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Abstract

Estimating the burden of COVID-19 in India is difficult because the extent to which cases and

deaths have been undercounted is hard to assess. The INDSCI-SIM model is a 9-component,

age-stratified, contact-structured compartmental model for COVID-19 spread in India. We use

INDSCI-SIM, together with Bayesian methods, to obtain optimal fits to reported cases and

deaths across the span of the first wave of the Indian pandemic, over the period Jan 30, 2020 to

Feb 15, 2021. We account for lock-downs and other non-pharmaceutical interventions, an

overall increase in testing as a function of time, the under-counting of cases and deaths, and a

range of age-specific infection-fatality ratios. We first use our model to describe data from all

individual districts of the state of Karnataka, benchmarking our calculations using data from

serological surveys. We then extend this approach to aggregated data for Karnataka state. We

model the progress of the pandemic across the cities of Delhi, Mumbai, Pune, Bengaluru and

Chennai, and then for India as a whole. We estimate that deaths were undercounted by a factor

between 2 and 5 across the span of the first wave, converging on 2.2 as a representative

multiplier that accounts for the urban-rural gradient across the country. We also estimate an

overall under-counting of cases by a factor of between 20 and 25 towards the end of the first

wave. Our estimates of the infection fatality ratio (IFR) are in the range 0.05 - 0.15, broadly

consistent with previous estimates but substantially lower than values that have been estimated

for other LMIC countries. We find that approximately 40% of India had been infected overall by

the end of the first wave, results broadly consistent with those from serosurveys. These results

contribute to the understanding of the long-term trajectory of COVID-19 in India.

Introduction

COVID-19, a disease of zoonotic origin whose causative agent is the beta coronavirus

SARS-CoV-2, is believed to have first infected humans towards the latter part of November

2019, in or near the Chinese city of Wuhan [1]. It then spread, aided by international travel

networks, around the world, with devastating epidemics in the USA, the UK, Europe and South

America, even as cases in China declined [2]. With close to 170 million recorded cases and 3.5
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million recorded deaths worldwide as of the end of May 2021, the COVID-19 pandemic can be

expected to be the most consequential epidemiological event of our lifetimes.

The first COVID-19 case in India was detected at the end of January, 2020 [3]. By March 25,

2020, the total numbers of Indian cases had increased to just above 600. At that point, the Indian

government ordered a sequence of stringent country-wide lockdowns that were to last for 68

days (March 25 - June 1, 2020) [4]. The lockdown was then relaxed in multiple phases. All

through, reported cases of COVID-19 kept rising, although the pace of increase was arguably

held in check by the stringency of the lockdown [5]. A peak of about 98,000 cases was reached

in mid-September. Cases in India then declined steadily for the next four months, even as cases

rose elsewhere in the world. By mid-January, it appeared as if India might have avoided the

multiple waves of cases seen elsewhere. However, numbers at the level of individual cities and

states presented a more complex story. Delhi and Mumbai, for example, saw multiple waves of

cases [6]. The decline in cases at the all-India level persisted from the peak around

mid-September to the middle of February, when they began to increase again [7]. This increase

has been linked to the emergence of more transmissible variants, specifically the B.1.617 and

B.1.1.7 variants, as well as to a relaxation of COVID-appropriate behaviour [8]. The pace of this

increase was far steeper than the pace at which the first wave of cases were recorded. (As of

roughly mid-May 2021, the decline of the second wave, from a peak of a little more than

410,000 cases daily at its maximum, has begun.) A time-line of the first wave of COVID-19 in

India is displayed in Fig. 1. This figure shows the increase in cumulative cases, in tests and in

deaths, highlighting the period of the national lockdown.

Epidemiological models are useful because they allow us to reason about parameters that

control pandemic spread, and how interventions serve to modulate them, extrapolating from a

trajectory of cases and deaths. Population-level epidemiological information, such as results

from serological surveys, help to further constrain these models. The earliest models for

COVID-19 in India come from the work of Mandal et. al. [9]. This compartmental model

addressed two issues, the effects of imperfect airport screening measures and the question of

optimal strategies for mitigation once the disease had spread to the major Indian cities.

Chatterjee et al. used a stochastic SEIR model to examine the effects of lockdowns on case

counts [10]. Work from the group of Bhramar Mukherjee provided early insights into the

progress of the pandemic and continues to do so [11]. Their work uses a Bayesian extension of

the SIR model, the extended susceptible-infected-removed (eSIR) model, to project case-counts

and deaths. Agent based models have provided useful insights, at the level of full cities, into

mitigation methods and the effectiveness of non-pharmaceutical interventions [12]. Related

references which model COVID-19 in India are [10, 13–23, 23–36]. These models are very

largely compartmental models of varying degrees of complexity [37]. Almost all of them were

aimed at understanding the initial stages of the evolution of the pandemic and the role of

interventions. To our knowledge, virtually none of them, with the exception of Ref. [11], have

described the full trajectory of the epidemic.

As the second most populous nation in the world, with a population of close to 1.4 billion,

the consequences of an explosion of COVID-19 cases in India could easily dwarf its impact

anywhere else [38]. What remains unclear is the extent to which the Indian population has so far

been infected by COVID-19 and whether any proximity to herd immunity through infection

might slow later waves of disease [39–41]. Large-scale serological surveys (serosurveys) from

the Indian Council of Medical Research (ICMR), adjusted for test sensitivity, estimate the

overall fraction of those with a prior COVID-19 infection to be about 22% by December 2020

-January 2021 [42–44]. The first two ICMR serosurveys obtained a nation-wide seroprevalence

of 0.73% in May-June 2020 and of 6.6% in August-September 2020. A strong gradient of

seroprevalance between urban and rural India has been a consistent feature of these national

serosurveys. These were done in just 70 districts of a total of about 740 in India, however, so

only represent a relatively small cross-section of the country. Other serosurveys have studied

specific Indian cities, among them Bengaluru [41], Chennai [45, 46], Delhi [47], Pune [48] and
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Mumbai [49]. These city-based surveys estimate that fairly substantial fractions of the urban

population should have been infected by the time that the first wave waned. In many cases, such

as for Delhi, Mumbai and Pune, this fraction has been estimated at over 50%. However, because

of the variety of test kits used, it has proved hard to compare results from different serosurveys.

Also, these presumed high levels of prior seropositivity seem to have done little to offset the

dramatic rise of cases seen at the onset to the second wave in urban India. This raises questions

of potential errors in the serosurveys tied to the sensitivity and specificity of the kits used, as

well as of the importance of reinfections [50].

This paper describes INDSCI-SIM, a age-stratified, contact-structured compartmental model

for COVID-19 spread in India. INDSCI-SIM is a 9-component model, adopted and modified

from [51], with rates bench-marked to a wide range of available data. It projects numbers of

both mild and severe cases and can be generalized to a variety of India-specific situations.

Finally, it can be used to incorporate the modelled effects of a number of public health

interventions, including lock-downs as well as progressive improvements in case identification.

At the methodological level, our techniques can account for improvements, with time, in case

identification as well as in treatment leading to lower overall mortality, within a fully Bayesian

framework.

Our work describes the trajectory of COVID-19, including fits to both cases and deaths,

across all districts in the southern Indian state of Karnataka, as well as in the capital of that state,

Bengaluru. Also included are similar fits to cases and deaths in multiple Indian cities, including

Mumbai, Delhi, Chennai and Pune, as well as to aggregate data for the whole country. Via this

excersise, we estimate that approximately 40-50% of India was infected at the time the second

wave struck, roughly consistent with serosurvey results. We suggest that cases have been

under-counted by a factor ranging from about 90 at the onset of the Indian epidemic to about 20

at the end of the first wave. We estimate that a multiplicative factor of about 2.2 between

counted and actual deaths might be a reasonable estimate across India for the first wave of the

pandemic, although even this estimate relies on a number of approximations. Finally, our results

are consistent with the observation that the trajectory of the disease across India has been

inhomogeneous, with complex spatio-temporal behaviour at the level of districts and states

summing to give smoother results for the country as a whole.

1 Materials and Methods

The epidemiological compartmental model represented by INDSCI-SIM is shown in Fig. 2.

INDSCI-SIM is based on a model introduced in Ref. [51], that expands the classical SIR &

SEIR framework with compartments that account for an asymptomatic infectious state [51–53].

The model also accounts for variations in the severity of disease across the infected class [54].

There is a compartment for hospitalized cases as well as compartments that count deaths as well

as recoveries. The model parametrizes the transmission of infection from the infected classes on

the susceptible class, also allowing this to depend on time. This is an indirect, yet useful, way of

describe increased stringency as well as relaxations in non-pharmaceutical interventions. These

include both direct effects such as increased testing, the imposition of mask-wearing and the

effects of isolation and quarantines. They also include, inter alia, indirect effects, such as

increased public awareness and related modification of behaviour [55].

1.1 Disease Progression

SARS-CoV-2 infection manifests as an acute respiratory infection, progressing to respiratory

failure in a small number of patients [56–58]. It can result in a range of clinical manifestations,

from asymptomatic or mild infection to severe, requiring hospitalization [59]. Among patients

who are symptomatic, the median incubation period is approximately 4 to 5 days [60]. About
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Fig 1. The timeline of the first wave of COVID-19 in India, beginning from the time of the first detected cases in India and ending on February 15, 2021, across different

months during that period. The period of India’s nationwide lockdown, between the dates of March 25 and May 31, 2020, is shown as a green box. Daily infection and death

curves are shown in filled light blue curve and light brown inverted curves respectively. Specific milestone values for cases, deaths and tests are also provided.

97% have symptoms within 11 days after infection [61]. These can further be categorized as

mild, severe and critical [62]. Patients who are hospitalized, the severe category, can progress to

severe pneumonia and acute respiratory distress syndrome (ARDS). A fraction of these patients

will require ventilation and an even smaller fraction may die [63]. Older patients experience

greater clinical severity of COVID-19, which we account for via age-stratified

parameters [63, 64]. Co-morbidities such as cardiovascular disease, diabetes and obesity are

common underlying conditions associated with worse clinical outcomes and increased disease

severity [64–66]. These can be incorporated through a composite risk score affecting branching

rates between mild and severe disease states, although we do not do so here. Males may

experience more severe disease than females, and genetic variations, including the ABO blood

type, have been implicated in clinical outcomes for patients with COVID-19. Our model ignores

these effects [67, 68]. Around 40–75% of infections may be asymptomatic, a fairly broad range.

We note that numbers for India suggest a larger fraction of asymptomatic cases than reported

elsewhere [69, 70].

1.2 Transmission dynamics

The compartmental structure we consider contains susceptible (S ), exposed (E), asymptomatic

infectious (Ia), pre-symptomatic infectious (Ip), mildly symptomatic infectious (Im), severely

symptomatic infectious (I s), hospitalized (H), dead (D) and recovered (R) compartments.

Transitions between these model compartments are shown in Figure 2. The dotted lines indicate
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the force of infection from the infected compartments on the susceptible population.

Frequency-dependent transmission is assumed. As appropriate for a fast-spreading infection, we

ignore the effects of demography [52].

S

Ip

Ia

E

Is

Im

H

R

D

ϵs

ϵp

ϵa

ϵm

λs

λp(1 − μ)

λpμ

λm

ρδ

ρ(1 − δ)

λa

γα

γ(1 − α)β

Fig 2. Schematic diagram of the compartmental model used in this analysis, adopted from [51]. The dotted lines indicate the force of infection from the infected

compartments on the susceptible population. Transitions between compartments, denoted via solid lines and an arrow, are defined as in Equation 1 which contains both bare

rates as well as information as to how flow is to be divided between compartments. The number of persons transiting from one compartment to the other in each day

depends on the product of the transition rates and the branching fractions.
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The model equations, for unstructured compartments, are

Ṡ = −βS (ǫaIa
+ ǫpIp

+ ǫmIm
+ ǫsI

s)/N,

Ė = βS (ǫaIa
+ ǫpIp

+ ǫmIm
+ ǫsI

s)/N − γE,

İa
= αγE − λaIa,

İp
= (1 − α)γE − λpIp,

İm
= µλpIp − λmIm,

İ s
= (1 − µ)λpIp − λsI

s,

Ḣ = λsI
s − ρH,

Ṙ = λaIa
+ λmIm

+ (1 − δ)ρH,

Ḋ = δρH (1)

The left-hand side of these equations denote first-order time derivatives. The population size is

N. Infectious individuals in any associated compartment can infect the susceptible population

regardless of symptoms and severity with a fixed transmission rate β. However, this quantity is

modulated by the relative intensity of contacts between susceptible and infectious individuals

whose effect is simply specified here through factors of ǫ. These can, in principle, vary with

time and can also be chosen to vary between compartments.

Each infected individual enters an ’exposed’ compartment (E), spending an average latent

period 1/γ days before becoming infectious [71]. A fraction α of this infectious population

remains asymptomatic (Ia) until recovery. Asymptomatic individuals are assumed to be

infectious for an average period of 1/λa days [72,73]. Those in the remaining fraction, of (1 - α),

enter a pre-symptomatic state (Ip) where clinical symptoms are not exhibited for a relatively

short average period of 1/λp [72]. Individuals in this pre-symptomatic compartment go on to

developing mild or severe symptoms [74]. All rates applicable to the model are provided in

Table 1.

A fraction µ of symptomatic cases is assumed to develop mild symptoms (Im), while the

remaining fraction (1 − µ) of cases are transferred to the severe class (I s). Infectious cases with

mild symptoms recover without hospitalization after 1/λm days. Severe cases require

hospitalization after an average of 1/λs days. From the hospitalized population (H), we assume

that a proportion (1 − δ) recovers successfully (R), after spending an average duration of

hospitalization 1/ρ days. The remaining fraction, δ, of the hospitalised, will die. The numerical

values of these parameters are specified in Table 1 [75, 76].

Of these parameters, the infectivity parameter β is particularly central. It determines the

effective reproduction ratio as the epidemic proceeds. The force of infection arising from

asymptomatic cases alone is assumed to be lower in comparison to that arising from the

pre-symptomatic, mildly symptomatic and severely symptomatic cases.

1.2.1 Age-structured model

We incorporate age-structuring, dividing each compartment into sub-compartments, representing

the age-intervals 0 − 9, 10 − 19, 20 − 29, 30 − 39, 40 − 49, 50 − 59, 60 − 69, 70 − 79 and 80+. We

denote the sub-compartment by adding the subscript i, for each age-bracket, to each of the

compartment labels, thus obtaining{S i, Ei, I
a
i
, I

p

i
, Im

i
, I s

i
, Ih

i
,Di and Ri}. We define βi j as the bare

infectivity term coupling age-brackets i and j, although we will assume βi j ≡ β here. The

quantities Ci j defines the intensity of contacts between these age-brackets. We assume that,

during the lockdown, only contacts at home are effective, since schools and workplaces are

closed. We can also assume that contacts in public transports and other places are negligible.

Since, in India, schools largely remained closed even after the lockdown ended and workplace

crowding had reduced substantially, we assume that even without any lockdown, work contacts

are only 50% effective. These contacts are obtained from those compiled by Ref. [77]. The

appropriate contact matrices are discussed in the SI (Ref. SI: Section 2, Figure 1.).
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To incorporate time-dependence in contacts, we generalize the four ǫ terms, ǫa, ǫs and ǫm and

ǫp, making their magnitude time-dependent. This allows for varying implementation of testing,

quarantining and isolation rules, lock-downs and other non-pharmaceutical interventions.

Our generalized equations, for Na age-brackets, are then

dS i

dt
= −S i β

Na
∑

j=1

Ci j

ǫa(t)Ia
j
+ ǫp(t)I

p

j
+ ǫm(t)Im

j
+ ǫs(t)I

s
j

N j

dEi

dt
= S i β

Na
∑

j=1

Ci j

ǫa(t)Ia
j
+ ǫp(t)I

p

j
+ ǫm(t)Im

j
+ ǫs(t)I

s
j

N j

− γEi

dIa
i

dt
= αiγEi − λaIa

i ,

dI
p

i

dt
= (1 − αi)γEi − λpI

p

i
,

dIm
i

dt
= µiλpI

p

i
− λmIm

i ,

dI s
i

dt
= (1 − µi)λpI s

i − λH I s
i ,

dHi

dt
= λH I s

i − ρHi,

dRi

dt
= λaIa

i + λmIm
i + (1 − δi)ρHi,

dDi

dt
= δiρHi (2)

The values used here are listed in Table 1

1.3 Time-dependence of effective contacts to model non-pharmaceutical

interventions

The effective infectivity in the INDSCI-SIM model is a product of three terms. The first is a bare

infectivity parameter (βi j ≡ β)and the second is the term involving the contacts, the Ci j’s. The

third is the temporal modulation, the factors of ǫ. While it is only variation in this overall

product that is of significance, it allows us to conceptualize interventions in a more targeted way:

the sudden changes in infectivity imposed by a lockdown can be associated with abrupt changes

in β whereas slow and secular improvements in masking etc. can be associated to the smoothly

varying factors of ǫ. This product is affected by mask-wearing, hand-washing, voluntary

self-isolation or self-quarantining and the maintenance of social-distancing. It is also influenced

by global non-pharmaceutical interventions such as closures of schools, malls and cinemas,

large-scale lock-downs, restrictions on movement and autonomous modifications of social

behaviour.

We first use a “global” value of β, one that differs in the lockdown period and in the open

period. We then model compliance with restrictions by modulating this with a time-dependent

factor, using a hyperbolic tangent function of time, as described below. This function comes

with an associated time-scale which is an output of our minimization procedure. A

quantification of mask-wearing India-wide comes from studies incorporated into the IHME

model for India that are standardized using survey results from the University of Maryland

Social Data Science Center, from the Kaiser Family Foundation and the YouGov COVID-19

Behaviour Tracker survey [81]. This data motivates the use of such an interpolating function,

since it shows an initial lag period, a sharp rise as public awareness increases and saturation at

about 70% reflecting social acceptance of mask-wearing.
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Fraction Asymptomatic

αi

Mild

µi

Dead

δiAge group

0-9 0.5 0.999 0.0185

10-19 0.45 0.997 0.0187

20-29 0.4 0.988 0.0143

30-39 0.35 0.968 0.0166

40-49 0.3 0.951 0.034

50-59 0.25 0.898 0.05

60-69 0.2 0.834 0.097

70-79 0.15 0.757 0.21

80+ 0.1 0.727 0.22

Table 1. Age dependent branching ratios between compartments. Our values for αi and µi are

from those consolidated by the COVASIM program, Refs. [78] and [79]. We use IFR’s from

data from LMIC’s taken from fits in the paper of Ref. [80], where the following formula is

derived: log10(IFR) = −3.27 + 0.0524 ∗ age. We modify only the δi for the 80+ age group to

account for the leveling off of mortality in older age groups described by Ref. [25]. The IFR for

each age group can be obtained as IFRi = (1 − αi)(1 − µi)δi. We use the estimated δi numbers as

our initial IFRs, although when we allow them to vary as part of our minimization strategy to

find the effective IFR’s we multiply all δi’s by a single smooth time-varying factor, optimizing

this against data.

We also allow for a decay of the relative intensity of contacts between susceptible and

infected individuals by assuming an exponential decay of the ǫi terms, viz.,

ǫi(t) = ǫi(0) exp(−t/τi), where i = a, p, s,m (3)

Here, τi represents the characteristic time-scale describing the increased effectiveness of

non-pharmaceutical interventions (NPIs). These could include restrictions on crowding,

improvements in screening procedures as well as increased testing. The net effect of these could

be chosen to be different for each of the infectious categories. Although the force-of-infection

ultimately involves a product of both the β(t) and the ǫ(t) terms, splitting them out thus provides

somewhat more control over the specifics of the non-pharmaceutical interventions as well as the

ability to account for new variants that might affect the value of β but not the ǫ-s.

1.4 Estimating R0

Given the central equations defining our model, we compute the dominant eigenvalue of the next

generation matrix [82] obtained from Equation 1. This is the basic reproductive ratio, R0. This

result, derived using a next-generation method outlined in SI, yields

R0 = β

(

αǫa

λa

+ (α − 1)

(

−
µǫm

λm

−
ǫp

λp

+
(µ − 1)ǫs

λs

))

(4)

Note that in Equation 1 the relative intensity of the contacts (ǫ) are simply constants.

1.5 Estimating R(t)

The time evolution of R(t) is obtained from Equation 2. We obtain the next generation matrix

(FV−1), incorporating age stratification and contract matrices. Lockdown changes the contact
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matrix; we take this into account in our estimation of R(t). The computation of the next

generation matrix, and thence R(t) corresponding to Equation 2, is discussed in SI: Section 1.

Comparing model predictions with the data generates samples of parameters. From these

samples we compute the bounds on R(t) for each region of interest.

1.6 Computing effective R(t) from the data

A standard way to describe infection spread is to calculate the effective reproduction rate R(t) at

a given time t. To estimate R(t) we use a Bayesian approach developed by Bettencourt and

Ribeiro [83], later modified by K. Systrom [84]. In this approach, given k new cases, the

probability distribution of R(t) on a certain day t is:

P(Rt |k) =
P(k|Rt) · P(Rt)

P(k)
,

where P(k|Rt) is the likelihood of seeing k new cases given R(t) (this is assumed to follow a

Poisson distribution), P(Rt) is the prior, and P(k) is the probability of seeing k cases. The

method of deciding the appropriate priors is described in Ref. [83, 84].

1.7 Fixed Parameters

Several parameters determine the progress of the pandemic in the INDSCI-SIM model. These

include parameters which remain fixed, such as the rate of transitions between the

compartments, described above, and a choice for the initial IFR. Other parameters are allowed to

vary so as to model the effects of non-pharmaceutical interventions or optimized to fit available

data, as discussed below. We assume that asymptomatic patients are less likely to pass on

infection to susceptibles by a factor of 2/3, consistent with data from Ref. [69, 85]. The choices

of our fixed parameters are provided in Table 2.

1.8 Variable Parameters

We maximize a likelihood function to obtain optimal fits to the data, sampling a broad prior

distribution in parameter space to assess uncertainties in our description of the disease

progression. Our simulations are initiated around 2 weeks prior to the first death being reported.

Since the time evolution of any similar compartmental model with constant parameters and no

births or deaths would yield only a single wave, we use an adaptive parametrization to address

multiple waves of COVID-19 cases. The parameters that enter our description are described

below.

We choose a generic functional form for all our parametrizations that involve parameter

changes with time. This form interpolates between a high and a low value, and is a function of a

characteristic time-scale. We choose a hyperbolic tangent function for concreteness, and because

it is easy to specify, but any other suitable function could be used in its place.

(a) Initial exposed (Einitial): The exposed people on the first day of simulation, distributed

between age groups according to the population fraction.

(b) IFR-associated parameters (∆IFR, δ
i(tinitial), δ

i(t f inal) and DIFR): A number of

studies [87–89], suggest that the IFR has decreased over time. This is attributed to an

improved clinical handling, new pharmacological treatments such as corticosteroids,

non-pharmacological treatments such as proning and simply earlier interventions and

finally the potential prophylactic consequences of lower viral load exposure from

masking [87]. For concreteness, we choose a specific functional form to describe this
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Parameter Rate (1/day) Description

γ 0.5 Transition rate from exposed to asymptomatic or

pre-symptomatic (mean 2 days)

λa 0.1428 Transition rate from asymptomatic to recovered (mean 7 days)

λm 0.1428 Transition rate from mild to recovered (mean 7 days)

λp 0.5 Transition rate from pre-symptomatic to

mild and severe (mean 2 days)

λs 0.1736 Transition rate from severe to hospitalized (mean 6 days)

ρ 0.068 Transition rate from hospitalized to recovered

or dead (mean 15 days)

Parameter Efficiency

ǫa 0.67 Relative intensity of contacts for asymptomatic

ǫp 1 Relative intensity of contacts for pre-symptomatic

ǫm 1 Relative intensity of contacts for mild

ǫs 1 Relative intensity of contacts for severe

Table 2. The transition rates between compartments and the efficiency parameters. These

parameters are fixed during the analysis and their values are taken from [51, 86]

decrease, accounting for it by assuming a smooth transition governed by a hyperbolic

tangent function. We model the variation of δi
H

(t) as:

δi(t) =
δi(tinitial) + δ

i(t f inal)

2
−
δi(tinitial) − δ

i(t f inal)

2
tanh

[

t − DIFR

∆IFR

]

, (5)

where DIFR is the transition time-point (here, tied to the Hospitalized Fatality Ratio) and

∆IFR is the characteristic time width of the transition. This introduces four parameters,

δi(tinitial), δ
i(t f inal), the timescale ∆IFR and the transition point itself, DIFR. Although this

formulation is general, allowing for age-bracket dependent variation of the IFRs with time,

we choose to allow all age-brackets to have the same functional behaviour, rendering the

index i redundant. We take δi(t f inal) to be a sixth of δi(tinitial): given an initial IFR of 0.3%

this potentially allows the IFR to decay across the range 0.3% to 0.05%, over a timescale

defined by ∆IFR, with the cross-over point between the upper and lower limit defined by

DIFR.

(c) Bias(b) and bias-variation (∆b) :A large fraction of the population remains asymptomatic

to COVID-19 infections. In addition, some symptomatic patients may also opt not to be

tested. Since testing in India has been limited throughout the first wave, a substantial

percentage of actual infections can be expected to have remained undetected, with

detected infections always represent an under-counting of the true numbers of

infected [90]. We use a bias parameter b to accommodate this scaling relation, introducing

another parameter to estimate. We parametrise the bias factor as:

b(t) =
b(tinitial) + b(t f inal)

2
−

b(tinitial) − b(t f inal)

2
tanh

[

t − Dbias

∆b

]

, (6)

where ∆b represents the bias variation timescale. We use the transition time Dbias to be 3

months from the beginning of March but checked that the results should depend
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minimally on Dbias if the priors on the b(tinitial) and ∆b are wide enough. This introduces

three parameters b(tinitial), b(t f inal) and ∆b. We fix b(t f inal) so that it will reach 1

asymptotically. Our calculation obtains the daily number of infected people from the day.

We then fix a multiplier that relates the actual numbers of infected to those detected each

day. This number, for those expected to be detected in each day, is then compared with the

numbers of those reported infected.

If the reported numbers of daily infected cases, or the daily numbers of deaths, shows

multiple peaks, a single parametrization will not capture this behaviour. The sources of this

behavior are complex functions of government policy constraining the contacts between people,

of the sum of individual actions taken to prevent infection and also of the entry of new

potentially more infectious variants. Our analysis must be flexible enough to account for these.

Set against this is the requirement that we should not over-determine the model, by allowing for

a large number of such changes.

We allow our parametrization to vary in the following way: We assume that the time over

which we choose to model the data is divided into N segments, with each segment denoted by i.

This defines N − 1 break points or nodes. The infectivity parameter β and the timescale τ can

change in these segments. For simplicity, τ is assumed to be the same between segments. We

thus parametrize the model with the following:

(a) βi: Infectivity within the i’th window.

(b) τi: Timescale within the i’th window.

(c) Nodei: The position of the break points (dates) across which βi and τi are change. We

decide the required number of break points by comparing the Bayesian evidence for the

models with different break points.

Comparisons of the Bayesian evidence indicates that different τi’s defined in each segment are

not favored. Thus, we work with N β’s, a single τ and N − 1 Node parameters. For N windows,

then, we will have N + 1 + (N − 1) parameters specific to adaptive parametrization, 4 parameters

(Einitial, DIFR, ∆IFR, b, ∆b) common to both parametrizations and 2 noise error parameters (for

modelling the fluctuations in the infected and death data discussed in subsubsection 1.9.1).

1.9 Bayesian modeling

Our model is a mechanistic model that should capture the significant aspects of the dynamics of

COVID-19 disease spread. It has a number of parameters which must be optimized. We achieve

this optimization through a simultaneous fit to the data on deaths and on detected cases. The

latter is related to the ”true” number of cases through the time-dependent bias factor.

We address this optimization through Bayesian methods. In such methods, probability

distributions over parameters, and not point estimates, are obtained [91, 92]. Bayesian models

require a prior distribution over parameters to be specified as well as a likelihood of observing

the data under a specific assignment of parameters. Given parameters and initial conditions, a

compartmental model defines a unique solution for each of the compartments.

Such methods begin with prior estimates for the parameters entering the model, usually

chosen so that they are at least partially constrained by prior knowledge [91]. A likelihood

function, chosen appropriately, estimates the probability with which the observed data can be

accounted for by a specific parameter set. This leads to a posterior distribution over the

parameter set. Credible (confidence) intervals can be derived from such calculations.

1.9.1 Likelihood Model
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We compute the likelihood after a logarithmic transformation, optimizing the product of the

likelihoods from the infected and death data as (L|in f ection × L|death). We choose a form for the

likelihood function that accounts for two sources of error [93]. We assume no correlation

between the variances of infected and death data and treat them independently in the joint fit.

We use a Gaussian log likelihood defined as:

lnL|infection/death = −
1

2

N
∑

t=1















(

Dt − Tt

σt

)2

+ ln
(

2πσ2
t

)















,

and lnL|total = lnL|infection + lnL|death, (7)

where σ2
t = σ

2
ME
+ σ2 represents the variance in the data. This is the sum of a measurement

error σME and of an intrinsic scatter σ. Tt represents a suitable function (see below) of the

computed value of infected/death cases, whileDt represents reported infected/death data on day

t scaled with the same function. The data must first be transformed so that it is normally

distributed. By log scaling the data we find the distribution is close to normal around the mean,

apart from minor outliers. Thus Tt andDt represent the logarithm of the computed and reported

values respectively.

In Equation 7, the lnL’s are computed for both infected cases and deaths and are then

added.The likelihood has 2 error parameters, corresponding to the scatter in the infections and

death data. The parameter σ appearing in the intrinsic scatter term encodes both parameters σ1

and σ2, corresponding to scatters in detected infection and death reports on a log scale. They

appear in these two likelihood terms as defined in Equation 7. Note that the correlation in the

data at different times can, in principle, be modelled through an error covariance matrix. We

ignore such correlations here. In some cases reporting error leads to negative death numbers.

Unless they are large (> 10) where we regularize the data by the absorption of outliers, we reject

the data point.

1.9.2 Priors

We use uniform priors on all the parameters. The ranges for each parameter are provided

in Table 3. We ensure that the priors are broad enough to generate a two-tailed marginalized

posterior distribution where the parameter can be constrained by the data.

Only for the period between nodes, the priors depend upon the zone that is being studied.

With a visual inspection of the data, we can determine the possible times of transition. Different

zones have local peaks at different time of the pandemic owing to the reasons described

in subsection 1.8. To capture these effects, the priors on the nodes remain region dependent.

However we impose wide priors around those transition times to remove possible bias. If the

entire timeline is divided into N windows, we will have N − 1 nodes. The lower limit on the

i + 1’th Node is the day following the upper limit of i’th Node.

1.9.3 Parameter estimation and post processing

The posterior probability p(θ|D,M) for the parameter set θ of a model M given data D is given

by Bayes Theorem,

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
, (8)

where p(D|θ,M) is the likelihood and p(θ|M) the prior probability distribution. p(D|M) is the

Bayesian evidence or the marginal likelihood [91]. We use a nested sampling method for

parameter estimation using PolyChord [94]. We consider uniform priors and the likelihood

described in Equation 7 and use CosmoChord (an extension of CosmoMC that includes

PolyChord) as our generic sampler [95]. A brief description of nested sampling with

PolyChord is given in SI: Section 5.
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Parameter Lower limit Upper limit

Einitial 100 50000

β 0.005 0.25

τ 2 months 2 years

Node Region dependent Region dependent

∆IFR 2 200

DIFR 2 months 2 years

binitial 1 200

∆b 1 month 2 years

Table 3. Priors on model parameters used in our analysis

While PolyChord computes the marginal likelihood, it also useful for parameter

estimation using samples. We remove 30% of the total samples generated by the nested

sampling procedure that represent the initial burn-in phase. We use getdist to obtain the

marginalized posterior probabilities [96]. We use an adaptive parametrization as described

in subsection 1.8. Marginal likelihoods are compared to determine the optimal numbers of

windows required to describe the data. We show marginalized posteriors in certain cases in the

main article while the others are presented in supplementary material.

1.10 Data

We use cumulative infected and death data downloaded from the COVID19India

website https://www.covid19india.org/. We manually curated the time series, but only wherever

required to deal with major outliers arising from reported corrections to the record. (For example

Mumbai reported 917 deaths on June 16th 2020, as opposed to the average count of 78.3 for

previous week.) These outliers were smoothed by replacing their values by the local average and

redistributing the excess count over 20 - 60 previous days depending upon the value. Typically,

for each time series there are only a handful of such outliers (< 5), if at all, and are removed

manually. For our simulations, we need the population data for each zone of interest (district,

state or country), and mention each of these sources in the appropriate sections.For each such

zone, we also need the population fraction in each age group which we obtain from the 2011

census data [97].

1.11 Estimating mortality under-counting

Reported infections are expected to be substantially lower than the actual numbers of

infected. While death numbers should nominally be better indicators of the state of the

pandemic, most deaths in India happen at home and a medically certified cause of death may not

be available, given low levels of MCCD coverage. Moreover, death registration is not uniform

across the country. Estimates of overall under-counting of covid deaths vary, but reasonable

estimates suggest a factor of 1.5 - 5 across India during the first wave [50].

Under-counting for cases and deaths cannot be estimated independently in our model, since

one of these can be subsumed into a definition of the IFR. Benchmarking our results to those

from serological surveys (serosurveys) provides a way of estimating this undercounting, since

such surveys provide an estimate of the fraction of the population which has sustained a prior

infection by the time of the test. Requiring that the quantum of deaths be consistent with the

postulated IFR then allows us to estimate the undercounting of deaths at the time of the survey.
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We analyse data for Karnataka - a typical Indian state with both rural and urban districts.

(Approximately 62% of Karnataka’s population lives in rural areas, comparable to a figure of

65-70% for India as a whole.) We choose Karnataka for our analysis so that we can compare our

numbers to district-wise serosurvey results available from a detailed study conducted in early

September of 2020 [98].

For this part of the analysis, we assume that IFR does not change over the course of the first

wave; we refer to this as the fixed IFR analysis. We choose several fixed values of

(age-averaged) IFR in the range 0.15% and 0.3%. We vary the extent of death undercounting by

multiplying the observed number of deaths by a factorU > 1. We then chose a baseline district

where it is potentially safe to assume that death under-counting might be minimal and that,

hence,U = 1. For this district, we expect the number of infections as estimated from

serosurveys should coincide with those obtained from our calculations as well as be consistent

with the numbers of deaths given our assumed IFR.

Once we standardize our choice of (age-averaged) IFR with this method for a baseline

district, we assume that the same IFR holds true across the state. We can then use the serosurvey

results to estimate the true number of deaths for each district [98]. If Dreported is the number of

reported deaths, Isero is the expected number of infected individuals based on serosurvey, we can

in principle estimate the death under-counting factorU using the relationship between these

quantities: U = max[IFR ∗ Isero/Dreported, 1]. This relation is an average estimation. However,

as the pandemic is ongoing during the serosurvey, the infection and deaths differ by a lag (≈ 1-2

weeks) and thus, we cannot use this relation directly.

Instead, using time series of reported infections and deaths, we first estimate actual

infections by the time of serosurvey (X(Z) for a district Z). If there is no death under-counting,

the expected proportion of actual infections will be equal to the actual proportion of infected

from serosurveys (Y(Z)). We estimate any offset from this expectation to estimate a death

under-counting factor for each district Z: U(Z) = max[Y(Z)/X(Z), 1]. All these estimates were

performed by analysing time-series data that begins with an initial simulation date (two weeks

prior to the available infected and death reports of each district) and goes on to early September

2020, when the Karnataka serosurvey was conducted. We simultaneously fit the daily

time-series of infection and deaths, using the fixed values of the (age-averaged) IFR mentioned

above. Uncertainties in the serosurvey results translate to uncertainties in our determination of

U(D). Apart from the estimation of death undercounting, the rest of our analysis is based on a

time-varying IFR described in the previous sections.

2 Results

We present our results in the following sequence. We begin with an estimation of death

under-counting in Karnataka (subsubsection 2.1.1), using a simultaneous fitting of reported

infections and deaths to our INDSCI-SIM model, and then comparing with serosurvey findings,

following the fixed IFR analysis protocol described in subsection 1.11. We then apply our model

allowing for time-varying IFR (and other parameters, as described in subsection 1.1 to 1.10), to

data of each district of Karnataka (subsubsection 2.1.2).

This is followed by an analysis of data for a number of Indian cities where we assume no

death undercounting (subsection 2.2). While this assumption can certainly be questioned, we do

so on the grounds that the official numbers for deaths in the large Indian cities should be subject

to smaller levels of undercounting than in rural India. We go on to model aggregate state-level

data for Karnataka (subsection 2.3), assuming that our undercounting estimates for each district

can be averaged to obtain a single number for the undercounting at the state level. Finally we

apply the model to data for India as a whole, with death undercounting taken over from our

estimates for Karnataka (subsection 2.4). In each of these cases, we estimate, among other

parameters, the actual number of infected and IFR over the course of first wave of the pandemic.
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2.1 Karnataka districts: Estimating death under-counting

2.1.1 Estimates of death under-counting with fixed IFR

We use the serosurvey results published in Ref. [99] for all districts of Karnataka . We first

scale all age-dependent IFR’s with a constant factor to ensure age-averaged IFRs of 0.3%, 0.2%

and 0.15% – these have been argued to be in the right range for LMICs [80]. We assume further

that either (a) there is no death under-counting or, (b) that deaths have been under-counted by a

factor of 2. As can be seen in Table 4 assuming that deaths have been under-counted by a factor

of two doubles our estimate of the actual infected in the same IFR category, as expected. On the

other hand a decrease in the IFR results in an increase in our estimate of the actual numbers of

infected. We stress that, for the purposed of this specific analysis, the IFR is assumed to be

constant over time (no change in δi) and that we only analyze the data till September 15, 2020

for all districts in Karnataka for consistency with the Karnataka serosurvey. Population data for

Karnataka districts is sourced from the projections for the period 2020-2021, as provided by the

report issued by Directorate of Economics and Statistics, Bangalore [100].

We choose Bengaluru Urban as our baseline model district, assuming that the recorded

numbers of deaths are accurate. This choice is motivated by the observation that Bengaluru

Urban is the largest district in Karnataka by population. It contains the state capital and is also

thus likely under greater scrutiny than other, more remote, districts. Comparing our model

results with those from the serosurveys for Bengaluru Urban we find that an IFR of 0.2%

(highlighted column in tha table) yields numbers of those actually infected that are close to the

measured seroprevalence (the undercounting factorU ≃ 1.1). To the extent that the reported

death numbers are accurate for Bengaluru Urban, this is then our best estimate for the IFR – but

only up to the date of the serosurvey. We can now use this assumption to estimate levels of

undercounting in other districts,U(D). (We, however, expect that this IFR value will go down

further as time goes on, reflecting improvement in patient treatments and a consequent mortality

reduction as well as COVID deaths in older age-bands leading to a reduction in the population

which carries the most mortality risk.)

Using these columns in Table 4, for IFR = 0.2%, we plot the factorsU(D) in Figure 3 as a

choropleth in the left panel. Darker colors for districts represent a larger death undercounting. In

the right panel we plotU(D) for IFR = 0.3% analysis. As expected, the estimated death

undercounting increases here. This would be consistent with an death undercounting in the

Bengaluru Urban district by 60% i.e. (U(D) = 1.6).

2.1.2 Estimates of cases by the end of first wave, with variable IFR

Having estimatedU(D), we redo our analysis for each of Karnataka’s districts, multiplying

reported deaths by the multiplying factors tabulated in Table 4. We then run the program

forward till February 15, 2021, but now also allow the IFR to vary according to the

parametrization described earlier. Using this analysis we tabulate the actual infected percentages

we predict by Dec 15, 2020 and Feb 15, 2021 in Table 5, together with 95% confidence intervals.

We find that between 20% and 70% of the population in these districts has been infected by

February 15, 2021. We find no substantial change in the actual infection between December

2020 and February 2021.

The relationship between actual numbers of prior infections and results from serosurveys is

complicated by the observation that antibodies measured in such surveys have been observed to

decay in concentration over a period of several months. However, given the fact that the peak in

cases in Karnataka occurred over September-October 2020, and that the serosurvey was

performed during this period, it is reasonable to assume that this will not impact our

interpretation of the serosurvey observations [99].
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IFR=0.3%

No death multiplier

IFR=0.3%

Death multiplier=2

IFR=0.2%

No death multiplier

IFR=0.2%

Death multiplier=2

IFR=0.15%

No death multiplier

District

Observed

sero

prevalence (%)

Predicted

actual

infection

U(D)

Predicted

actual

infection

U(D)

Predicted

actual

infection

U(D)

Predicted

actual

infection

U(D)

Predicted

actual

infection

U(D)

Bengaluru Urban 29.8 ± 3.3 19 ± 6.5 1.6 [1 − 2.3] 34.3 ± 10.5 1 [1-1.3] 26.9 ± 8.1 1 [1-1.6] 52.1 ± 16.4 1 33.2 ± 8.3 1 [1-1.2]

Mysuru 27.2 ± 8.8 13.9 ± 5.9 2 [1-3.5] 25.7 ± 8.5 1.1 [1-1.8] 19.7 ± 7.4 1.4 [1-2.4] 37.2 ± 11 1 [1-1.2] 25.7 ± 8.9 1.1 [1-1.8]

Ballari 43.1 ± 9.5 13.6 ± 6.7 3.2 [1-5.5] 25 ± 11.1 1.7 [1-2.8] 19.5 ± 8.5 2.2 [1-3.7] 34.9 ± 11.8 1.2 [1-1.9] 25.4 ± 11.1 1.7 [1-2.8]

Dakshina Kannada 27 ± 8.5 12.4 ± 4.9 2 [1-3.7] 23 ± 7.7 1.2 [1-2] 17.5 ± 5.9 1.5 [1-2.5] 33.3 ± 10.6 1 [1-1.3] 22.6 ± 7.4 1.2 [1-2]

Hassan 30.7 ± 9.4 10.6 ± 6.7 2.9 [1-5.6] 19.8 ± 11.4 1.6 [1-3] 15 ± 9.1 2 [1-3.9] 26 ± 12.6 1.2 [1-2.1] 20.1 ± 11.6 1.5 [1-2.8]

Belagavi 30.1 ± 8.8 4.2 ± 2.2 7.2 ± 5.8 8.3 ± 4.1 3.6 [1-6.5] 6.2 ± 3.1 4.9 ± 3.8 11.4 ± 5.2 2.6 [1-4.6] 7.9 ± 3.7 3.8 [1-6.7]

Tumakuru 29.4 ± 9.5 5 ± 2.4 5.9 ± 4.7 9.4 ± 3.9 3.1 [1-5.4] 7.4 ± 3.4 4 [1-7.1] 14 ± 5.4 2.1 [1-3.6] 9.2 ± 3.7 3.2 [1-5.5]

Udupi 36.4 ± 9 7.3 ± 3.3 5 ± 3.5 15.5 ± 7 2.3 [1-3.9] 11.3 ± 4.7 3.2 ± 2.1 22.2 ± 9.1 1.6 [1-2.7] 13.9 ± 5.8 2.6 [1-4.3]

Kalaburagi 29.8 ± 8.6 7.9 ± 4 3.8 [1-6.8] 14.7 ± 6.9 2 [1-3.5] 10.7 ± 4.6 2.8 [1-4.8] 22.5 ± 9 1.3 [1-2.2] 14.7 ± 6.6 2 [1-3.5]

Dharwad 8.7 ± 6 18.9 ± 8.6 1 35 ± 11.8 1 26.5 ± 9.4 1 47.3 ± 12.2 1 36.6 ± 12.7 1

Shivamogga 21.4 ± 8.3 12.1 ± 5.4 1.8 [1-3.3] 21.8 ± 9.2 1 [1-1.8] 16.9 ± 7.5 1.3 [1-2.4] 31.1 ± 12.5 1 [1-1.2] 22.5 ± 9.3 1 [1-1.8]

Davanagere 40.6 ± 9.7 16.6 ± 11.7 2.4 [1-4.7] 28.7 ± 16.4 1.4 [1-2.5] 22.7 ± 14.7 1.8 [1-3.4] 36.8 ± 17.6 1.1 [1-1.9] 29.5 ± 17.1 1.4 [1-2.5]

Mandya 25.3 ± 8.6 5.3 ± 3.6 4.8 [1-9.7] 9 ± 5 2.8 [1-5.3] 7.9 ± 4.8 3.2 [1-6.2] 13.6 ± 7.3 1.9 [1-3.5] 9.1 ± 5.4 2.8 [1-5.4]

Bengaluru Rural 28.7 ± 8.9 13.9 ± 9.7 2.1 [1-4.2] 20 ± 11.7 1.4 [1-2.7] 16.8 ± 10.9 1.7 [1-3.3] 25.5 ± 12.5 1.1 [1-2] 19.4 ± 11 1.5 [1-2.8]

Chitradurga 25.9 ± 8.9 13 ± 9 2 [1-4.1] 16.3 ± 8.4 1.6 [1-3] 14.6 ± 8.4 1.8 [1-3.4] 19.9 ± 8.2 1.3 [1-2.3] 16.1 ± 8.3 1.6 [1-3]

Vijayapura 35.4 ± 9.7 4.3 ± 1.6 8.2 ± 5.3 8.4 ± 2.9 4.2 ± 2.6 6.3 ± 2.1 5.6 ± 3.4 11.9 ± 3.6 3 ± 1.7 8.2 ± 2.6 4.3 ± 2.6

Uttara Kannada 16.3 ± 7.5 6.6 ± 3.8 2.5 [1-5.1] 12.2 ± 6.5 1.3 [1-2.6] 8.8 ± 4.5 1.9 [1-3.7] 16.1 ± 7.2 1 [1-1.9] 11.2 ± 5.2 1.5 [1-2.8]

Raichur 34.1 ± 9.3 6.6 ± 2.3 5.2 ± 3.2 12.3 ± 3.6 2.8 ± 1.6 9.3 ± 2.7 3.7 ± 2.1 18 ± 4.6 1.9 [1-2.9] 12.1 ± 3.2 2.8 ± 1.5

Chikkamagaluru 31.8 ± 9 9.8 ± 5.7 3.2 [1-6] 16.1 ± 7.2 2 [1-3.4] 13.4 ± 6.6 2.4 [1-4.2] 23.7 ± 10 1.3 [1-2.2] 18 ± 9.4 1.8 [1-3.2]

Koppal 22.3 ± 7.9 15.9 ± 8.3 1.4 [1-2.6] 29.1 ± 12.6 1 [1-1.4] 23.5 ± 11.1 1 [1-1.7] 38 ± 14.7 1 28.9 ± 12.5 1 [1-1.4]

Chikkaballapura 12.1 ± 7.6 7.3 ± 4.5 1.7 [1-3.8] 11.6 ± 5.3 1 [1-2.1] 9.5 ± 5 1.3 [1-2.8] 16.5 ± 6.3 1 [1-1.4] 12.3 ± 5.8 1 [1-2.1]

Bagalkote 12 ± 7.1 10.1 ± 7.5 1.2 [1-2.8] 14.4 ± 8.5 1 [1-1.8] 13.9 ± 9.5 1 [1-2] 22.3 ± 12.2 1 [1-1.1] 15.1 ± 9 1 [1-1.7]

Gadag 9 ± 8 8.7 ± 3.6 1 [1-2.3] 16.6 ± 5.7 1 [1-1.2] 12.8 ± 4.6 1 [1-1.6] 24.4 ± 8.3 1 16.5 ± 5.4 1 [1-1.2]

Haveri 28.6 ± 8.8 10.7 ± 6.2 2.7 [1-5.1] 17.9 ± 8.6 1.6 [1-2.8] 14.4 ± 7.2 2 [1-3.6] 24 ± 9.8 1.2 [1-2.1] 18 ± 8.2 1.6 [1-2.8]

Yadgir 31.6 ± 8.9 10.5 ± 7.9 3 [1-6.1] 14.7 ± 9.6 2.1 [1-4.1] 12.4 ± 8.5 2.5 [1-5] 18.7 ± 9.9 1.7 [1-3.1] 15.1 ± 9.3 2.1 [1-4]

Kolar 16.1 ± 7.4 8.5 ± 6.3 1.9 [1-4.2] 12.2 ± 7.5 1.3 [1-2.7] 10.8 ± 7.5 1.5 [1-3.2] 15.3 ± 8.3 1.1 [1-2.2] 12.3 ± 7.3 1.3 [1-2.7]

Bidar 18.7 ± 7.6 8.3 ± 4.6 2.3 [1-4.5] 14.3 ± 6 1.3 [1-2.4] 11.6 ± 5.7 1.6 [1-3] 19.3 ± 6.9 1 [1-1.7] 14.6 ± 5.9 1.3 [1-2.6]

Ramanagara 29.3 ± 9.2 7.5 ± 4.5 3.9 [1-7.5] 13.1 ± 6.2 2.2 [1-4] 10.7 ± 6.1 2.7 [1-5.1] 18.2 ± 7.7 1.6 [1-2.8] 13.1 ± 6 2.2 [1-3.9]

Chamarajanagara 21.1 ± 8.4 8.9 ± 6.5 2.4 [1-5.1] 12.1 ± 6.4 1.7 [1-3.3] 10.1 ± 5.9 2.1 [1-4.2] 16.5 ± 7.1 1.3 [1-2.4] 13 ± 7.2 1.6 [1-3.1]

Kodagu 20.5 ± 8.2 14.9 ± 10.6 1.4 [1-2.9] 19.8 ± 10.7 1 [1-2] 16.6 ± 10 1.2 [1-2.4] 24.4 ± 10.3 1 [1-1.5] 19.5 ± 10.8 1.1 [1-2.1]

Table 4. Estimation of death under-counting by comparing seroprevalence. The first column lists each district of Karnataka (as on Sept 2020). The second column

provides the seropositivity estimate as obtained in a serosurvey across the first two weeks of September 2020. The third column provides our estimate of the potential death

undercounting in that district,U(D), represented by the ratio of seropositivity to the actual number of reported infected. Since death overcounting is not possible, the

minimum value ofU(D) can only be 1. The uncertainty on this number is obtained by propagating the 95% uncertainties from the serosurvey reports to our prediction of

actual infection. In cases the lower bound onU(D) goes below 1, we present the mean value and the range from 1 as an upper bound in parentheses. In a few cases we just

present 1 as an upper bound, representing those cases where even the upper limit is less than or equal to 1.

2.2 Infection curves for select Indian cities

In this sub-section, we provide an analysis of the progress of COVID-19 across the period

Jan 2020 - February 15, 2021, for a few select Indian cities: Bengaluru, Chennai, Delhi, Pune

and Mumbai. For each of these cities, the data correspond to the urban district agglomeration

within which the city is embedded. We assume that deaths have been counted largely accurately

for these cities, and thus that U(D) defined above is 1. We will return to the implications of this

assumption later.

All these cities show more than a single peak in reported cases. The origins of these peaks

are complex. Together, they represent a combination of relaxations of the lockdown and of

physical distancing, festivals and political activity at various times, the ebb and flow of migration
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Fig 3. Ratio of seroprevalence reported in districts of Karnataka across the first two weeks of September, 2020 and our prediction of actual infected on the same date.

This ratio indicates the death under-counting in different districts assuming uniform IFR in different districts. We plot the ratios here for IFR = 0.2 [a: left plot] and 0.3 [b:

right plot] respectively. Note that these numbers are plotted from Table 4 for corresponding IFRs. For IFR = 0.3 the INDSCI-SIM prediction of actual infected is certainly

lesser than the IFR = 0.2 case. The plot on the right shows larger ratios compared to the left.

from nearby districts, as well as day-to-day variations in testing. These effects are captured in

our multiple window model with adaptive selection, since infectivity parameters can now vary

across different windows and the bias factor between actual and reported cases can itself evolve.

For each city, we present a set of 6 plots in three panels. In the top panel we present the fit to

the daily reported cases (left - (a)) and to the daily reported deaths (right - (b)). The actual

predicted infections and the bias are plotted in the middle left (c) and right (d) plots respectively.

Note that the bias factor, once multiplied with the reported infections, provides the estimate of

actual infection. The change in the IFR (left - (e) ) and the effective reproduction number R(t)

(right - (f)) estimates are plotted in bottom panel. For R(t) we also plot an independent

estimate [84] as a reference.

2.2.1 Bengaluru

Our analysis for Bengaluru Urban is presented in Figure 4; posterior distributions and parameter

constraints are provided in SI: Section 3, Figure 2 and Table 1). For the calculations, the

population data for Bangalore is sourced from the projections for the period 2020-2021, as
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District December 15, 2020 February 15, 2021

Bengaluru Urban 73.5 ± 10.5 74.5 ± 10.5

Mysuru 34.6 ± 10.9 36.2 ± 11.4

Ballari 46.1 ± 13.3 47.5 ± 13.4

Dakshina Kannada 38.0 ± 11.7 39.6 ± 12.4

Hassan 37.0 ± 12.4 38.0 ± 12.8

Belagavi 33.2 ± 8.3 34.1 ± 8.4

Tumakuru 45.9 ± 13.2 48.9 ± 14.5

Udupi 48.7 ± 20.0 50.3 ± 20.4

Kalaburagi 41.1 ± 14.7 42.0 ± 15.0

Dharwad 33.7 ± 13.1 35.0 ± 13.5

Shivamogga 25.3 ± 9.4 25.9 ± 9.7

Davanagere 50.4 ± 22.4 51.3 ± 22.9

Mandya 38.3 ± 19.0 39.1 ± 19.5

Bengaluru Rural 50.4 ± 20.7 52.4 ± 21.3

Chitradurga 36.7 ± 22.9 38.7 ± 23.8

Vijayapura 43.7 ± 9.9 44.7 ± 10.1

Uttara Kannada 34.7 ± 15.2 35.8 ± 15.8

Raichur 43.3 ± 13.0 44.4 ± 13.0

Chikkamagaluru 67.8 ± 18.6 69.6 ± 19.0

Koppal 43.7 ± 25.8 43.6 ± 26.1

Chikkaballapura 28.8 ± 16.4 30.7 ± 17.6

Bagalkote 33.3 ± 27.1 33.6 ± 27.3

Gadag 37.6 ± 27.9 38.2 ± 28.3

Haveri 30.0 ± 10.8 31.1 ± 11.0

Yadgir 34.9 ± 19.2 35.5 ± 19.6

Kolar 21.3 ± 8.5 22.0 ± 9.0

Bidar 24.5 ± 9.3 25.4 ± 9.4

Ramanagara 40.3 ± 15.4 40.8 ± 15.6

Chamarajanagara 38.2 ± 17.6 39.6 ± 18.2

Kodagu 45.5 ± 22.8 49.2 ± 24.3

Table 5. Estimation of actual infection in Karnataka districts on December 15, 2020 and February 15, 2021. The

uncertainties are quoted at 95% C.L. This table is obtained from an analysis that assumes a time varying IFR as

explained in Methods.

provided by the report issued by Directorate of Economics and Statistics, Bangalore [100]. Our

approach yields a double-peak structure in the curve of daily infections, reflecting a temporary

flattening of the curve around September 2020 followed by an increase that resulted in a peak

around October. Between mid-September and mid-October, we observe a plateau in deaths. Our

results can be compared to those from serosurveys, as quoted in Refs. [101–103]. In September

of 2020, these calculations yield a seroprevalence in Bengaluru Urban of about 30%, consistent

with serosurvey results.

We note that the model indicates that a substantial fraction of the population in Bengaluru

had already been infected by Feb 15. The effective reproductive ratio R(t) decreases abruptly

during the lockdown, while displaying an equally sharp increase post lockdown. Our estimate

for those infected in Bengaluru city by Feb 15, 2021 lies between 64% and 85% at the 95%

confidence level. The bias multiplier narrows quite rapidly, reading a figure of about 10 by

mid-February 2010; at the time of the Bengaluru serosurvey, this factor was approximately 30.

Our estimate for the IFR at the end of the first wave indicates a value in the vicinity of 0.05%,

roughly consistent with similar estimates for the first wave based on serosurveys. An increase in

the IFR, say to 0.08 or 0.1, can also be achieved if we assume that deaths have been

under-counted by a suitable factor, while leaving our estimates for total infections the same. The

cumulative infections and deaths are plotted together with the data in SI Section 3, Figure 8.
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Fig 4. Timeseries analysis for Bengaluru Urban. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b: top right] assuming no death

undercounting. The middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d: right] obtained as a ratio between actual and

reported infections. The left plot [e] at the bottom panel contains the evolution of the age averaged IFR. The bottom right plot [f] contains our estimation of R(t) and an

independent [84] measurement. Note that the bands correspond to 2σ and 3σ confidence levels.

2.2.2 Chennai

Our results for Chennai are plotted in Figure 5, with posterior distributions and parameter

constraints provided in the SI: Section 3, Figure 3 and Table 2). For these calculations, we
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source population data for Chennai from Wikipedia, which takes into account the expansion of

the district limits in 2018 [104]. Apart from the national lockdown of 68 days, we note that

Chennai had imposed a shorter, local lockdown during the period June 19 - July 5, 2020. Both

lockdown periods are marked in grey. While across the first lockdown the numbers of infected

increased steadily, the numbers began to show a decline following the second lockdown. We see

minor peaks around mid-August and October of a lesser height when compared to the first peak.

This decrease is also corroborated by the estimates for the R(t). Serosurvey results for Chennai

have been reported in Ref. [105].

There are clearly issues with data here since around July 2020, the peak in deaths appears to

precede the infection peak, although the data is quite noisy. After that, a steady decrease in the

death numbers is seen. While between mid-July to end-October the infection numbers change

only marginally, the numbers of deaths reduce largely monotonically. This suggests an effective

decrease in IFR, perhaps related to improvements in patient management. The bias multiplier

also show a decrease. However the rate of the decline is much slower compared to Bengaluru

Urban. The plot indicates a 30-fold undercounting of cases initially. This is reduced to around

15 by the middle of February 2020. A low test positivity since the onset of infection is supported

by this plot and attributed to a large scale testing program. The actual infection plot suggests that

nearly 54-85% (at 95% C.L.) of the Chennai population has been infected by mid-February.

We can compare these predictions to data from Ref. [46] for the state of Tamil Nadu as a

whole in December 2020, which found that seroprevalence in urban areas (36.9%) was higher

than in rural areas (26.9%). They found that 22.6 million persons were infected by the end of

November, roughly 36 times the number of confirmed cases. For Chennai, the estimated

seroprevalance by December was in the vicinity of 40%, within the 95% bound of our own

results. The estimated seroprevalence implied an infection fatality rate of 0.052%, comparable to

our estimates. Our estimates for cumulative infections and deaths are plotted together with the

data in SI Section 3, Figure 9).

2.2.3 Delhi

Figure 6 present our analysis with the Delhi data. The data for Delhi presents a challenge to

modelling because of the presence of multiple peaks. The data requires 5 adaptive windows to fit.

Within these 5 windows, the constrained infectivity parameter β show a oscillatory trend. This

oscillatory pattern may possibly reflect patterns in the return of migrant workers to the national

capital region. A number of different serosurvey results have been reported for Delhi, including

in Ref. [106]. For our calculations, we use Delhi’s population data from the projections reported

in the 2019 report published by the National Commission on Population [107].

With these windows, our model captures the trends in the data. Posterior distributions and

parameter constraints are provided in the SI: Section 3, Figure 4 and Table 3. We find

multi-peak posteriors in the Node parameters reflecting several possible solutions of the Delhi

trajectory. The reported deaths here show outliers around June 2020 that occur before infection

peaks towards the middle and end of June. Although the IFR decreases we find that it is still

consistent with 0.1% IFR around February 2021. The bias multiplier settles down around 20,

indicating that a point estimate of about 80% (71-90% at 95% C.L.) infected population in Delhi

by January 2021, with a confidence of interval of ±10%. Our limits at the 3σ confidence limit

though indicate a range of 50-90% infected, given the skewed posterior distribution of bias. The

estimated R(t) as expected show an oscillatory behavior, consistent with the independent

estimates. We observe that R(t) fluctuates in a range R(t) ∼ 1 − 1.5 before it reduces below 1

around December 2020.

Results from the fifth serosurvey in Delhi concluded that about 56% of the over 28,000

people whose blood samples were collected in January 2021 had developed antibodies against

COVID-19. The first such survey done in the city in June-July had shown that 23.4% of people

surveyed had developed antibodies against the virus. Similar surveys in August showed that

29.1% of people had antibodies to SARS-CoV-2 at that time. This became 25.1% in September
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Fig 5. Timeseries analysis for Chennai. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b: top right] assuming no death undercounting.

Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d: right] obtained as a ratio between actual and reported infections.

The left plot [e] at the bottom panel contains the evolution of age averaged IFR. The bottom right plot [f] contains our estimation of R(t) and an independent [84]

measurement. Note that the bands correspond to 2σ and 3σ confidence levels.

and 25.5% in October. These results are approximately consistent with the results we present

here, except for the January serosurvey, which lies outside our 95% confidence interval.

However, due to the decay of antibodies, seroprevalence as derived from CLIA tests are
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Fig 6. Timeseries analysis for Delhi. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b: top right] assuming no death undercounting.

Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d: right] obtained as a ratio between actual and reported infections.

The left plot [e] at the bottom panel contains the evolution of age averaged IFR. The bottom right plot [f] contains our estimation of R(t) and an independent [84]

measurement. Note that the bands correspond to 2σ and 3σ confidence levels.

expected to underestimate numbers of infected. We expect that accounting for this decay would

yield closer agreement. Initial estimates of Delhi’s IFR in REf. [108] yield numbers consistent

with a range (0.05-0.1%), consistent with our calculation here. However, other calculations yield

June 2, 2021 22/43

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.21258203doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.02.21258203
http://creativecommons.org/licenses/by-nc-nd/4.0/


a cumulative proportion of the population estimated infected of 48.7% (95% CrI 22.1% –

76.8%) by end-September 2020. These are noticeably larger than our own estimates of about

30% at that time. (The IFR assumed in that work was considerably larger, though, between

0.22% and 0.39%; this required that a relatively small number of deaths were actually recorded,

about 28% of the actual number if the IFR was 0.21%.). Estimations for cumulative infections

and deaths are plotted with data in SI (Ref. Section 3, Figure 10.

2.2.4 Mumbai

Results for the city of Mumbai are provided in Figure 7. The population of the district is taken

from the projections for 2021 [109]. The posterior distributions and related parameter

constraints are provided in the SI, Section 3, Figure 5 and Table 4. The data for Mumbai show

two well resolved peaks around June-July 2020 and September-October 2020. Following the

second peak, reported infections reduce and remain roughly constant from about December

2020. The reported deaths shows a peak and a plateau before reaching a second, smaller peak.

While the second peak in the reported infection is higher than the first peak, the plateau in the

reported death numbers around October 2020 is substantially lower than the July 2020 peak,

indicating better treatment interventions. There are no systematic outliers in the death numbers,

once we apply our smoothing to the data. The sharp decrease in death cases in contrast to the

increase in reported infections could result from increase in testing (a lowering of the TPR)

and/or a decrease in IFR.

While the bias multipler decreases from 100 to 15, the IFR does not decrease as rapidly. At

2σ the data is consistent at about an IFR of 0.15%, which is the largest when compared to the

previously discussed cities. In Mumbai, a relatively smaller fraction of population (50%)

appears to be infected within this calculation. However, fluctuations in the infected data w.r.t.

the mean value translate to the uncertainties in the time-series estimation. Thus, the bands are

wider compared to Bengaluru, Chennai and Delhi. At the 2σ-level we estimate that 54-84% of

total Mumbai population may have been infected. R(t) shows a steady decrease within the

lockdown and after that till mid-August 2020 when it starts to rise again temporarily indicating

an upcoming second peak. Following the peak R(t) first reduces below 1 for a few months, then

rises to fluctuate around 1 in early 2021 till February.

Mumbai serosurvey data showed that 54·1% of samples in slums and 16·1% of those in

non-slums tested positive [110], in a study performed between June 29 and July 19, 2020. These

are broadly consistent with our estimates. Our estimates for cumulative infections and deaths are

plotted with data in the SI Section 3, Figure 11).

2.2.5 Pune

In this section we present our final city analysis, that of Pune in Figure 8. The population of the

district is taken as per projection for 2021 [109]. The posterior distributions and parameter

constraints for this calculation are provided in SI: Section 3, Figure 6 and Table 5. As was the

case with Chennai, Pune had imposed a local lockdown during 14-24 July 2020. There is

substantial scatter in the reported death data, compared to the data for numbers of infected. This

may arise from incomplete reporting initially. The infection data show a single prominent peak

structure with a possible kink around mid-July 2020. The global peak comes around

mid-September 2020, with infected numbers decreasing after that and becoming nearly constant

around November. The death reports follow the infection in standard manner. However we do

not find a substantial decrease in reported deaths vis a vis. infections. This is also reflected in

the IFR plot where we see relatively minor changes from the initial IFR.

The bias multiplier changes from 35 to 15 indicating an improvement in testing. We also find

a large infected fraction, of 64-90% of the population in Pune. Our estimated R(t) stays around

1.5 till September 2020 after which it comes down sharply to nearly 0.5 in two months. In

December we see a rise in R(t) which remains nearly constant till the end of the first wave
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Fig 7. Timeseries analysis for Mumbai. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b: top right] assuming no death undercounting.

Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d: right] obtained as a ratio between actual and reported infections.

The left plot [e] at the bottom panel contains the evolution of age averaged IFR. The bottom right plot [f] contains our estimation of R(t) and an independent [84]

measurement. Note that the bands correspond to 2σ and 3σ confidence levels.

around mid-February. R(t) from December 2020 to February 2021 stays at nearly 1 which can

also be observed in the flatness in reported cases and deaths.

A serosurvey in Pune, conducted between 20th July and 5th August 2020, found a
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Fig 8. Timeseries analysis for Pune. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b: top right] assuming no death undercounting.

Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d: right] obtained as a ratio between actual and reported infections.

The left plot [e] at the bottom panel contains the evolution of age averaged IFR. The bottom right plot [f] contains our estimation of R(t) and an independent [84]

measurement. Note that the bands correspond to 2σ and 3σ confidence levels.

seroprevalance of 51·3% (95%CI 39·9 to 62·4) [111]. The overall IFR was calculated to be 0.21.

The inferred seroprevalence lies well above our own median prediction of about 35% by August

2020, although our IFR estimates at that time are closer to the value inferred from the
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serosurveys, at about 0.17. We note, however, that the substantial spread in the inferred IFRs

across different localities even within the city make comparisons more difficult. Compartmental

models are insensitive to such ultra-local variations; other, more refined individual-based models

will be required to assess these effects. Estimations for cumulative infections and deaths are

plotted with data in SI (Ref. Section 3, Figure 12).

2.3 Projections and data fitting for Karnataka state: the effect of death

undercounting

We now present our analysis of Karnataka state viewed as an aggregate of all its districts.

Karnataka has both urban and rural districts. We will assume that a suitable estimate of

undercounting at the level of the entire state can be obtained through a population average of the

undercounting at the level of its individual districts. Accounting for the fraction of the total

population associated to each district, multiplying them by the district undercounting factor

U(D) and summing these values gives us a population averaged death undercounting for

Karnataka to be 2.2.

In this section we analyze the Karnataka infection curve in two ways. In the first, we assume

no death undercounting. In the second we multiply the reported deaths by 2.2 to account for

state-wide undercounting. For the calculations, the population data for Karnataka is sourced

from the projections for the period 2020-2021, as provided by the report issued by Directorate of

Economics and Statistics, Bangalore [100].

2.3.1 Karnataka: No death undercounting

In Figure 9 we provide model results for Karnataka state data assuming deaths have been

counted accurately. The posterior distributions and parameter constraints are provided in the SI,

Section 3, Figure 7 and Table 6). Both infected and death numbers are well described by the

model. The state-wide data has a single peak in both infected and deaths, indicating that the

many variable peaks present in the individual districts are averaged out to yield the relatively

simple structure shown in the figure. The numbers for those totally infected ranges between

15-45% at the 2σ level by mid February. We see that the strong urban to rural gradient in

seropositivity, once averaged across the state, yields infected fractions that are below those in the

urban regions. The bias multiplier follows results obtained from the city of Bengaluru.

The IFR shows a decreasing trend after lockdown with a final range of IFR between

0.05-0.12%, consistent with estimates from the serological surveys [99]. These surveys find an

overall adjusted total prevalence of 27.7% (95%CI 26.1–29.3); we obtain about 25% at the

mid-line of the 95% confidence interval in mid-September. The case-to-infection ratio was

estimated to be 1:40 while the infection fatality rate was 0.05%; our results are consistent with

both observations. The R(t) band shows an increase after the lockdown till August 2020. After

that R(t) decreases till December 2020 and stays below 1 till February 2021. In this case, bounds

on cumulative infections and deaths are plotted with data in SI (Ref. Section 3, Figure 13).

2.3.2 Karnataka: Incorporating death undercounting

Figure 10 shows our model predictions for the Karnataka state data where the death timeseries is

uniformly scaled with multiplier of 2.2. The related shifts in the posterior distributions and

parameter constraints can be seen in the SI : Section 3, Figure 7 and Table 6). The daily infection

and the scaled daily death report fits are similar to Figure 9. However compared to the discussion

that assumed no death multiplier predictions for the fraction of those infected ranges between

30-50% consistent with Table 5. A larger death undercounting thus leads to a higher estimates

of actual infection within the population. Correspondingly, the bias multiplier is also large.
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Fig 9. Timeseries analysis for Karnataka without death undercounting. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b: top right]

assuming no death undercounting. Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d: right] obtained as a ratio between

actual and reported infections. The left plot [e] at the bottom panel contains the evolution of age averaged IFR. The bottom right plot [f] contains our estimation of R(t) and

an independent [84] measurement. Note that the bands correspond to 2σ and 3σ confidence levels. We do not assume any death undercounting in this analysis.

With higher death numbers, the effective IFR decreases at a later stage (around September

2020), convering around February to the values without death undercounting. The effect of

death undercounting is absorbed mainly by the bias multiplier and therefore is reflected in the

June 2, 2021 27/43

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.21258203doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.02.21258203
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 10. Timeseries analysis for Karnataka with death undercounting. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b: top right] taking

into account estimated death undercounting. Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d: right] obtained as a

ratio between actual and reported infections. The left plot [e] at the bottom panel contains the evolution of age averaged IFR. The bottom right plot [f] contains our

estimation of R(t) and an independent [84] measurement. Note that the bands correspond to 2σ and 3σ confidence levels. In this analysis the reported death numbers are

multiplied with 2.2, the average death undercounting we obtained from Karnataka districts assuming Bengaluru Urban does not have any death undercounting.

actual infected numbers. We find that the R(t) is nearly identical to the analysis without death

undercounting. Assuming death undercounting, our estimates for the cumulative infections and
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deaths are plotted alongside the data in SI Section 3, Figure 14.

2.4 India

To describe the data for India, we assume that the death undercounting factor that represents

India as a whole is the same as that obtained for the state of Karnataka, a factor of 2.2. In doing

this we are motivated by the observations that the urban-rural gradient can be substantial and

that the division between urban and rural populations at the Karnataka state level and at the

national level are not too different, at an approximate ratio of about 35:65.

The national data for COVID-19 infections shows a single peak structure around

mid-September 2020, at a bit less than 98,000 cases. The daily numbers then began to reduce

after that reaching a value of about 10,000 by January of 2021. Our model fits infection and

death reports in three adaptive windows between March 1, 2020 and February 15, 2021. For our

calculations, we use India’s population data from the projections reported in the 2019 report

published by National Commission on Population [107].

We find the bias multipliers change from 120 to 20 in this time period, thus indicating that by

the end of the first wave, infections were being underestimated by the reported cases through a

factor of 20. This decrease is in accordance with the reported overall increase in testing during

this period. At the 2σ level, by the middle of February when the second wave began, we find

that between 20-50% (95% CI) of Indian population was infected, with a point estimate of about

40%. This is a more conservative estimate than made by others. However, we believe it is

consistent with the third ICMR serosurvey across December and January as well as with the

slow pace of case accumulation over January and February.

The IFR band is consistent with a global India IFR of about 0.1% (95%CI 0.05 - 0.15). The

R(t) band has several interesting features corroborated with the independent measurement

plotted in dots. Before the lockdown, the R(t) stays in the high range 2.5-3. During lockdown it

reduced to 1.5 and thereafter to the vicinity of 1.2. It stayed around 1.2 till August, going below

1 around October, signaling a steady decrease in infected numbers. A slight upward blip in

November 2020 is consistent with the festival season in the north and east of India. The R(t)

then stayed below 1 through till February 2021. Assuming death undercounting, estimations for

cumulative infections and deaths for India are plotted with data in SI (Ref. Section 3, Figure

14]5). We present the posterior distribution of model parameters for the national data analysis

in Figure 12.

Our estimates indicate that at the beginning of March the mean exposed population in India

was around 6000. Around 14 March the number of officially reported infections in India crossed

100, but we expect that a lot of infections must have escaped detection.

Three adaptive windows are defined between simulation onset (March beginning) to 154’th

day from the onset (August 2, 2020); between August 2, 2020 to October 21, 2020 (234th day

from the simulation onset) and October 22, 2020 to February 15, 2021 (simulation end). These 3

regions have three different associated infectivities β1 = 0.0755, β2 = 0.117 and β3 = 0.220.

This is the base infectivity with respect to the simulation onset. This is suggestive of two phases

in which increased relaxations of COVID-19-associated restrictions may have led to a rise of

cases, one around the beginning of August and one around the end of October, although one

should be careful not to overinterpret this data,

Note that the effective β is modified by the parameter τ which has a mean value of 142 days.

Therefore while the β is increasing with different windows, the effective β is also increasing.

The bias parameter is unbounded from above even with a conservative prior. However the time

evolution of bias determined by b and ∆b for national data indicates a steady decrease, reaching

a bias of around 20 as plotted in Figure 11. The IFR shows a transition around mid July (108 day

since the onset) with a width ∆IFR of 2 months. σ1 and σ2 represents the noise in the infected

and deaths data respectively. They are well constrained.
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Fig 11. Timeseries analysis for Indian national data. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b: top right] assuming taking into

account estimated death undercounting. Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d: right] obtained as a ratio

between actual and reported infections. The left plot [e] at the bottom panel contains the evolution of age averaged IFR. The bottom right plot [f] contains our estimation of

R(t) and an independent [84] measurement. Note that the bands correspond to 2σ and 3σ confidence levels. In this analysis the reported death numbers are multiplied by 2.2

to take into account a measure of presumed undercounting

The triangle plot of posteriors reveal strong correlations between parameters. Given the

time-series of infected persons, a fit to the initial data can be addressed either by having a large
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Fig 12. Marginalized posteriors of the parameters in the adaptive parametrization for India-level data.

initial exposed and lower infectivity or by having a smaller exposed population and a higher

infectivity. Such a negative correlation is seen in Figure 12 between Einitial and β1. Since smaller

τ1 results in a faster decrease in infection by lowering the effective β, to fit the infection data, if

June 2, 2021 31/43

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.21258203doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.02.21258203
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parameter 95% limits

Einitial 6580+1000
−900

(people initially exposed)

β1 0.0755+0.0020
−0.0021

β2 0.1170+0.0071
−0.0073

β3 0.220+0.019
−0.019

τ1 142.1+9.7
−8.7

(days)

Node1 153.9+4.2
−4.2

(day since the onset of simulation)

Node2 234.0+3.3
−3.4

(day since the onset of simulation)

∆IFR 62+10
−10

(days)

DIFR 108.4+7.5
−7.0

(days)

b > 194 (multiplier)

∆b 245+16
−15

(days)

σ1 0.365+0.031
−0.028

σ2 0.237+0.021
−0.019

Table 6. Mean and 95% bounds on the parameters. These values correspond to the posteriors plotted in Figure 12.

βi increases, τ must decrease to maintain a similar level of effective infectivity. These negative

correlations are reflected in the contour plots as well. The slope of the infection curve is given

by β; the β’s are thus positively correlated.

3 Discussion and Conclusions

This paper describes the application of an epidemiological compartmental model, INDSCI-SIM,

to COVID-19 in India. We focused on describing the first wave, starting from the first case in

India on January 30, 2020 and continuing till mid-February, 2021, when a second and more

destructive wave was initiated. Our intent was to obtain reasonable estimates for the fraction of

the Indian population that was infected prior to the onset of the second wave. A parallel aim was

to arrive at credible estimates of the Infection Fatality ratio (IFR) and of the undercounting of

both cases and deaths during the first wave.

Assuming that deaths were recorded accurately in one urban district of Karnataka, we chose

an infection fatality ratio for which our predicted fraction of infections and the fraction obtained

through serosurveys in early September 2020 were approximately equal. We then used this to

determine the extent of death undercounting across other districts of Karnataka, both urban and

rural, by examining consistency between the numbers of infected as estimated through

serosurveys and the numbers of deaths that should have resulted given the IFR value. We found

that some districts could have under-counted deaths by a factor of about 5. Rural districts, in

general, tended to have lower levels of infection spread, likely associated to the fact that

agricultural labour and a good fraction of the rural workforce work outdoors, where infection

risk is decidedly less. We thus estimated the overall fraction of infected in Karnataka to lie in the

interval 30%-50%. Then, factoring this death undercounting into our calculation, we switched to

a more refined calculation in whicn the IFR itself was allowed to vary. Averaging over all

districts weighted by their populations yielded a factor of 2.2 between total actual and reported

deaths in Karnataka state. We used these results to estimate that between 20-70% of the

population across these districts were infected by February 2020.

Our results for the cities of Mumbai, Delhi, Pune and Bangalore - we assume no death

undercounting here - indicate that, by February 2021, almost 60-80% of the population were
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infected, consistent with serological surveys in these cities. We found that only one in 15-20

cases were detected overall [112]. The effective reproductive ratio in all cases settled to just

below 1 between December 2020 and February 2021, a period where cases were declining

across India.

Our analysis for India, incorporating the same level of death undercounting as for Karnataka

state, estimates that a fraction of about 40% (CI: 20-50%) have been infected at the 95%

confidence level by the end of the first wave. We believe that this estimate, distinctly on the

lower side of estimates by others, may account for the speed at which the second wave has

spread. It may also account for the fact that rural spread seems to have been far larger in the

second wave as opposed to the first, although the plight of urban India has tended to attracted

more attention.

Our IFR estimates, though broad, are consistent with an inferred IFR of about 0.1%, with a

broad 95% CI of (0.05 - 0.15). These are, as mentioned earlier, on the lower side vis a vis.

population-based estimates for LMICs in general. We caution here that the extent of death

undercounting will impact any estimate of the IFR. There are, as yet, no completely credible

estimates of the extent of undercounting in the first COVID-19 wave in India [50, 113, 114]. In

principle, we could have repeated the district-wise analysis we performed for Karnataka state for

all states in India, but would be faced with the same problem, that of finding a benchmark

district where we could safely assume that deaths were being counted more-or-less accurately

(or knowing the extent of undercounting precisely) and then adjusting the mortality figures of

other districts accordingly. We expect that as more data is obtained through better proxies for

COVID-19 deaths or through accurate estimations of all-cause mortality, we should be able to

refine these calculations further with more precise input.

The results presented here should be valuable in determining the initial conditions for the

second wave, especially since we compute the posterior probabilities for the parameters which

enter our model. Given these, and additional epidemiological and clinical input, for example the

fraction of reinfections upon the introduction of a new strain, the decay of humoral immunity,

the persistence and extent of cellular immunity, a vaccination program that was being slowly

ramped up at the time of onset of the second wave as well as other features of the Indian

response across February and March of 2021, we can then begin to address the question of what

led to the fast increase of cases in the second wave. Our methodological innovations include

accounting for a time-dependent improvement in case identification as well as in treatment

leading to lower mortality, all implemented within a fully Bayesian framework. Questions such

as the issue of reinfections as a consequence of immune escape, of partial immunity from the

ongoing vaccination program, of vaccine breakthroughs at a low rate and of the impacts of

multiple lock-downs applied inhomogeneously throughout the country should factor into any

further analysis of events after the end of the first wave of COVID-19 in India. These impact

public health policy intimately, especially as they are relevant to both testing strategies and

vaccination policies [115, 116]. It is here that we expect that well formulated and bench-marked

models should be of substantial use, both to understand the past better as well as to project the

future more accurately.

4 Codes developed and used

We developed a fast FORTRAN code ELiXSIR – Extended, zone Linked IX-compartmental

SIR model: a code to simulate COVID19 infection as a solver for the model [117]. A version of

ELiXSIR is available for download in https://gitlab.com/dhirajhazra/eSIR INDIA. The code is

designed for arbitrary number of age groups and regions. This code is slightly modified for

accommodate all parameters in the adaptive parametrization discussed in the text and compare

with the data.

We acknowledge the use of PolyChord through the publicly available code

CosmoChord https://github.com/williamjameshandley/CosmoChord. ELiXSIR is fused with

June 2, 2021 33/43

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.21258203doi: medRxiv preprint 

https://gitlab.com/dhirajhazra/eSIR_INDIA
https://github.com/williamjameshandley/CosmoChord
https://doi.org/10.1101/2021.06.02.21258203
http://creativecommons.org/licenses/by-nc-nd/4.0/


CosmoChord for the purpose of data analysis and post processing. A detailed discussion of

our analysis in SI (Ref. SI: Section 6).

Supporting Information (SI)

SI: Section 1: Computation of reproduction number R0

We provide the calculation of the basic reproductive ratio corresponding to the age-stratified

model, assuming uniform infectivity and values of ǫ = 1, using a next-generation-matrix method.

SI: Section 2: Contact matrices between stratified age-groups

We describe how the contact matrices of Ref. [77] can be specified for our use here, combining

contact matrices with a 5-year resolution into a more coarse-grained description.

Figure 1 : The coarse-grained contact matrices for India during (top) and without lockdown

(bottom)

SI: Section 3: Posterior distributions and correlations between parameters

We discuss the posterior distributions that emerge from our calculations, with figures and tables

corresponding to our analysis for multiple cities, for Karnataka state and for India-wide numbers.

Figure 2: Bengaluru Urban analysis Marginalized posteriors of the parameters

Table 1: Bengaluru Urban analysis Constraints on parameters

Figure 3: Chennai analysis Marginalized posteriors of the parameters

Table 2: Chennai analysis Constraints on parameters

Figure 4: Delhi analysis Marginalized posteriors of the parameters

Table 3: Delhi analysis Constraints on parameters

Figure 5: Mumbai analysis Marginalized posteriors of the parameters

Table 4: Mumbai analysis Constraints on parameters

Figure 5: Pune analysis Marginalized posteriors of the parameters

Table 5: Pune analysis Constraints on parameters

Figure 7: Karnataka analysis Marginalized posteriors of the parameters

Table 6: Karnataka analysis Constraints on parameters

SI: Section 4:

Plots for cumulative infection and deaths
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Figure 8: Bengaluru Urban: Bounds on cumulative infection and deaths plotted with

reported data

Figure 9: Chennai Bounds on cumulative infection and deaths plotted with reported data

Figure 10: Delhi Bounds on cumulative infection and deaths plotted with reported data

Figure 11: Mumbai Bounds on cumulative infection and deaths plotted with reported data

Figure 12: Pune Bounds on cumulative infection and deaths plotted with reported data

Figure 13: Karnataka - no death undercounting Bounds on cumulative infection and

deaths plotted with reported data. Here no death undercounting is assumed.

Figure 14: Karnataka - incorporating death undercounting Bounds on cumulative

infection and deaths plotted with reported data. We assumed a multiplying factor of 2.2

(estimated using the Serosurvey data) for death undercounting.

Figure 15: India Bounds on cumulative infection and deaths plotted with reported data. We

assumed a multiplying factor of 2.2 (estimated using the Serosurvey data) for death

undercounting.

SI: Section 5:

Brief discussion on Nested Sampling. Here we very briefly outline how PolyChord works as

a sampler.

SI: Section 6:

Flowchart of our analysis. Here we present the logical flow of our analysis. We discuss given a

data and a model how our analysis pipeline works to obtain the constraints.

Figure 16: Flowchart Schematic diagram of our analysis.
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