX-F model with (middle) and without (lower) tidal mixing parameterization<sup>14</sup>.
- High OLR values imply increased cloudiness and likely increased precipitation.
- 289 Differences in **b**, SST (°C) and **c**, rainfall (mm) between coupled simulations with and
- 290 without tidal parameterization. Negative values indicate cooler SST and reduced rainfall

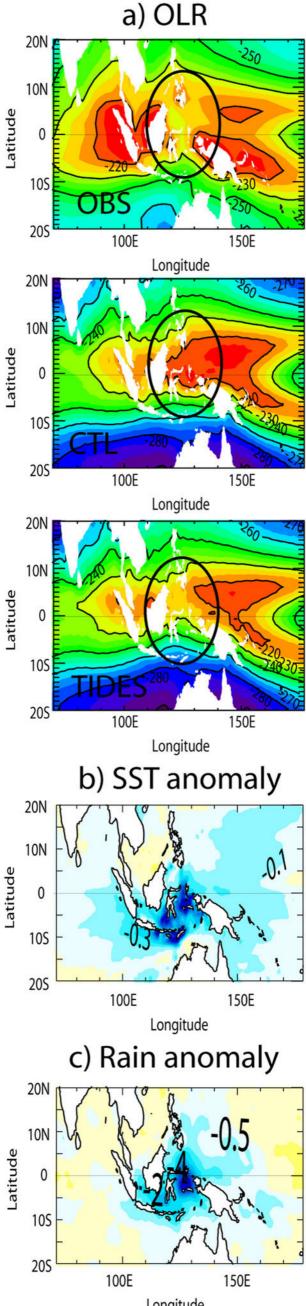
when tidal mixing is included. Overall, the tidal effect cools the mean SST and reducesmean precipitation by about 20%.

| 294 | Figure 4: Time series of the depth of the maximum along-channel velocity (m s <sup>-1</sup> ) within |
|-----|------------------------------------------------------------------------------------------------------|
| 295 | Makassar Strait <sup>13</sup> . Colors indicate the 3-day averaged velocity that has been smoothed   |
| 296 | with a 90-day running mean, with negative values denoting southward flow. The                        |
| 297 | throughflow is weakest in boreal winter and strongest in boreal summer. During 2007 the              |
| 298 | velocity maximum shoaled and increased speed, reaching a peak in maximum speed in                    |
| 299 | 2008 and 2009.                                                                                       |
|     |                                                                                                      |

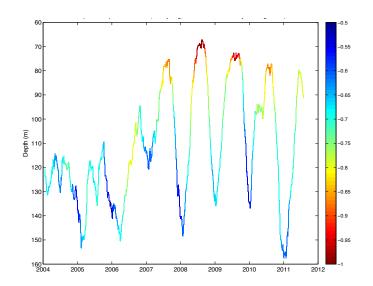
| 301 |    | References                                                                       |
|-----|----|----------------------------------------------------------------------------------|
| 302 | 1. | Gordon, A.L. Interocean exchange of thermocline water. J. Geophys. Res. 91,      |
| 303 |    | 5037-5046 (1986).                                                                |
| 304 | 2. | Godfrey, J.S. The effect of the Indonesian Throughflow on ocean circulation and  |
| 305 |    | heat exchange with the atmosphere: A review. J. Geophys. Res. 101, 12217-12237   |
| 306 |    | (1996).                                                                          |
| 307 | 3. | Lee, T., Fukumori, I., Menemenlis, D., Xing, Z. & Fu, L.L. Effects of the        |
| 308 |    | Indonesian Throughflow on the Pacific and Indian Oceans. J. Phys. Oceanogr. 32,  |
| 309 |    | 1404-1429 (2002).                                                                |
| 310 | 4. | Vranes, K., Gordon, A.L. & Ffield, A. The heat transport of the Indonesian       |
| 311 |    | throughflow and implications for the Indian Ocean Heat Budget. Deep-Sea Res.     |
| 312 |    | <b>49</b> , 1391-1410 (2002).                                                    |
| 313 | 5. | Potemra, J.T., & Schneider, N. Influence of low-frequency Indonesian             |
| 314 |    | throughflow transport on temperatures in the Indian Ocean in a coupled model. J. |
| 315 |    | <i>Clim.</i> <b>20</b> , 1439–1452 (2007).                                       |
| 316 | 6. | McCreary, J.P. et al. Interactions between the Indonesian Throughflow and        |
| 317 |    | circulations in the Indian and Pacific Oceans. Progr. Oceanogr. 75, 70-114       |
| 318 |    | (2007).                                                                          |
| 319 | 7. | Song, Q., Gordon, A.L. & Visbeck, M. Spreading of the Indonesian Throughflow     |
| 320 |    | in the Indian Ocean. J. Phys. Oceanogr. 34, 772-792 (2004).                      |
| 321 | 8. | Meyers, G., McIntosh, P., Pigot, L & Pook, M. The years of El Niño, La Niña,     |
| 322 |    | and interactions with the tropical Indian Ocean. J. Clim. 20, 2872-2880 (2007).  |


| 323 | 9.  | Annamalai, H., Kida, S. & Hafner, J. Potential impact of the tropical Indian     |
|-----|-----|----------------------------------------------------------------------------------|
| 324 |     | Ocean - Indonesian Seas on El Niño characteristics. J. Clim. 23, 3933-3952       |
| 325 |     | (2010).                                                                          |
| 326 | 10. | Wyrtki, K. Physical Oceanography of the Southeast Asian Waters, Scripps          |
| 327 |     | Institution of Oceanography NAGA Report 2, 195 pp. (1961).                       |
| 328 | 11. | Gordon, A. L., Susanto, R.D., Ffield A., Huber, B.A., Pranowo, W. &              |
| 329 |     | Wirasantosa, S. Makassar Strait Throughflow, 2004 to 2006. Geophys. Res. Lett.   |
| 330 |     | <b>35</b> , L24605 (2008).                                                       |
| 331 | 12. | Sprintall, J., Wijffels, S.E., Molcard, R. & Jaya, I. Direct estimates of the    |
| 332 |     | Indonesian Throughflow entering the Indian Ocean. J. Geophys. Res. 114,          |
| 333 |     | C07001 (2009).                                                                   |
| 334 | 13. | Gordon, A.L., Huber, B.A., Metzger, E.J., Susanto, R.D., Hurlburt, H.E., & Adi,  |
| 335 |     | T.R. South China Sea Throughflow impact on the Indonesian Throughflow.           |
| 336 |     | Geophys. Res. Lett. 39, L11602 (2012).                                           |
| 337 | 14. | Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., Gerkema, T., Bessieres, L.,   |
| 338 |     | & Molcard, R. On the transformation of Pacific Water into Indonesian             |
| 339 |     | Throughflow Water by internal tidal mixing. Geophys. Res. Lett. 34, L04604       |
| 340 |     | (2007).                                                                          |
| 341 | 15. | Koch-Larrouy, A., Lengaigne, M., Terray, P., Madec, G. & Masson, S. Tidal        |
| 342 |     | mixing in the Indonesian Seas and its effect on the tropical climate system.     |
| 343 |     | <i>Climate Dyn</i> , <b>34</b> , 891 – 904 (2010).                               |
| 344 | 16. | Wajsowicz, R. Air-sea interaction over the Indian Ocean due to variations in the |
| 345 |     | Indonesian Throughflow. Clim. Dynamics 18, 437-453 (2002).                       |


| 346 | 17. Song Q. & Gordon, A.L. Significance of the vertical profile of the Indonesian  |
|-----|------------------------------------------------------------------------------------|
| 347 | Throughflow transport on the Indian Ocean. Geophys. Res. Lett. 31, L16307          |
| 348 | (2004).                                                                            |
| 349 | 18. Santoso A., Cai, W., England, M.H. & Phipps, S.J. The role of the Indonesian   |
| 350 | Throughflow on ENSO dynamics in a coupled climate model. J. Clim. 24, 585-         |
| 351 | 601 (2011).                                                                        |
| 352 | 19. Schneider, N., The Indonesian throughflow and the global climate system. J.    |
| 353 | <i>Clim.</i> <b>11</b> , 676-689 (1998).                                           |
| 354 | 20. Gordon, A.L & Fine, R. Pathways of water between the Pacific and Indian        |
| 355 | Oceans in the Indonesian seas. Nature 379, 146-149 (1996).                         |
| 356 | 21. van Aken, H.M., Brodjonegoro, I.S. & Jaya, I. The deepwater motion through the |
| 357 | Lifamatola Passage and its contribution to the Indonesian Throughflow. Deep-Sea    |
| 358 | <i>Res.</i> <b>53</b> , 1203-1216 (2009).                                          |
| 359 | 22. Gordon, A.L. et al. The Indonesian Throughflow during 2004-2006 as observed    |
| 360 | by the INSTANT program. Dyn. Atmosph. Oceans 50, 115-128 (2010).                   |
| 361 | 23. Gordon, A. L. et al. Advection and diffusion of Indonesian Throughflow water   |
| 362 | within the Indian Ocean South Equatorial Current. Geophys. Res. Lett. 24, 2573-    |
| 363 | 2576 (1997).                                                                       |
| 364 | 24. Talley, L. D., & Sprintall, J. Deep expression of the Indonesian Throughflow:  |
| 365 | Indonesian Intermediate Water in the South Equatorial Current. J. Geophys. Res.    |
| 366 | <b>110</b> , C10009 (2005).                                                        |
| 367 | 25. Ffield, A., & Gordon, A.L. Tidal mixing signatures in the Indonesian Seas. J.  |
| 368 | Phys. Oceanogr. 26, 1924-1937 (1996).                                              |


| 369 | 26. Koch-Larrouy A., Madec, G., Iudicone, D., Molcard, R. & Atmadipoera, A.             |
|-----|-----------------------------------------------------------------------------------------|
| 370 | Physical processes contributing in the water mass transformation of the                 |
| 371 | Indonesian ThroughFlow. Ocean Dyn. 58, 275-288 (2008).                                  |
| 372 | 27. Koch-Larrouy A., Madec, G., Blanke, B. & Molcard, R. Quantification of the          |
| 373 | water paths and exchanges in the Indonesian archipelago. Ocean Dyn. 58, 289-            |
| 374 | 309 (2008).                                                                             |
| 375 | 28. Ffield, A. & Robertson, R. Indonesian Seas finestructure variability. Oceanogr.     |
| 376 | <b>18</b> , 108-111 (2005).                                                             |
| 377 | 29. Kida, S., & Wijffels, S.E. The impact of the Indonesian throughflow and tidal       |
| 378 | mixing on the summertime sea surface temperature in the western Indonesian              |
| 379 | seas. J. Geophys. Res. 117, C09007 (2012).                                              |
| 380 | 30. Jochum, M., & Potemra, J.T. Sensitivity of tropical rainfall to Banda Sea           |
| 381 | diffusivity in the Community Climate System Model. J. Clim. 21, 6445-6454               |
| 382 | (2008).                                                                                 |
| 383 | 31. Drushka, K., Sprintall, J., & Gille, S.T. Vertical structure of Kelvin waves in the |
| 384 | Indonesian Throughflow exit passages. J. Phys. Oceanogr. 40, 1965-1987                  |
| 385 | (2010).                                                                                 |
| 386 | 32. Pujiana, K., Gordon, A.L. & Sprintall, J. Intraseasonal Kelvin waves in Makassar    |
| 387 | Strait. J. Geophys. Res. 118, 2023-2034 (2013).                                         |
| 388 | 33. Wyrtki, K. Indonesian Throughflow and the associated pressure gradient. J.          |
| 389 | Geophys. Res. 92, 12941-12946 (1987).                                                   |
| 390 | 34. Gordon A. L., Susanto, R.D. & Ffield, A. Throughflow within Makassar Strait.        |
| 391 | Geophys. Res. Lett. 26, 3325-3328 (1999).                                               |

| 392 | 35. Ffield, A., Vranes, K., Gordon, A.L., Susanto, R.D. & Garzoli, S.L. Temperature    |
|-----|----------------------------------------------------------------------------------------|
| 393 | variability within Makassar Strait. Geophys. Res. Lett. 27, 237-240 (2000).            |
| 394 | 36. Sprintall, J. & Révelard, A. The Indonesian Throughflow response to Indo-Pacific   |
| 395 | climate variability. J. Geophys. Res. 119, 1161-1175 (2014).                           |
| 396 | 37. Wijffels, S.E. & Meyers, G. An intersection of oceanic wave guides: variability in |
| 397 | the Indonesian Throughflow region. J. Phys. Oceanogr. 34, 1232-1253 (2004).            |
| 398 | 38. Gordon, A.L., Susanto, R.D. & Vranes, K. Cool Indonesian Throughflow as a          |
| 399 | consequence of restricted surface layer flow. Nature 425, 824-828 (2003).              |
| 400 | 39. Wijffels, S. E., Meyers, G.M. & Godfrey, J.S. A 20-Yr average of the Indonesian    |
| 401 | Throughflow: Regional currents and the interbasin exchange. J. Phys. Oceanogr.         |
| 402 | <b>38</b> , 1965-1978 (2008).                                                          |
| 403 | 40. Vecchi, G.A., Soden, B.J., Wittenberg, A.T., Held, I.M., Leetma, A. & Harrison,    |
| 404 | M.J. Weakening of tropical Pacific atmospheric circulation due to anthropogenic        |
| 405 | forcing. Nature 441, 73-76 (2006).                                                     |
| 406 | 41. Wainwright, L., Meyers, G., Wijffels, S. & L. Pigot, Change in the Indonesian      |
| 407 | Throughflow with the climatic shift of 1976/77. J. Geophys. Res. 35, L03604            |
| 408 | (2008).                                                                                |
| 409 | 42. Alory, G., Wijffels, S. & Meyers, G. Observed temperature trends in the Indian     |
| 410 | Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett. 34,                |
| 411 | L02606 (2007).                                                                         |
| 412 | 43. Han, W. et al. Patterns of Indian Ocean sea-level change in a warming climate.     |
| 413 | <i>Nature Geosc.</i> <b>3</b> , 546-550 (2010).                                        |


| 414 | 44. Schwartzkopf, F.U. & Böning, C.W. Contribution of Pacific wind stress to multi-                     |
|-----|---------------------------------------------------------------------------------------------------------|
| 415 | decadal variations in upper-ocean heat content and sea level in the tropical south                      |
| 416 | Indian Ocean. Geophys. Res. Lett. 38, L12602 (2011).                                                    |
| 417 | 45. Lee, T. & McPhaden, M.J. Decadal phase changes in large-scale sea level and                         |
| 418 | winds in the Indo-Pacific region at the end of the 20 <sup>th</sup> century. <i>Geophys. Res. Lett.</i> |
| 419 | <b>35</b> , L01605 (2008).                                                                              |
| 420 | 46. Lee, T. et al. Consistency and fidelity of Indonesian-throughflow total volume                      |
| 421 | transport estimated by 14 ocean data assimilation products. Dyn. Atmos. Oceans.                         |
| 422 | <b>50</b> , 201-223 (2010).                                                                             |
| 423 | 47. Feng, M., Böning, C.W., Biastoch, A., Behrens, E., Weller, E., & Masumoto, Y.                       |
| 424 | The reversal of the multi-decadal trends of the equatorial Pacific easterly winds,                      |
| 425 | and the Indonesian Throughflow and Leeuwin Current transports. Geophys. Res.                            |
| 426 | <i>Lett.</i> <b>38</b> , L11604 (2011).                                                                 |
| 427 | 48. England, M. H. et al. Recent intensification of wind-driven circulation in the                      |
| 428 | Pacific and the ongoing warming hiatus. Nature Clim. Change 4, 222-227 (2014).                          |
| 429 | 49. Tokinaga, H. et al. Regional patterns of tropical Indo-Pacific Climate change:                      |
| 430 | Evidence of the Walker Circulation weakening. J. Clim. 25, 1689-1710 (2012).                            |
| 431 | 50. Sen Gupta, A., Ganachaud, A., McGregor, S., Brown, J.N. & Muir, L. Drivers of                       |
| 432 | the projected changes to the Pacific Ocean equatorial circulation. Geophys. Res.                        |
| 433 | Lett. <b>39</b> , L09605 (2012).                                                                        |







Longitude

