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ABSTRACT. To each bounded operator C on the complex Hubert space H
we associate the vector space K^-- consisting of those x e K for which  C x-,0
as n— oo. We let a(C) denote the dimension of the closure of  K¿- and we set
/3(C) = dim (Kp-). Our main theorem states that if H is Heimitian and if H — C*HC
is positive and invertible then   a(Q s 77(H), /3(C) = v(H), and /3(C) a S(ft) inhere
(n(H), v(H), 1(H)) is the inertia of H. (That is, 77(H) = dim (Range  £[(0, 00)])
where  E is the spectral measure of H; v(H) = n( — H); and   S(H) = dim(Ker //).)
We also show (1) that in general no stronger conclusion is possible, (2) that, un-
like previous inertia theorems, our theorem allows 1 to lie in  cr(Q, the spectrum
of  C, and (3) that the main inertial results associated with the hypothesis that
'Re(HA) is positive and invertible can be derived from our theorem. Our theorems
(1) characterize  C in the extreme cases that either tr(H) = 0 or v(H) = 0, and
(2) prove that  a(C) = 77(H), /3(C) = v{H),   S(H) = 0 if either 1 t o(C) or #C)<oo.

1. Introduction.  Let BÚi) denote the algebra of bounded linear operators on
the complex Hubert space H. We shall assume that H is separable. (This causes
no loss of generality because at each stage we deal with only finitely many oper-
ators, and so every higher dimensional space is an orthogonal direct sum of sep-
arable summands which reduce all the operators we are discussing. Thus it can

be shown that the validity of our theorems in the separable case implies their
validity in the general case.)

Let 77+ denote the open right half-plane Re z > 0, let n_ = - n + , and let trQ
denote the imaginary axis. Suppose that A e B(K) and that there exists a spec-
tral measure E (cf. [2, p. 888]) such that for r? = +, -, 0:

(1) The domain of E contains n  ,

(2) EvA = AEV where E^ = E(^), and
(3) o{A) Ç77     where A^ denotes A restricted to K   , the range of E   .

Let MA denote the set of all such spectral measures, and letting E tange over
"SilA  set

77(A) m min dim range E+,   v(A) « min dim range E_,    8(A) « sup dim range EQ.
E B E
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80 B. E. CAIN

Then In^(A) = {n{A), v{A), 3(A)) is the inertia oí A. Sometimes there exists an
E ejR^ such that In^A) = (dim range E+, dim range E_, dim range EQ). Two
important examples of this are discussed in §7. One is the normal operators.
Here the special spectral measure is the one constructed in the spectral theorem.
The other is the operators A such that o-(A), the spectrum of A, misses lO <
|Re z| <t\ for some positive   e (depending on A). Here the special E    is deter-
mined by integrating the resolvent of A around an appropriate Jordan curve which
encircles   n   n a{A).

The prototype for our results is the following Main Inertia Theorem. Its claim
to this title comes from the fact (expounded in [l] and [4]) that very general forms
of two  "classical" inertia theorems, viz. Lyapunov's theorem and Sylvester's
theorem, can be derived from it. The finite dimensional case of the following
theorem appears in Ostrowski and Schneider [4]. Taussky [6] and Williams [8]
also contain parts of it.  We   shall write T » 0 to mean that T e B(K) is positive
and invertible.

Theorem A (Main Inertia Theorem [l]). Suppose A € BiK).
(a) There exists a Hermitian H such that Re(HA) » 0 if and only if oiA)n

*o = 0.
(b) // Re (HA) » 0 then In^A) = In^H).

In [7] .Taussky showed that questions about Lyapunov's condition Re(//A) » 0
can often be translated into questions about Stein's condition H — C*HC » 0 by
means of the linear fractional transformation w = <£{z) = (z - l)/(z + l) and its
inverse z= tp(w) = (l+ w)/(l- w). A direct computation shows:

(1) If Re(HA) » 0 and if C= <#A) exists (i.e.- IttoiA)) then H- C*HC»0.
(2) If H -C*HC » 0 and if A = 0(C) exists (i.e. 1 4 oiO) then Re(fYA) » 0.

If we let A+, A_, AQ denote the sets of complex numbers z defined by the res-
pective conditions |z| < 1, |z| > 1, |z| = 1, then <f>(77+) = A+, <p(nj = A_ uW,
and <pirr0) = AQ\{li. (Also 0(A+) = tt+, 0(AJ = >r_\i- li, and tfi\) = nQ uM.)
Thus in passing from theorems of Lyapunov "type" to ones of Stein "type",
In , which we defined with respect to the sets it   , is replaced by an inertia In4,
which is defined by simply replacing n    by A     in our definition of In^..

When translated in this way Theorem A becomes

Theorem B. Suppose that C e BÖQ and 1 ioiC).
(a) There exists a Hermitian H such that H - C*HC» 0 if and only if

(AO n A0 = 0.
(b) If H- C*HC » 0  then  InA(C) = IoAh).

This theorem is not strictly analogous to Theorem A since we have assumed
throughout it that 1 ¿oiC). We shall provide several alternative assumptions
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INERTIAL ASPECTS OF STEIN'S CONDITION H - C*HC » 0 81

which permit the same conclusions, but without some extra hypothesis part (a)
can be false (we give examples) and InA(C), which appears in part (b), may not
be defined. In fact, assuming that InA(C) exists is one adequate alternative to
assuming that 1 ¿o(C). But the listing of substitute hypotheses is incidental to
the aim of this paper. Our aim and our central result is a general inertia theorem
which applies to every pair C, H satisfying H - C*HC » 0, whose proof does
not depend on those of Theorems A and B, and from which those theorems and
their variants may be derived. We shall now formulate this theorem.

For each C e B(K) let Kc denote the vector space consisting of those
x eK such that Cnx —»O as n —» ». Let oXC) denote the dimension of the clo-
sure of Kc and set /3(C) = dim (JO.

Theorem C. Suppose that H - C*HC » 0 where C, He B(K) and H is
Hermitian.  Then:

(a) Kc is a closed invariant subspace for C.
(b) a{C) < tÁH), ß(C) = iÁH), and /3(C) > 8(H).
(c) No numerical relations hold, in general, among   a[C), /3(C), tt(H), v(H),

b\H),  except those listed in (b) and their consequences.

(d) // /3(C) <~ then A0 noiC) = 0.
(e) In^(C) exists if and only if A. C\o(C) = 0.
(0 // InA(C) exists then InA(C) = (a(C), /3(C), 0) = In^H).

2. Properties of the solutions to H - C*HC » 0. In this section we establish
some of Theorem C. Part (a) is Theorem 2.4, and Theorems 2.6 and 2.8 give
part (b). We assume throughout that C, H satisfy H - C*HC "» 0. We defer to
§§4 and 5 the question of whether such pairs C, H exist. Let BH(K) denote
the set of Hermitian elements of B(K) with the norm topology it inherits. We
denote by S, or sometimes S(K), the subset of B(K) x BH(K) consisting of the
pairs (C, H) for which H - C*HC » 0.

Proposition 2.1. S is an open subset of BÚ0 x BHŒ).

Proof.  The set {D » o! is an open subset of B//(K) and its inverse image
under the continuous map (C, //)—»//- C*HC is just S.    G

Proposition 2.2.  // (C, H) e S then  H, C*HC, (C*)2HC2, •••   is a decreas-
ing sequence.

Proof. (C*)nHC - (C*)"+1r/Cn+1 = (C*)"(H - C*HC)C > 0.    D

Theorem 2.3.  // (C, H) €cS and x eK then:
(a) The sequence C"x either converges to 0 or diverges to <».
(b) lim^^, Cnx = 0 if and only if the sequence (HCx, C"x) is bounded

below.
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82 B. E. CAIN

Proof. Set D = H - C*HC and pick m > 0 so that D > ml. By Proposition
2.2 the sequence {HCx, Cnx) is decreasing for each x. If for some x it is
bounded below, it will converge, and then

0 < m\\Cnx\\2 < (DCx, C"x) = (HCnx, Cnx) - (HCn+lx, Cn+1x) ^ 0   as n ^ oo.

Hence Cx -► 0.
If for some x the sequence (HCx, C"x) is unbounded, then the inequality

Ml • ||C"x|| 2 > \(HC"x, C"x)\  shows that ||C"x|| -» » as n -» oo.    n
For each C e B(H) both Kc and its closure Kc are easily seen to be invari-

ant vector spaces for C.

Theorem 2.4.  // (C, H) eS then Kc is closed.

Proof. We shall omit the subscript C. Proposition 2.2 shows that for each
xeH

(Hx, x) > (HCx, Cx) > ... > (HCx, Cnx).

Since Cx —»0 if x e K, it follows that (Hx, x) > 0 for every x e JC and hence
for every x eK.

To see that K C K suppose that x eK. Since K is invariant under C we
know that Cx eK and, from the preceding paragraph, that {HCx, Cx) > 0. Now
Theorem 2.3(b) implies that Cx —» 0, i.e. that   x eK.    P

Corollary 2.5. If m>0 and H - CHC > ml then (Hx, x) > m\\x\\2 for every
xeKc.

Proof. The proof of Theorem 2.4 shows that (Hy, y) > 0 for y eKc and that
Cx eKc if xeKc. Thus if x eKc and if y = Cx  we have  (iVx,  x) >
([»2/ + C*HC]x, x) = i»||x|| 2 + (Hy, y) > m\\x\\ \    D

If H is Hermitian and if H     for 7/ = +, -, 0 are the closed orthogonal
subspaces used in defining In^ÍH) then for 7/ = +, -, 0 we shall denote by P_
the orthogonal projection onto K   .

Theorem 2.6. // (C, H) e S /¿er* (1) oie) < tKH), a»¿ (2) v(H) + ¿Xn) < /3(C).

Proof.  By Corollary 2.5 there exists an m > 0 such that m||x||2 < (Hx, x) for
every x eKc. Since (Hx, x) < 0 for every x e(K_ © KQ) it follows that Kc O
(K_ © K0) = loi. We draw two conclusions. First that since KerÍP^) = K_ © Kg,
the projection P+  is 1-1 when it is restricted to Kc. So oiC) < 77(H). And second
that the orthogonal projection of K onto Kc is 1-1 when restricted to K_© KQ.
So v(H) + b\H) < /3(C). D

Theorem 2.7. Suppose that (C, H) eS and let £ be a finite dimensional sub-

space ofKc. Then there exists a positive integer n for which P_C": X—»K_ is 1-1.
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Proof. Since dim £ < oo, for each positive integer k the set Vk = \x e£| ||x||
= 1 and (HCkx, Ckx) > u! is compact. Furthermore, Vfc  , Ç Vfe for each k be-
cause (C*)k+1//Cfc+1 <(C*)kHCk. If z e 0^=1^* then («C*z, C*z) > 0 for
every k, and by Theorem 2.3(b) Ckz —► 0. Thus z e Kc n £ Ç Kc n K¿ = iOt and
yet ||z|| = 1. So no such z can exist and CX^-i^k must be empty. By the finite
intersection property some V,, say V , must be empty« Hence if xe£ and
||x|| = 1 then 0 > (HCx, Cx) > (HP_Cnx, P_Cx). Thus P  Cx 4 0 and P_C:
£-*K_ isi-i.  d

Theorem 2.8. // (C, //) eS then (1) /3(C) = v(tí), (2) 8(H) < /3(C), and (3)
aiC) = rKtf) and 8(H) = 0 /'/ /3(C) < oo.

Proof. First we show that /5(C) < v(H). Theorem 2.7 shows that iAH) is at
least as large as the dimension of any finite dimensional subspace of Kc. So
when /3(C) < » we have /3(C) < v(H). But when /3(C) = oo, Theorem 2.7 shows
that v(H)  cannot be finite. Thus /3(C) = v(H)  since we assumed that K is
separable.

Combining /8(C) < v(H) with the inequality íÁH) + Sin) < /3(C) given in
Theorem 2.6(2) leads immediately to the conclusion that /8(0 = v(H), Sin) </3(C),
and 8(H) = 0 if /3(C) < oo. When v(H) = ß(C) < oo and 8(H) = 0 it follows that
aiC) = 7ÁH) because a{C) + ß(C) = dim(K) = tAh) + íÁH) + 8(H).    D

Theorem 2.7 shows that the maps P C can be used to embed finite dimen-
sional subspaces of Kc into K_„ Certain infinite dimensional spaces which are
of interest in inertia theory can be similarly embedded„

Theorem 2.9.  Let (C, H) eS and suppose that £ is a closed invariant sub-
space of C such that oiC\g) C A_.  Then there exists an integer n>0 such that
P_C":£-»K_  is 1-1.

Proof. Let Q= P+ + P0 and set He= H + eQ for e > 0. Then H{Q > eQ, and
if x eKer(P_Ck) we have

(Hfkx, Ckx) = (H/_Ckx, Ckx) + (HgCkx, Ckx)

> ÁQCkx, Ckx) = e||(g + PjcVfl2 = i||C*x||2t

Furthermore if e > 0 is picked so small that (C, H£) e S we obtain

0 < (Hx, x) - (HCkx, Ckx) < (Hx, x) - f||C*x||2.

Thus £ n Ker(P_C*) Ç ix e£| f ||C*x|l < (He*. *)l ^^ "e shall finish the proof
by showing that if k is large enough then this set is just loi. It suffices to show
that our assumptions on £ imply that the sequence afc = inf l||C*x||: x e£ and
||x|| = l! diverges to oo.

Let B = C|£ eß(£). Since lim sup||B_n||1/n is the spectral radius of B'1
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there exists an integer m > 0  such that y = ||B~m||1/m < 1.  Then for every
integer  * > 0  we have   ||B~k|| < Myk  where  Ai = max{y-;'||B-,'||:   ; »
1, ... ,   m - ll.   (To see this write   k = qm + r with  0 < r < !»  and note that
l|B-*l! < ||B-m||ÍB-1| = (y-llB-'IDy"»*'.) So

fA-Yk < IIB"*!"1 = inf {||B*x|| |x € £, ||x« - 1|.

Thus ak > M~ly~k which diverges to oo with k.    D

3. Sharper inertia theorems using extra hypotheses. We begin this section by
examining those (C, H) eS with AQ naiC) 4 0. In this case ar(C), the residual
spectrum of C, must include an open annulus a(C) containing A0. Let a(C) or
a(C, H) be the largest annulus of the form \z: l/r< \z\ < r and (zC, H) eS!.
(Since S is open such a set will be an annulus if r> 1 is small enough.) Let
A(C) denote the approximate point spectrum of C.

Lemma 3.1. // (C, H) eS then a(C) O A(C) = 0.

Proof. Let X e a(C) and set B = A" lC. Since À-1 e a(C) we can pick
!» > 0 such that H - BHB* > ml. If ||x|| = 1 we have 0 < !» < (Hx, x) - (HBx, Bx).
Furthermore, if 1 eA(ß) we can select x so that (HBx, Bx) is arbitrarily close
to (Hx, x) and that contradicts the positivity of m. Thus 1 ¿ A(B) = A_1A(C),
that is XÉ A(C).    D

Theorem 3.2. // (C, H) eS and a(C) HoiC) 4 0 then a(C) CaT(C).

Proof. If a(C) does not contain a(C) there must exist a X edo(C) O a(C).
But daiC) C A(C) so by the lemma no such X exists. Thus a(C) C Ac) and using
the lemma again shows that a(C) C<r(C)\A(C). Since AC)\A(C) is contained in
ar(C) we are done.    D

Corollary 3.3. Suppose (C, H) eS.   Then a(C) and o(C) will be disjoint if
any one of the following holds:

(a) a(C)\a(C)4 0.
(b) There exists a Hermitian K with (C*, K) € S.
(c) oiC) is totally disconnected (e.g.  C is compact.)
(d) C is normal.
(e) InAC) exists.

Proof, (a) If a(C)\AC) 4 0 then a(C)\ffr(C) 4 0 and the contrapositive
of Theorem 3.2 applies.

(b) Since or(C) lies in the point spectrum of C*, crr(C) C. A(C*) and since
Lemma 3.1 shows that A(C*) misses a(C), we know that a(C) O a(C*) = 0.
The contrapositive of Theorem 3.2 applies.

(c) If AC) is totally disconnected and AC) n a(C) 40 then da(C), which
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lies in A(C), also shares points with a(C). Since this contradicts Lemma 3.1,
oiC) n a(C) = 0.

(d) Since A(C) = oiC) when C is normal, this part follows from Lemma 3.1.
(e) If InA(C) exists then C and K can be decomposed C = C+(& C„(& CQ,

K = K+©K_©K0 with C    e ß(K  ) and oiC ) contained in A    (the closure of
A  ) for 77 = +, -, 0. If oiC) n A0 4 0 then for some 77

0 ¿ oíc^) o A0 C doiCj C A(C ) C A(C)

which contradicts Lemma 3.1.   D
Part (e) of this corollary is half of Theorem C(e). The other half follows from

the Riesz decomposition theorem [5, §148]. The next theorem establishes part
(d) of Theorem C.

Theorem 3.4. // (C, H) eS and if a(C) DoiC) ¿ 0 then /3(C) = «>.

Proof.  Let E denote the orthogonal projection of K onto Kc and let F =
I - E. Since Jvc is invariant under C we know that C = ECE + ECF + FCF and
that oiC) ÇoiECE) U oiFCF). (To prove the latter let R, S, and T denote the
respective results of restricting ECE to EK, ECF to EK, and FCF to EK. Then
C=(J  *).  If 0¿o(R)UoÍT) then

exists, and so 0 ioiC). When C is translated by - XI this argument shows that
if A ia(R) U a(T) then A ¿o(C). In other words oiO C o(R) U oiT). Thus it suf-
fices to prove that oÍR) CoiECE) and that o(f) CoiFCF). If XtoiECE) then
[R- AOI^)]-1 = (ECE-A/)-M EH, and so \t<ÁR). Thus a(R) Co< ECE). The
proof that oAT) CoiFCF) is similar.) Since Cx—* 0 for every x in Kc it fol-
lows that (ECE)" x —» 0 for every x in K, and hence that oiECE) C (A+ U AQ).
If the theorem is false then /3(C) < «> and oiFCF) is finite. So if /3(C) < 00 then
oiC) n A_ is finite. However Theorem 3.2 shows that a(C) O A_ is infinite. There-
fore /3(C) must be infinite.    D

To establish part (f) of Theorem C we assume that In^(C) exists and that
(C, H) e$. Then Theorem C(e) shows that oiC) n a(C) = 0. Using Riesz's
theorem to decompose C and K we obtain K = K+ ©K_ where K+ = Kc and
dim K¿ = dim K_. Thus InA(C) = (aie), /3(C), O). The remainder of part (f) is
proved in the next theorem.

Theorem 3.5. // (C, H) eS and if oiC) n AQ =0 then ln4(0 = Inff(/i).

Proof. We know that InA(C) = (a(C), /3(C), O) and /3(C) = iXtf). When
a(c) = 00 then a(C) = n<H) because K is separable and aiC) < tAH). If oj(C)<oo,
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then by changing C an arbitrarily small amount on Kc we can obtain an invert-
ible operator B such that a(C) = a(B), /3(C) = /3(B), and (B, H) e§„ Since B
is invertible (B~l,-H)e S, and so a(C) = a(ß) = ß(B~J) = A- H) = AH).

Since 1 i AC), A = 0(C) = (/+ C)(/- C)_1 exists and Re(AH) » 0. (See
(2) in the Introduction.) If 8(H) > 0 there exists x e(Ker H)\{0i, and then 0 <
(ReUH)x, x) = ReUHx, x) = 0. Thus 5(H) = 0.    D

When (C, H) e S and AC) n AO = 0 the relation between AH) C\ n+ and
AO O A+ can be simply summarized by AH) = <AC). However, when AC)c\
AC) 40   the relationship may be more complicated. For example, the next
theorem shows that if AO O AC) 4 0  and AH) < oo, then {z: \z\ < [r(C)]~ M
(where r(C) is the spectral radius of C) is contained in AO. Let X* be the
complex conjugate of X.

Theorem 3.6. Suppose that (C, H) eS and a(C) O o(C) 4 0.  // í¿ere exists
a X4o\C) such that l/X* 4 o(C) (e.g. if C is invertible) then AH) = oo.

Proof. Since AQ CAO, X 4 AQ and so either X or l/A*  lies in A+. There
is no loss in assuming that X e A+. If $(z) = (z - X)/(l-X*z) then B = 0(C)
exists because l/X* 4 AO.  A direct computation using C= 0-1(B) and
(C, H) ecS shows that (B, H) e§. Since À 4 AO, B is invertible, and so
(B-1, - H) e S. Thus AH) = A-H) = ß(B~1). Since AQ C a(C) and since Ö(AQ) =
AQ, we know that AQ cAB~1). So Theorem 3.4 shows that /3(B-1) = oo.    q

4. The existence of solutions to H - CHC » 0. In this section we establish
the existence of solutions H to H - C*HC ~» 0 under the assumption that A   n
cHC) = 0. We also characterize the solutions C to H - C*HC » 0 in the extreme
cases where //»O and where f/«0.

Theorem 4.1. (See also [l, p. 102].) Given D » 0 there exists an H » 0
saci that H -CHC = D if and only if r(0 < 1. When such an H exists it is
unique.

Proof. If r(C) < 1 the root test shows that we can define the mapping
D -> 2~=0(C*)*DCfc, which is the inverse of the mapping H-* H - CHC. Then
H = 2(C*)feDC* » 0 is unique.

If H - CHC » 0 for some Hermitian H > 0 there exists a t > 1 such that
H-(tC)*H(tC) » 0 also. By Proposition 2.2 H, (tC)H(tC), (tC)2H(tC)2, •••
is a decreasing sequence. Since it is bounded below by 0, Theorem 2.3 shows
that (tC)nx —* 0 for every x e K. By the uniform boundedness principle for some
M > 0 we have ||(iC)n|| < Ai for n = 1, 2, 3, • • • • Hence r(0 < rlUia (Al/n < 1. D

Theorem 4.2. (See also [l, p. 104].) // a(C) n AQ = 0 then there exists a
Hermitian H such that (C, H) e S.
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Proof. Let C = C+®C_ be the Riesz decomposition of C with respect to
the spectral sets w   = a(d) O A    for 7/ = +, -. Then cHC)    ■ w   and we
introduce the corresponding decomposition of K and the identity operator K =
K+ ©K_ and / = /+ © /_. Since dim K_ = dim(K+), there exists an isometry U
taking K+ onto K_. If S = /+ © U then S is invertible and SCS~ ' =C+ © B where
B = i/(CjU_1 eB(K+). Since oiB) Q w_, B is invertible and oiB'1) C A+. By
the preceding theorem there exist Hermitian operators 0 « K e B(K+) and 0 «K

LeB(K+)  satisfying

K-C*KC+=/+,    and    L - (B"1)*LB"1 - (B'^B"1 » 0.

Then B*LB - L is the identity operator in B(K+). If H = K © (- L) e B(K) then
E* = K* © (- L*) = H and (SCS" ')* = C* © B*. since the direct sums are orthog-
onal. And so

H - (SCS_1)*E(SCS_1) = [K - C*+KC+] © [-(L - B*LB)] = 7 » 0.

Thus (C, S*E5) eS.   D

Lemma 4.3. Suppose that H « 0 and let 0 « K = v'-Ë-  77>e« (C, E) e S ¿/
aw/ o»/y i/ (KCK- 1)*(KCK~!) » /.

Proof. Since (C, E) eS if and only if (KCK-1, K-'EK-1) e cS and since
K~ XHK~l = - / we are done.    D

Theorem 4.4. Let U be a partial isometry such that U*U = I, and suppose
that P » I and K » 0. Then (K~ 1UPK, - K2) e S and every (C, H) e S for which
H « 0 has this form.

Proof. The first part comes directly from Lemma 4.3. For the second part we

let K = y/- H » 0 and we let UP be the polar decomposition of KCK~ . By the
lemma PU*UP » / and so the projection U*U must be invertible. Thus U*U = /
and P » /.    D

5. Examples showing that our results are sharp. If (C■, H) eS(K-) for
j = 1, 2 then it is easy to see that (with orthogonal direct sums) (Cj © C2,
Ej © H2) eSCK, © K2). Using this fact and the following basic examples we
shall construct all the examples we need to verify part (c) of Theorem C. Namely,
that the only relations which hold in general between aid), /8(C), 77(E), iAH),
8(H) can be derived from aiC) < tAh), /3(C) = v(H), /8(C) > 8(H). In all our ex-
amples (except (7)) AQ C oiC); fot if not, then we know that aid) = n(H), ß(C) =
v(H), iAH) = 0 by Theorem 2.8. And examples with such behavior can be con-
structed trivially as in the proof of Theorem 4.2. In the examples which follow the
quickest way to check that AQ C oiC) is usually to note that b\H) 4 0 or aid) 4
iAH). In order to have AQ C aid) we must at least start with /8(C) = v(d) = <*>.
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Example.  Let K = I2, the space of square summable complex sequences. Let
H, D be represented by diagonal matrices H = diag[a, - 1, - 1, • • •] and D =
diag[0, 2v, 2, 2, • • « ]. Let S denote the unilateral shift S[x    x2, .. • ] =
[0, Xv x2, • • • ].  Then if C = DS we have H - C*HC = diag[a + 4v, 3, 3, • • • ].
Thus (H, C) e S if u + 4v > 0, and /3(C) = AH) = oo. We consider three such
choices of (a, v):

(1) If (a, v) = (1, 0) then a(C) = 1, tt(H) = 1, 8(H) = 0.
(2) If (a, v) = (0, 1) then a(C) = 0, tKh) = 0, 8(H) = 1.
(3) If (a. v) = (1, 1) then a(C) = 0, AH) = 1, 8(H) = 0.

Given any a, /3, », v, 8 such that ß = v - » and a < » we can construct a sep-
arable Hilbert space K0 and (Cn, HQ) e§(K0) such that a= a(Cn), ß = /3(C0),
n = AHq), v = AHq), 8 = 8(HQ) as follows. Let KQ be the direct sum of a +
(» - a) + 5 copies of I2. (If a = n = oo take » - a = 0.) Let CQ (resp. HQ) be
a direct sum of C's (resp. H's) of the types (1), (2\ and (3) above. Use  a cop-
ies of type (1), »r- a copies of type (2), and 8 copies of type (3). If a = tt =
8 = 0 this process fails, and in its place we use example

(4) Set C = 2S and H = - /.  Then H - C*HC = II, AO = 2A+, and a(C) =
AH) = Sin) = 0. (This example is covered by Theorem 4.4.)

In the examples above C has a left, but no right, inverse. To find examples
with C invertible and AQ C o\C) we must take AH) = » by Theorem 3.6.

Our basic example in this case is
Example. Let £ be the Hilbert space of bilateral square summable sequences

[•••»*«i (xq)> *i> •••]» (We always enclose the zeroth position of the sequence
in angular brackets.)   Let H, D be given by diagonal matrices

H = diag[..., 1,1, (a), -1, -I,.--]    and    D = diag [. ••, lA, M, (1), 2, 2,...].

Let T denote the shift [•••,*_ j, (xQ), Xj, ...]—»[.. -,x_ 2, (x_ j), x0, Xj,-..].
If C = DT then C is invertible and H - C*HC - diagt- • •, 3/4, 3/4, 1 - a, (a + 4),
3, 3, •••] so (H, C)eS(£) if-4<a<l.

(5) If a = - 1 then AO = 8(H) = 0.
(6) If a = 0 then ct(C) = 0 and 8(H) =1.

Given a, S we can find (C, H) e§ with C invertible such that a(C) = a, 8(H) = 8,
and 77(H) = ß(0 = v(H) = 00 as follows: When a = 8 = 0 we use (5); when a =0
and 8 > 0 we take a direct sum of S copies of (6). If a > 0 and 5=0, the direct
sum of (5) with a copies of the one dimensional example (C, H) = (lA, l) works.
For a > 0 and 5 > 0 we use a copies of (C, H) = (lA, l) and 5 copies of (6).

Since S is open it follows that if (C, H) e S and if B is close enough to C
then (B, H) e§. Thus each of cr(B) and o"(C) is either disjoint from AQ or con-
tains it. The upper semicontinuity of a shows that if o(C) D AQ = 0 and B is
close enough to C then o(ß) n A. = 0 . However, our next example shows that
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if A0 O a(C) 4 0 C may still admit approximation by operators B with A0 n

oAB) = 0.
Example (7). Let £ and T be the space and operator described above. Set

Cu = DT where  D = diag [ • • • ,  2, 2, (u) , 2, 2, • • • ],   and let  E =
diag[...,-l, - 1,(1), -1,-1, •••]. Then

E-C*ECu = diag[...,3, 3,1-|«|2,(3), 3,---3.

Thus (H, Cj € S if \u\ < 1. If u 4 0 then oACu) C 2A0, but oACQ) = 2(A+ U A„).
To verify this either see [3, p. 210] or compute r(Cj and r((Cu)_1) for s/ 0
and note that if |A| < 1 then [•••, A2, A, 1, (O), 0, •••] e£ is an eigenvector for
the eigenvalue 2A.

6. The main inertia theorem for Re(EA) » 0. This section is devoted to
deriving the Main Inertia Theorem, which is associated with Lyapunov's condition
Re(E/4) » 0, from our inertia theorems about Stein's condition E - CHC » 0.
Theorem B may either be viewed as a corollary of Theorems C and 4.2 or as a
corollary, via the translation technique explained in the introduction, of Theorem A.

Proof of Theorem A. Let B = cA where c"1 = 1 + ||A||. Then - 1 4 oiB)
and (£>(B) exists.

Suppose oAA) n tt0 = 0. Then 0(B) D >t0 = 0 and so oi<fAB)) n AQ = 0. If
E is the Hermitian operator given by Theorem 4.2 such that E - <pA.B)*H<fAB) » 0,
then Re(EA) = c-1 Re(EB) » 0, as was required.

Assume now that Re(EA) » 0 for some Hermitian E. It follows that
(<f>(B), H) eS. Since 1 is not in the range of <f>, 1 toi<fAB)). So by Corollary 3.3(a)
AQ n oiq>(B)) m 0 and thus tr0 = <p" KA0\{li) is disjoint from oiB) = coAA). Hence
trQ O oiA) = 0. The proof of part (a) of Theorem A is finished.

To prove part (b) we assume that Re(EA) » 0 and conclude, as above, that
(<fkB), H) e S and oi<fAB)) O AQ = 0. Then the Riesz decomposition gives c£(B) =
C+ © C_ where oAC ) = A^ n oi<pAB)) for r¡ = +, -. Thus cA = B = ^_1(C+) ©
<ß~ (Cj and by Theorem 3.5 we have

tAH) = a(<f>(B)) = tt(0~1(C+)) = »r(A),

viH) = ß(<f>(B)) = iX0"1(C_)) = v(A),

and 5(E) = 0. Since oiA) Csno = 0, 8(A) = 0. Thus In^A) = Inff(E).    D

7. Computing In^A). In §1 we asserted that In^A) can be computed using
a single spectral measure in certain cases. Now we shall prove that:

Lemma 7.1. Suppose that A, P, Q e B(K) commute with each other, and that
P2=P and Q2 = Q.  If trU|pJ() O ffU|ßJ() = 0, then (a) PQ = 0 and (b) PK C
(/-Q)K.
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Proof. Since A|pQ„ is a direct summand of both A\ p., and A| „„ it follows

that AA\pQK) C[AA\pK) n oiA\QK)] = 0. So PQ = 0 and PK= P(Q + l-Q)K =
P(/-Q)KC(/-Q)H.    a

Theorem 7.2.  Suppose that A e B(K)  is normal and that E is the spectral
measure constructed in the spectral theorem.  Then In (A) = (dim E+K, dim F_K,

dim £0K).

Proof.  If F e%.   then each F„  commutes with A.  Thus F'_  commutes with
E(X) for r; = +, -, 0 and for every Borel set X Ç C. Lemma 7.1 shows that
E(tt+ + f)K C (/ - F_ - F0)K = F+K for every t > 0. Thus

E +K = E(tt+)K = closure (span U Í E(jt+ + e)K : e > 0!) C F+K.

This shows that AA) = dim Ej{, and a similar argument shows that AA) =
dim Ej(.

Lemma 7.1 shows that F0E(t7+ + e) = F0E(}7_ - f) = 0 for every i > 0. Hence
F0E+ = F0E_ = 0 and so FQK = FÁE+ + E_+ EQ)K = F0EQK C EQK. Thus
5(A) = dim E0K.   D

Theorem 7.3. Suppose that A e B(K) and that oiA) n {0 < |Re z| < f | = 0 for
some e > 0. Then Inff(A) = (dim E+K, dim E_K, dim EQK) for some E e JR^.

Proof. For q = +,-, 0 let 2uiE    be the integral of the resolvent of A, in
the counterclockwise direction, around a rectifiable Jordan curve which misses
AA) but whose interior meets a(A) in exactly AA) O ir  . Then E e%A  and
o(A|E   jj) C ir    for r¡ = +, -. If F effl^ then each Fe commutes with A and
must therefore commute with each E_. So Lemma 7.1 shows that E K C F KV V V
for 7/ = +, -. Hence   AA) = dim E+K and AA) = dim E_K. Lemma 7.1 also
implies that FQK C EqH, and so 5(A) = dim EQK.    D

In these two theorems we have not fully exploited the method which under-
lies their proofs. For example certain cases in which AA) has a sequence of com-
ponents lying in n+ uf- which "converges" to part of ir0 n AA) can be handled
similarly.
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