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Abstract

The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through micro-fabricated planar abrupt

contraction–expansions is investigated. The small lengthscales and high deformation rates in the contraction throat lead to significant exten-

sional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. By considering the definition of the

elasticity number, El = Wi/Re, we show that the lengthscale of the geometry is key to the generation of strong viscoelastic effects, such that

the same flow behaviour cannot be reproduced using the equivalent macro-scale geometry using the same fluid. We observe significant vortex

growth upstream of the contraction plane, which is accompanied by an increase of more than 200% in the dimensionless extra pressure drop

across the contraction. Streak photography and video-microscopy using epifluorescent particles shows that the flow ultimately becomes unsta-

ble and three-dimensional. The moderate Reynolds numbers (0.44 ≤ Re ≤ 64) associated with these high Weissenberg number (0 ≤ Wi ≤ 548)

micro-fluidic flows results in the exploration of new regions of the Re–Wi parameter space in which the effects of both elasticity and inertia

can be observed. Understanding such interactions will be increasingly important in micro-fluidic applications involving complex fluids and

can best be interpreted in terms of the elasticity number, El = Wi/Re, which is independent of the flow kinematics and depends only on the

fluid rheology and the characteristic size of the device.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The high deformation rates achievable in micro-fabricated

devices can result in strong viscoelastic effects even in dilute

aqueous polymer solutions. This is particularly relevant to

lab-on-a-chip [1] and inkjet printing applications, whose

smallest dimensions are on the order of 50 �m or less, and

typically utilise aqueous fluids containing low concentrations

of high molecular weight polymers. Common features of

micro-fluidic experiments are very low Reynolds numbers,

low Peclet numbers and the assumption of Newtonian

rheological properties. Very little attention has been given to
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micro-fluidic flows involving non-Newtonian working fluids

with the notable exception of a micro-fluidic flow rectifier

(and related applications) developed by Groisman et al.

[2,3]. Since most fluids processed in lab-on-a-chip devices

are likely to exhibit a complex micro-structure and exhibit

non-Newtonian properties, it is clear that understanding the

dynamics of non-Newtonian fluid motion at micrometer-

lengthscales is both fundamentally and practically relevant.

The importance of the geometric scale in micro-

hydrodynamics has been of particular interest over the past

decade. The validity of the continuum assumption at micro-

meter-lengthscales and the influence of surface properties on

the effective boundary conditions at the solid–liquid interface

have been frequently questioned. As far as the resolution of

current diagnostic techniques permits, it has been established

0377-0257/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Nomenclature

Dimensionless groups

Re, Recrit, R̃e Reynolds number, critical value and mod-

ified Reynold number (using wc as character-

istic lengthscale) (–)

Wi, Wicrit, Wiu Weissenberg number, critical value and

Weissenberg number evaluated upstream of

the contraction (–)

El Elasticity number (–)

Ta, Tacrit Taylor number and critical value (–)

Geometric properties

D diameter of tube (m)

Fθ geometric factor for shear stress (conversion

factor in rheometer) (–)

h channel depth (m)

l characteristic lengthscale (m)

Lc contraction length (m)

Lv vortex length (m)

wu, wc upstream channel and contraction widths (m)

z axial distance downstream of contraction plane

(m)

α wall angle (–)

β contraction ratio (–)

χL, χN dimensionless vortex length, Newtonian

dimensionless vortex length (–)

ε = d/R1 ratio of gap to inner cylinder radius in Couette

cell geometry (–)

Dynamic properties

C Couette correction (–)

Q volumetric flowrate (ml hr−1)

s gradient of �P12–Q curve at low flowrates

(kPa/ml hr−1)

v(x) local velocity vector (m s−1)

V̄ average or characteristic velocity (m s−1)

V̄c average velocity in the contraction (m s−1)

V̄u average velocity upstream of the contraction

(m s−1)

δt arbitrary time step (s)

�P, �Pmax dimensionless pressure drop and maxi-

mum value (–)

�P12 total pressure drop across contraction geome-

try between two pressure transducers located

at points 1, 2 (kPa)

�Pen entrance pressure drop (kPa)

γ̇ shear-rate (s−1)

γ̇crit critical shear-rate (s−1)

Tflow characteristic timescale of the flow

ω angular frequency associated with oscillatory

shear tests (rad/s)

Ω1 angular rotation of inner cylinder of Couette

cell (s−1)

ℑmin minimum torque (N m)

Rheological properties

b length of a Kuhn step (m)

c, c* concentration, overlap concentration (wt.%,

ppm)

MW molecular weight (g mol−1)

G′ storage modulus (Pa)

N no. of Kuhn steps in a polymer chain (–)

N1 first normal stress difference (Pa)

Rmax maximum length of a polymer chain (at full

stretch) (m)

φ volume fraction of particles in solution (–)

ηs, ηp solvent and polymer viscosity (Pa s)

η, ηE steady shear and extensional viscosity (Pa s)

[η] intrinsic viscosity (ml g−1)

λ relaxation time determined from CaBER

experiments (s)

λZimm Zimm relaxation time (s)

ρ fluid density (kg m−3)

τ, τw shear stress, wall shear stress (Pa)

Ψ1, Ψ10 first normal stress coefficient, limiting value

as γ̇ → 0 (Pa s2)

Constitutive parameters

a′ exponent in Mark–Houwink relation (–)

K power law coefficient (Pa sn)

n power law exponent (–)

ν solvent quality exponent (ν = (a′ + 1)/3) (–)

Optical parameters

dp particle diameter (m)

e minimum resolvable distance by detector on

image plane (m)

M magnification (–)

n refractive index (–)

NA numerical aperture (–)

δzm measurement depth (m)

δz (or DOF) depth of field (m)

λ0 wavelength of light in a vacuum (m)

θ aperture angle of objective lens (–)

Physical constants

NA Avogadro’s constant (–)

kB Boltzmann constant (J K−1)

that, on micrometer-lengthscales, Newtonian fluids essen-

tially obey the fundamental equations governing macro-scale

fluid flow in the absence of non-conservative forces (e.g.

magnetism and electrokinetics) [4,5]. For geometric length-

scales of l ∼ O(10 �m), the ratio of molecular size/geometry

is still 10−5. However, if we consider the mean radius of
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gyration of a polyethylene oxide (PEO) molecule with molec-

ular weight 2 × 106 g mol−1 (Rg ∼ N1/2b ≃ 0.16 �m, where

N ≃ 2.21 × 104, the number of Kuhn steps of size b ≃ 7.37 Å),

the equivalent ratio (under equilibrium conditions) increases

by a factor of 1000. If this molecule is extended to its finite

extensibility limit, Rmax ∼ Nb, this ratio becomes approxi-

mately 2. It is therefore not surprising that the geometric scale

of micro-fluidic devices will become increasingly important

with non-Newtonian fluids and result in flows (particularly

those involving extension) that are different to those seen

in the equivalent macro-scale experiment [2,3]. This is par-

ticularly relevant in high speed industrial processes such as

roll-coating, electrospraying/spinning and inkjet printing in

which the combination of high velocities and small length-

scales (maximum velocities ∼10 m s−1 and orifice diameters

of ∼50 �m) for inkjet printers [6]) can result in the onset

of appreciable elastic effects even in low-viscosity aqueous

polymer solutions [7] (typically with viscosities as low as

2–3 mPa s [6]).

A prototypical complex flow geometry that captures a

number of features in an inkjet print head, and which

serves as a benchmark problem for viscoelastic flow sim-

ulations, is the converging entry flow through an abrupt

contraction–expansion. This geometry has been used exten-

sively to study the non-linear flow phenomena associated with

fluid elasticity in converging flows at macro-lengthscales.

The resulting vortex growth observed in the flow of highly

elastic dilute polymer solutions (typically with viscosity

η0 ∼ O(1 Pa s) and higher) is extensively documented for

axisymmetric [8–11], and to a lesser degree, planar contrac-

tions [12–16], for a large number of polymer solutions and

polymer melts. Detailed reviews of works published prior to

1987 can be found in [17,18], and a brief summary of more

recent work is given by Alves et al. [19].

1.1. Characterising entry flows: dimensionless groups

In addition to the contraction ratio, β, the key dimension-

less groups used in characterising viscoelastic entry flows are

the Reynolds number, Re, and the Weissenberg number, Wi.

The Reynolds number is defined by Re = ρV̄cl/η0, in which

l is the characteristic lengthscale (which is typically the con-

traction diameter or radius in axisymmetric geometries and in

planar geometries, is either the contraction width, wc or the

hydraulic diameter, Dh = 2hwc/(h + wc)), V̄c is the aver-

age velocity in the contraction throat, and ρ and η0 are the

solution density and zero-shear-rate viscosity, respectively.

Elastic effects in the entry flow of a non-Newtonian fluid may

be characterised by a Weissenberg number defined as the ratio

of two timescales, Wi = λ/Tflow, in which λ is the relaxation

time of the fluid and Tflow is the characteristic residence time

in the contraction region. This characteristic residence time

is approximated by Tflow ∼ l/V̄c ≃ γ̇−1
c . It is also helpful to

define an elasticity number, El, which is the ratio of fluid

elasticity to fluid inertia, El = Wi/Re = λη0/ρl2. The elastic-

ity number provides a measure of the relative importance

of elastic stresses to inertial effects. It is independent of the

fluid kinematics since both Wi and Re vary linearly with char-

acteristic velocity, V̄c, and represents the trajectory of a set

of experiments with a given viscoelastic fluid through the

Wi–Re operating space. As shear-thinning becomes impor-

tant, the slope of this trajectory decreases because both η and

λ typically exhibit shear-thinning.

In order to assess previous works on viscoelastic entry

flows, it is useful to evaluate the flow conditions of each

set of experiments in terms of their location in a Wi–Re

operating space. Fig. 1 presents the approximate trajecto-

ries followed by Boger fluids and shear-thinning fluids in

Wi–Re space as the flowrate through the contraction geom-

etry is incremented. This figure clearly illustrates the effect

of shear-rate-dependent material functions associated with

shear-thinning fluids. The range of operating space relevant

to specific previous experiments has been summarised in

Table 1. High Wi, low Re regions of this operating space are

typically accessible using highly elastic constant viscosity

Boger fluids, while regions of moderate Wi and moderate Re

are characteristic of experiments using semi-dilute or concen-

trated aqueous solutions of a high molecular weight polymer

(such as polyacrylamide (PAA) or polyethylene oxide).

1.2. Brief review of viscoelastic entry flow phenomena

The work presented here is primarily concerned with flows

in planar contractions that are influenced by both inertia and

elasticity. We therefore focus our discussion on contraction

flows at moderate values of Re and Wi, and also those specific

to planar entry flows of dilute polymer solutions. Some ref-

erences will also be made to numerical simulations of planar

flows that incorporate both elasticity and inertia.

The flow structures observed in viscoelastic entry flows

have been documented by a handful of authors for planar

contractions [12–15,20,21], but have been explored more

comprehensively for axisymmetric geometries [9–11,22,23].

This is especially true for flows that contain both elasticity

and inertia. For a clear illustration of the interplay between

elasticity and inertia, the reader is referred to the work of

Cable and Boger [9–11], who use a number of shear-thinning

fluids in axisymmetric contractions to span a wide range

of the Wi–Re operating space. Although their work con-

tains extensive information about the flow structures resulting

from both inertia and elasticity, one should be careful when

relating these (axisymmetric) phenomena to similar Wi–Re

regimes observed in planar geometries, such as those used

in the present experiments. The vortex evolution behaviour

can be qualitatively different as a result of the different total

strains and strain-rate histories experienced by fluid elements

in the two geometries [16,24]. Regions of Wi–Re space previ-

ously accessed through experiments in both geometries, for

creeping flow regimes and also flows containing inertia and

elasticity, are shown graphically in Fig. 2. Further details of

experiments carried out in planar geometries are presented in

Table 1.
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Fig. 1. Representing contraction flow experiments on a Wi–Re diagram; using (a) shear-thinning viscoelastic fluids such as concentrated polymer solutions and

(b) Boger fluids consisting of dilute polymer solutions in a viscous solvent. The inclination of the lines gives the elasticity number El = Wi/Re = λη/ρl2.

The flow behaviour of inertio-elastic entry flows, such as

those in [9–11], can be categorised into three regimes; vortex

growth, diverging flow and unstable flow.

1.2.1. Vortex growth

The vortex growth behaviour observed in viscoelastic

entry flows has been characterised predominantly in terms

of a dimensionless vortex length, χL = Lv/wu (where Lv

is the vortex length and wu is the upstream channel width

(or diameter), and its evolution with increasing Wi [23]. The

principal effect of the geometric change from axisymmet-

ric to planar entry flows is to reduce the size of the salient

corner vortex for the same contraction ratio. An argument

for this behaviour is that the total Hencky strain imposed on

the polymer molecules during the converging flow reduces

with the change from uniaxial to planar kinematics [24].

Fig. 2. Accessing new regions of Wi–Re space through micro-fluidics; comparison of previous “macro-scale” entry flow experiments with the current experiments

in micro-fabricated planar geometries (shown by hollow black symbols: (♦) 0.3% PEO, (�) 0.1% PEO and (©) 0.05% PEO).
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Table 1

Summary of previous entry flow studies in axisymmetric (A), planar (P) and square (S) geometries

Author Year Exp./num. Axisymmetric/

planar/square

Contraction ratio Fluid Rheology Wi range Re range Comments

Alves et al. 2004 [19] E S 4 0.01–0.05% PAA in

glycerol/water

Ψ 1, η, η′, ρ,

G′, G′′, N1

0 < Wi < 0.6 2.72 × 10−5 < Re < 0.012 Inertial suppression of vortices and

diverging flow. Vortex growth and

diverging flow beyond critical Wi.

Asymmetric growth and swirling flow at

high Wi.

Nigen and

Walters

2002 E A, P 2, 4, 8, 16, 22, 32,

40

PAA in glucose

syrup/water

G′, G′′, η, ρ No relaxation

time

0 < Re < 0.15 Dimensionless pressure drop > unity

observed for Boger fluid in axisymmetric

contraction (pressure normalised by

pressure drop of a Newtonian fluid of the

same η0, for the same flowrate). Pressure

drop for Boger fluid equal to the pressure

drop of a Newtonian fluid (of the same

η0), in planar contraction.

Quinzani et al. 1995 E P 4 5% PIB Ψ 1, η 0.25 < Wi < 0.77 0.08 < Re < 1.43 No visualisation, centreline velocity

only. Decrease in transient extensional

viscosity with increasing Wi.

Chiba et al. 1990, 1992 E P 3.33, 5, 10 0.1–0.5% PAA in

water

η 1.44 < Wi < 16.84 0.49 < Re < 331.3 Rheology of Evans and Walters [12]

used for 0.1% and of Chiba and

Nakamura [26] for 0.5% to calculate

relaxation times. Visualised unstable

streamlines along depth of channel;

Goertler-like vortices.

Evans and

Walters

1986, 1989 E P, S (with and without

contraction angle

<90◦)

4, 16 (planar), 80

(axisymmetric)

0.2–2%PAA in water N1, η 0 < Wi < 4 0.001 < Re < 100 Salient vortex growth observed for

shear-thinning fluid. No vortex growth

for Boger fluid. No lip vortices for both

fluids.

James and

Saringer

1982 E A (converging) Sink flow 5–40 ppm PEO in

water

Not provided 0.3 < Wi < 96 10 < Re < 300 Wi calculated using Zimm time.

Dimensionless pressure drop dependent

on concentration, Re and Wi. Unstable

flow patterns.

Walters and

Rawlinson

1982 E P, S 13.33 Boger fluids,

B12–17

η0, λ 0.08 < Wi < 1.81 0.01 < Re < 0.23 Symmetric and asymmetric vortex

growth observed for square contraction

only. No vortex growth observed in

planar contraction.

Alves et al. 2004 [57] N P 4, 10, 20, 40, 100 Shear-thinning fluid PTT

(ε = 0.25),

ηs/η0 = 1/9

0 < Wi < 300 Re = 0 For β > 10, streamlines in corner vortex

collapse at same Wi/β. Streamlines in lip

vortex collapse at same Wi. Lip vortex

dependent on downstream lengthscales

and salient vortex dependent on

upstream vortices. Upstream lengthscale

important for β < 10.
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Table 1 (Continued )

Author Year Exp./num. Axisymmetric/

planar/square

Contraction ratio Fluid Rheology Wi range Re range Comments

Alves et al. 2003 [25] N P, A 4 Oldroyd-B and PTT Oldroyd-B,

PTT

(ε = 0.25),

ηs/η0 = 1/9

0 < Wi < 1000

(PTT), 2.5

(Oldroyd-B)

Re = 0 Vortex growth for Oldroyd-B fluid in

axisymmetric, vortex reduction in planar.

Newtonian vortex size smaller in planar

than axisymmetric. Vortex growth

observed in PTT fluid for both

axisymmetric and planar, however to a

lesser degree in planar.

Alves et al. 2003 [48] N P 4 Constant viscosity,

elastic fluid and

shear-thinning fluid

Oldroyd-B,

PTT

(ε = 0.25),

ηs/η0 = 1/9

0 < Wi < 3

(Oldroyd-B)

0 < Wi < 100

(PTT)

Re = 0 Decreasing salient vortex size with

increasing Wi. Model unable to predict

pressure drop (predicts negative Couette

correction coefficient).

Phillips and

Williams

2002 N P, A 4 Oldyroyd-B, with

β > 0.9 for

comparison with

Boger fluids

Oldroyd-B

model

0 < Wi < 1.5 0 < Re < 1 Inertial suppression of vortices observed

for both axisymmetric and planar. Net

vortex growth occurred in axisymmetric

and vortex reduction in planar

contraction.

Alves et al. 2000 N P 4 Constant viscosity,

elastic fluid

UCM 0 < Wi < 5 Re = 0.01 No vortex growth. Vortex size reduces

with increase in Wi (constant Re).

Diverging flow at highest Wi.

Xue et al. 1998 N P 4 Constant viscosity,

elastic fluid and

shear-thinning fluid

UCM, PTT 0 < Wi < 4.4 0.06 < Re < 0.6 Vortex growth at small Re = 0.06 for

increasing Wi. For higher Re = 0.6, no

salient vortex growth but lip vortex

grows for increasing Wi.

Purnode and

Crochet

1996 N P 4 FENE-P (to simulate

dilute PAA in water)

N1, η 0.033 < Wi < 145 3 × 10−5 < Re < 6.37 Lip, salient vortex growth, inertial

damping of vortices. Diverging flow at

highest Re and Wi. Qualitative agreement

with Evans and Walters aqueous PAA in

planar contractions.

Baloch et al. 1996 N P (contraction), P and

A (expansion)

4, 13.3, 40, 80 PTT fluid with

ε = 0.02 (dilute

polymer solution),

0.25 (polymer melt)

PTT model 1 < Wi < 25 1 < Re < 4 Lip vortices, growing elastic corner

vortices, diverging flow dependent on Re

and Wi.
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This is supported by the results of Nigen and Walters [16],

in which no elastic vortex growth was observed in the same

Boger fluid, when changing from an axisymmetric to pla-

nar geometry, for the same contraction ratio. This difference

has also been predicted numerically in planar geometries for

UCM and Oldroyd-B fluids, for which the vortex size at

any Wi is reduced, and also reduces with flowrate, for Re > 0

[25].

On the other hand, shear-thinning fluids, which do not have

a large background solvent viscosity exhibit vortex growth

[12–16,26] in planar contractions, although the degree of

vortex growth is still somewhat reduced when compared

with axisymmetric geometries [25]. This trend has also been

observed numerically for a PTT fluid; the strength, growth

rate and size of the corner vortex are all smaller in a planar

geometry compared with an axisymmetric geometry. This

suggests that the extension rate (and thus Wi) is not the only

parameter to be considered in entry flows, especially when

comparing axisymmetric to planar geometries. In addition to

the reduced Hencky strain expected in experiments with pla-

nar geometries, there are also three-dimensional flow effects

due to the finite depth of the channel. This latter effect is

likely to result in discrepancies when comparing experimen-

tal observations in planar geometries with the results of 2D

numerical simulations.

Inertia also has an effect on vortex development. In the

case of inertio-elastic flows, the vortex growth is truncated

at a critical Reynolds number, Recrit, which depends on the

elasticity of the fluid. For Re < Recrit, vortex growth is depen-

dent only on the rheology of the fluid, while for Re > Recrit,

inertial effects cause a reduction in vortex size, which is often

accompanied by diverging flow patterns near the centreplane

of the upstream converging flow [11]. This phenomenon is

most frequently observed in shear-thinning fluids, however it

has also been seen in constant viscosity elastic fluids at low

Reynolds numbers (Re ∼ O(0.01)), both experimentally (in

axisymmetric contractions [27]) and numerically (in planar

contractions [28]). These prior studies all demonstrate that

both dimensionless variables, Re and Wi are independently

important in assessing the vortex growth behaviour and influ-

ence of inertia in the converging flow.

1.2.2. Diverging flows

Diverging streamlines upstream of the contraction are a

feature of converging flows that are controlled by both elas-

ticity and inertia. A comprehensive illustration of this flow

regime is detailed in work of Cable and Boger [11]. Diverg-

ing flow is usually seen in shear-thinning fluids, since it is

easier to generate moderate values of Re, however flow pat-

terns characteristic of the early stages of this regime have

also been observed in the circular entry flow of Boger flu-

ids, at Reynolds numbers as low as 0.04 [27]. Diverging flow

structures have also been predicted numerically in the pres-

ence of both elasticity and inertia, for shear-thinning fluids

represented by the PTT [29] or FENE-P [30] models. At a

constant, non-zero value of Re, increasing the Weissenberg

number may either strengthen or weaken diverging flow

depending on the elasticity number and/or the contraction

ratio.

1.2.3. Unstable flow

Steady two-dimensional viscoelastic entry flows are

observed to become unstable at moderate Weissenberg and

Reynolds numbers in axisymmetric and planar geometries;

however, the spatio-temporal characteristics of the different

flow regimes that result beyond the stability threshold have

been found to be dependent on the magnitude of the elas-

ticity number. For an axisymmetric geometry, it has been

found that moderately elastic solutions experience regimes

consisting of diverging flow with unstable salient vortices,

and regimes with Goertler-like and lip vortices, while for

higher elasticity solutions, instability results in asymmetric

helical flow patterns, azimuthally varying elastic corner vor-

tices and ‘buckling’ flow structures [26]. The “Goertler-like”

vortex regime is also common to 4:1 planar contractions of

high aspect ratio, h/wc > 20 using the same low elasticity

solutions [14,15].

1.2.4. Pressure drop

Currently, the only measurements of the additional or

‘excess’ pressure drop resulting from the flow of aqueous

polymeric solutions through converging dies are those of

James and Saringer [31] and Groisman and Quake [3]. The

measured pressure drop can be scaled with the corresponding

value obtained using a Newtonian fluid at the same Reynolds

number to give a dimensionless pressure drop, �P (Re). Gro-

isman and Quake measure a dimensionless pressure drop,

�P� 1 for Wi � 2 and Re � 1, which increases to a max-

imum value of �P ≃ 6.7 at Wi ≃ 5.2, Re ≃ 3. James and

Saringer [31] measure an enhanced pressure drop beyond

that expected for a Newtonian fluid in hyperbolically con-

verging channels, in which the minimum channel diameter

is 130 �m. This enhancement develops beyond a critical

strain rate, and is influenced by both the polymer concen-

tration and Reynolds number, such that the influence of

inertia is reflected in the shape of the �P–γ̇ curve. To our

knowledge, James and Saringer [31] and Groisman et al.

[2,3] have published the only studies of converging flows

of dilute polymer solutions at sub-millimetre-lengthscales.

In the case of James and Saringer [31], the motivation for

their choice of lengthscale was to minimise inertial effects

at high strains when studying dilute solutions of aqueous

PEO (MW = 8 × 106 g mol−1) whose concentrations ranged

between 5 and 40 ppm (0.02c* < c < 0.13c*). Their experi-

ments covered the range, 10 < Re < 300 and 0.3 < Wi < 96, for

which they report a number of stable, unstable and rotating

vortex flow regimes. The micro-fluidic flow rectifier devel-

oped by Groisman et al. [2,3] was also used to investigate

the non-linear dynamical effects observed in dilute aqueous

PAA solutions. Their measurements illustrate elastic vortex

growth upstream of the contraction plane, and non-linearities

in the global pressure drop–flowrate relationship.
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In the present work, we investigate the flow of

dilute and semi-dilute polyethylene oxide solutions

(0.58 < c/c* < 4) through micro-fabricated planar abrupt

contraction–expansions of contraction ratio, β = 16. Exper-

iments are performed over a range of Weissenberg and

Reynolds numbers (0 ≤ Wi ≤ 548, 0.44 ≤ Re ≤ 64), in a

region of Wi–Re parameter space that has previously been

unexplored, as we illustrated schematically in Fig. 2. We

investigate the competing effects of inertia and elasticity

on vortex growth and the structure of flow instabilities in

the micro-contraction flows. Video-microscopy and streak

imaging with 1.1 �m diameter epifluorescent seed particles

are used to characterise the steady flow kinematics upstream

of the contraction for both a Newtonian fluid and three

aqueous polyethylene oxide solutions. The pressure drop

is measured over a section of the channel containing the

abrupt contraction–expansion, in order to quantify the extra

pressure drop arising from viscoelastic effects in each of the

solutions. The inverse dependence of the elasticity number

on the lengthscale of the geometry makes it possible to attain

high values of Wi and El using semi-dilute aqueous polymer

solutions in micro-fluidic devices; conditions not typically

accessible in the equivalent macro-scale experiment.

2. Experimental

2.1. Channel geometry and fabrication

In Fig. 3, we illustrate the dimensions of the 16:1:16 pla-

nar abrupt contraction–expansion with an upstream channel

width, wu = 400 �m, downstream contraction width, wc =

25 �m, contraction length, Lc = 100 �m and uniform depth,

h = 50 �m. The detachment point of the salient corner vortex

Lv is used to define the dimensionless vortex length χL =

Lv/wu. Channels were fabricated in polydimethylsiloxane

(PDMS) using soft-lithography and SU-8 photo-resist molds

(Microchem NANOTM Su-8-50, www.microchem.com),

which were fabricated using standard photo-lithographic pro-

cedures [32,33]. The SU-8 molds were fabricated using

a high-resolution chrome mask (Advance Reproductions,

www.advancerepro.com) together with a contrast enhancer

(Shin-Etsu MicroSi CEM 388SS, www.microsi.com) and

barrier coat (Shin-Etsu MicroSi CEM BC 7.5). The con-

trast enhancer is an opaque photo-bleachable material, whose

exposed regions become more transparent over time. It is

applied between the mask and photo-resist to effectively

absorb low intensity light (refracted light) while transmitting

direct light in open regions through to the photo-resist. This

results in sharp features at the contraction entrance and near-

vertical channel walls along the entire length of the channel

as illustrated in Fig. 4a–c. PDMS channels and microscope

cover slips (170 �m thickness) are plasma treated in air (75 W,

700 mTorr) for approximately 40 s and then brought into con-

tact to achieve a covalently bonded interface that is resistant

to separation at high pressures. Further details of the chan-

nel design and fabrication procedure are found elsewhere

[34].

Pressure taps were integrated into the device at axial

locations 3 mm upstream (7.5 upstream channel widths)

and 3 mm downstream of the contraction plane, in order to

measure the differential pressure drop, �P12 as a function

of flowrate for each of the polymer solutions and for the

Newtonian fluid. Inlet and outlet ports for connection to a

constant displacement-rate syringe pump (Harvard Appara-

tus PHD2000) were located an additional 7 mm upstream

and downstream of the pressure taps. Volumetric flowrates

spanning the range 0.1 ≤ Q ≤ 18 ml h−1 were used in the

Fig. 3. Schematic diagram of the planar micro-fabricated contraction–expansion; wc is the contraction width, wu the upstream width, Lv the vortex length and

h is the uniform depth of the channel.

http://www.microchem.com/
http://www.advancerepro.com/
http://www.microsi.com/
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Fig. 4. SEM images of the 16:1 planar contraction: (a) plan view of the contraction–expansion geometry, (b) a “polymer’s eye-view” as it enters the entrance

region and (c) optical micrograph of the micro-channel cross-section, illustrating the high wall angles (87◦ < α < 92◦) upstream of the contraction plane.

present experiments. This gives characteristic deformation

rates, 1800 < γ̇ = 2V̄c/wc < 3.2 × 105 s−1.

2.2. Fluid rheology

Three aqueous solutions containing 0.05, 0.10 and 0.30%

polyethylene oxide (2 × 106 g mol−1) were used in this work.

For brevity, we henceforth denote these compositions by 0.05,

0.1 and 0.3%, respectively. The rheological properties of

these solutions are given in Table 2. The characteristic relax-

ation times reported in the table were measured using capil-

lary breakup extensional rheometry (CaBER) [35], and vary

over the range of 0.7 < λ < 4.4 ms. Using the capillary thin-

ning method, reproducible and reliable measurements of the

relaxation time of these semi-dilute, low-viscosity solutions

can be obtained, however the values show a weak dependence

on the geometric configuration of the CaBER instrument [35].

Following the nomenclature of [35], an aspect ratio of Λ = 1.6

and an initial gap height of 2.7 mm ensured maximum repro-

ducibility.

All measured values of the relaxation time were greater

than those predicted according to Zimm theory, in which the

relaxation time is given by [36]:

λZimm = F
[η]MWηs

NAkBT
. (1)

Here, MW is the molecular weight, NA the Avogadro’s con-

stant, kB the Boltzmann’s constant, T the absolute temper-

ature, ηs the solvent viscosity and [η] is the intrinsic vis-

cosity given by the Mark–Houwink relation; for PEO, this

Table 2

Rheological properties of solutions containing PEO of MW = 2 ×

106 g mol−1

Fluid property (at 20 ◦C) 0.05% PEO 0.1% PEO

in water

0.3% PEO

in water

Relaxation time, λ (ms) 0.7–1.2 1.5 4.4

Zero-shear viscosity, η0 (mPa s) 1.8 2.3 8.3

Density, ρ (g cm−3) 0.996 0.996 0.989

c/c* 0.58 1.16 3.49

c* (wt.%) 0.086 0.086 0.086

Power law exponent, n 0.97 0.977 0.88

Power law coefficient, K (Pa sn) 0.002 0.0025 0.0132

The Zimm relaxation time is evaluated to be λZimm = 0.341 ms.

has been determined experimentally to be [η] = 0.072M0.65
W

by Tirtaatmadja et al. [36]. This gives [η] = 897 ml g−1 for

a molecular weight of 2 × 106 g mol−1. The prefactor, F, is

given by the Riemann Zeta function, ζ(3ν)−1 =
∑∞

i=11/i3ν,

in which ν is the solvent quality exponent which is calculated

from the exponent a′ = 3ν − 1 in the Mark–Houwink rela-

tion. For PEO, a′ = 0.65 [36] and hence ν = 0.55. The overlap

concentration, c*, is calculated according to the expression

of Graessley [37], which gives c* = 0.77/[η] = 858 ppm for

these solutions. With a front factor F = ζ(1.55)−1 = 0.463,

we calculate a Zimm time of λZimm = 0.341 ms, significantly

lower than the measured relaxation time, λ = 1.2 ms, for the

0.05% PEO solution (c/c* = 500/858 = 0.58). As the poly-

mer concentration increases, the relaxation time determined

from capillary breakup measurements also increases. Simi-

lar trends have been documented in other capillary breakup

experiments [38,39]. The concentration dependence of the

shear rheology of numerous aqueous polymer solutions has

also been investigated in detail by Tam and Tiu [40] and

Kalashnikov [41].

The steady shear viscosities of the solutions used in the

present study were determined using a controlled stress

rheometer (AR2000) with a double gap Couette cell at shear-

rates, 1 ≤ γ̇ ≤ 104 s−1 with zero-shear-rate viscosities rang-

ing between 1.8 < η0 < 8.3 mPa s. The shear viscosity for each

fluid, as a function of shear-rate, is shown in Fig. 5. All

three solutions were found to be mildly shear-thinning at high

deformation rates, exhibiting power law behaviour. Approxi-

mate power law constants for each of the fluids are also given

in Table 2.

The upper limit on the viscometric data that can be mea-

sured in the rheometer is constrained by the onset of a flow

instability. This is manifested as an apparent increase in vis-

cosity at high shear-rates, and can be predicted according to

a linear stability analysis [42]. For a Newtonian fluid, the

onset of inertial instabilities in the couette geometry is given

in terms of a critical Taylor number

Tacrit ≡ 2Re2ε = 3400, (2)

in which Re is the Reynolds number and ε = d/R1, d the gap

width and R1 is the radius of the inner cylinder. The Reynolds

number is defined as Re = ρΩ1R1d/η(γ̇), in which Ω1 is the
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Fig. 5. Steady shear data for 0.05, 0.1 and 0.3% PEO solutions and de-ionised

water: (· · ·) minimum torque ℑmin, (– · –) 20× minimum torque 20ℑmin and

(- - -) onset of Taylor instabilities.

angular rotation of the inner cylinder, ρ the density of the

fluid and η(γ̇) is the shear-dependent viscosity. Substituting

this expression for the Reynolds number into Eq. (2), and

using values R1 = 22 mm, d = 0.38 mm, ρ ≃ 1000 kg m−3, the

criterion for onset of inertial instability can be rearranged in

the following form:

η(γ̇) = 5.02 × 10−7γ̇, (3)

with η in Pa s and γ̇ in s−1. This equation is represented by

the dashed line in Fig. 5 and is in reasonable agreement with

the data.

Alternatively, if we apply the criterion for a purely

elastic instability, given by [ε1/2Wi]crit = 5.92 [42], where

Wicrit = λγ̇crit and γ̇crit is determined experimentally from

Fig. 5, the longest relaxation time would appear to increase

(3.6 < λ < 9.7 ms) with decreasing concentration (for the same

solvent viscosity). The source of the instability observed at

high shear-rates in Fig. 5, therefore appears to be attributable

to inertial effects.

The low shear-rate limit of the viscometric data is deter-

mined by the minimum torque associated with the instrument,

which is given by the manufacturer as ℑmin = 10−7 N m [43].

Using the applicable geometric factor and stress factors for

the double-gap Couette cell, the minimum shear stress mea-

surable by the instrument is given by (ηγ̇)min = Fθℑmin,

which is equivalent to the inequality η ≥ Fθℑmin/γ̇ , with

Fθ = 2976 m−3. This bound is given by the lower left-hand

corner of Fig. 5.

Due to the low viscosity of these solutions, small ampli-

tude oscillatory shear measurements of the elastic storage

modulus G′(ω) could not be performed successfully and as a

result, we could only evaluate the longest relaxation time, λ

through capillary breakup experiments. At the lowest con-

centration (500 ppm) even capillary thinning and breakup

experiments become difficult to resolve. The thread thins

and breaks within 20–40 ms. The mean value of the time

constant obtained from repeated experiments was λ̄0.05 =

1.2 ms. The relaxation time for the 0.05% PEO solution,

used in computing Wi has been adjusted from this exper-

imentally measured value. Essentially, the relaxation time

has been adjusted downwards to λ = 0.7 ms so that the onset

of inertio-elastic instabilities in the micro-fluidic converg-

ing channels occurs at the same Wi for all three solutions.

Measurements with the 0.1 and 0.3% PEO solutions inde-

pendently give a critical Weissenberg number, Wicrit ≃ 50,

for the onset of elastic instabilities without any relaxation

time adjustment. Flow visualisation studies showed that the

onset of elastic instabilities for the 0.05% PEO solution

occurred at higher deformation rates, corresponding to a

markedly higher critical Weissenberg number, if we chose

λ = 1.2 ms. We therefore argue that the real relaxation time

of the 0.05% PEO solution is below the lower measurable

limit of our current capillary breakup apparatus. One possible

choice of presentation would be simply to report dimen-

sional values of the critical shear-rates observed in the 0.05%

solution. However, to be consistent with our presentation of

results for the 0.1 and 0.3% fluids we have instead cho-

sen to adjust the relaxation time by a constant factor of

(Wicrit)0.1,0.3/(Wicrit)0.05 = 50/85 = 0.58, resulting in a value

of λ = 0.581 × 1.2 ms = 0.7 ms. This adjustment results in the

onset of elastic instabilities in the planar contractions occur-

ring at the same value of Wicrit = 50 for all solutions. The

correctness of this adjustment and the shape of the boundary

between elastically stable and unstable flow is a subject of

further research.

2.3. Flow visualisation

The fluids are seeded with 1.1 �m diameter fluorescent

particles (excitation/emission = 520/580 nm) at a concentra-

tion of 0.02 wt.%. For neutrally buoyant particles, this cor-

responds to a volume fraction of φ = 2 × 10−4, for which we

expect a negligible increase in viscosity according to the Ein-

stein expression η = η0{1 + 2.5φ}= 1.0005η0. In Fig. 6, we

show the optical set-up for the streak imaging experiments.

A 10× 0.3NA objective lens is used in conjunction with a

full-field continuous illumination mercury lamp at 532 nm.

For an imaging system with numerical aperture, NA, mag-

nification, M, refractive index, n, wavelength of imaged light

(in a vacuum), λ0, and minimum resolvable feature size, e,

the depth of field (DOF) is given by [44]:

δz =
nλ0

(NA)2
+

ne

(NA)M
(4)

provided e/M > dp. Here, dp is the particle diameter. For

our system, with n = 1.33, λ0 = 580 nm, NA = 0.3, M = 10×,

e = 6.8 �m, we find δz = 3 �m.

Although the depth of field of the imaging system itself

is only 3 �m, this is misrepresentative of the true depth of

the image plane on which streak lines are observed. The true

‘depth of measurement’ is calculated according to the theory

of [44], who originally developed the analysis for calculating
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Fig. 6. Flow visualisation set-up and pressure tap location (P1, P2); fluorescence microscope imaging of 1.1 �m particles using a long exposure to generate

streak images (‘plan view’). The ‘side view’ of the channel illustrates the location and depth of the measurement plane (δzm), compared with the nominal depth

of field (DOF) associated with the 10× 0.3NA objective.

the measurement depth, δzm in particle image velocimetry.

The depth of measurement is given by:

δzm =
3nλ0

(NA)2
+ 2.16

dp

tan θ
+ dp, (5)

in which θ = sin−1 (NA/n). In this expression, the three terms

on the right-hand side of the equation, from left to right, repre-

sent the components associated with diffraction, geometrical

shadow and the size of the particle. The additional factor of

3 in front of the diffraction term is selected according to the

intensity cut-off value for which light intensity contributes

to the measurement. This value is experimentally verified in

[44]. For our particular optical setup, δzm = 29.7 �m, and thus

corresponds to 60% of the depth of the channel. It is expected

that this value is a better estimate of the depth over which par-

ticles contribute to the observable streak lines than using the

DOF, which only accounts for in focus streamlines.

Streak images are acquired on a 3.5 MP Apogee CCD

camera (2184 × 1472 pixels) with a 30 ms exposure time.

The transient behaviour (i.e. start-up, shut-down and fully

developed unstable flow regimes) of the flow in the micro-

contraction was also captured using a Pulnix CCD camera

(768 × 494 pixels) at a frame rate of 29.97 fps and exposure

time of 16 ms. Although sequences from these movies have

not been included in this paper, they are provided as support-

ing material online (http://web.mit.edu/lerodd/www).

2.4. Pressure drop measurements

Pressure measurements are taken via two pressure taps,

which are located upstream and downstream of the contrac-

tion plane, as depicted in Fig. 6. The two pressure taps (stain-

less steel tubing, o.d. = 0.71 mm) are connected via 0.7 mm

i.d. flexible Tygon tubing to a Honeywell 26PC differential

pressure sensor. Three pressure sensors were used to cover a

differential pressure range of 0 < �P12 < 200 kPa. The volt-

age output of each of the sensors was calibrated for the

differential pressure range 0 < �P12 < 30 kPa using a static

http://web.mit.edu/lerodd/www
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Fig. 7. (a) Calibration data for three differential pressure sensors, able

to measure maximum differential pressures of: (�) �P12 = 34.5 kPa, (�)

�P12 = 103 kPa and (�) �P12 = 207 kPa. These are denoted in the legend

by nominal ranges of 5, 15 and 30 psi, respectively. (b) Transient pressure

response of the system for increasing flowrates (0–6 ml h−1). Flowrates from

the syringe pump are increased 1 ml h−1 every 5 min. Measurements are

performed using a Newtonian fluid consisting of 55% glycerol and water

(η0 = 8.59 mPa s) in a 400:25 �m contraction. The system response time is

on the on the order of 5 min at the lowest flowrates, but decreases as the

flowrate and pressure increases.

column of water. For higher pressures, the sensors were cal-

ibrated using a pressurised nitrogen line and independently

calibrated digital pressure gauge. The calibration curves for

each of the pressure sensors are given in Fig. 7a.

In each of the steady-state experiments, the transient pres-

sure was recorded for a duration of approximately 3–5 min

after the inception of flow (or after a step increase in flowrate).

The flowrate was increased incrementally, to achieve a range

of steady-state pressure drops corresponding to flowrates,

0.1 < Q < 18 ml h−1. The transient responses associated with

each of these step increases in flowrate, are illustrated in

Fig. 7b. The response time of the system is much longer

than the relaxation time of the polymer solutions or the con-

vective time scale of the flow. This timescale is dependent

on the deformability of the fluid channel and compressibility

in the pressure tap tubing, resulting from small amounts of

trapped air [45]. For micro-fluidic flows such as those con-

sidered here, the volume of fluid in the tubing and pressure

sensor is greater than that in the flow channel of interest. In

particular, any air bubbles present near the pressure sensor

membrane are likely to occupy volumes that are comparable

to, if not greater than, the volume of micro-fluidic channel.

Transient pressure measurements indicate that the time

taken to reach steady-state is also dependent on the angular

velocity of the syringe pump gearing for sufficiently small

flowrates. Small volume syringes, which use higher rotation

speeds for the same flowrate, require less time to reach a

steady-state pressure measurement. This is consistent with

the analysis of Dealy [46] for weakly compressible flows

of polymer melts from reservoirs. The steady periodic mod-

ulation of the pressure drop measurement about the mean

steady-state value can be seen in Fig. 7b and is also depen-

dent on the rotation rate of the syringe pump. The pressure

drop for each flowrate is taken as the mean steady-state value

of these fluctuating values.

2.5. Dimensionless parameters

2.5.1. Dynamic flow parameters: elasticity and inertia
The dynamics of the flow through the micro-scale geome-

tries are characterised by the following dimensionless quan-

tities: Weissenberg number (Wi), Reynolds number (Re) and

elasticity number (El) which are defined according to Eqs.

(6)–(8). The Weissenberg number is defined in terms of the

average shear-rate, γ̇c in the contraction throat:

Wi = λγ̇c =
λV̄c

wc/2
=

λQ

hw2
c/2

, (6)

in which λ is the relaxation time of the fluid, V̄c = Q/(wch)

the average velocity, wc the contraction width, h the depth of

the channel and Q is the volumetric flowrate. The Reynolds

number is

Re =
ρV̄cDh

η0
=

2ρQ

(wc + h)η0
, (7)

in which ρ is the fluid density, η0 the zero-shear viscosity

and the hydraulic diameter is given by Dh = 2wch/(wc + h).

Finally, the elasticity number is

El =
Wi

Re
=

2λη

ρwcDh
=

λη(wc + h)

ρw2
ch

(8)

As we have noted in the introduction, the elasticity num-

ber, El is dependent only on fluid properties and the inverse

square of the characteristic lengthscale of the channel. It is

constant for a given fluid and geometry, i.e. El is independent

of the kinematics of the flow. In the present experiments, the

elasticity numbers are El = 3.8, 8.4 and 89 for the 0.05, 0.1

and 0.3% PEO solutions, respectively. It may be noted from

Eqs. (6) and (7), that Wi and Re are defined according to

zero-shear-rate properties. For cases in which the geometry

is kept the same (i.e. the product wcDh is held constant), a

variation in El is a direct measure of the variation of the elas-

ticity of the fluid, provided the relaxation time and viscosity

are not rate-dependent. Although it is customary to charac-
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terise the shear-thinning effects in entry flows by reporting

the shear-rate-dependent rheological properties of the test flu-

ids, it was not possible to measure the steady shear viscosity

over the full range of shear-rates used in the experiments

2 × 103 < γ̇ < 3.2 × 105 s−1 (see Fig. 5). In addition, it was

not possible to obtain data on the first normal stress differ-

ence for these fluids, leaving the (constant) relaxation time

determined from capillary breakup experiments as the only

directly measurable timescale for the fluid. As a result, the

computed values of Wi and Re increase linearly and without

bound at all flowrates and shear-rates accessed experimen-

tally. We may contrast this with the response obtained from

a more realistic non-linear viscoelastic constitutive equation

such as the PTT or Giesekus models in which the material

functions exhibit a progressive rate-thinning. At high defor-

mation rates, γ̇ ≫ 1/λ, it is common to observe for many

polymeric fluids, that the effective viscosity, normal stress

difference and relaxation time all decrease. As a result, the

rate-dependent Weissenberg number Wi = λ(γ̇)γ̇ increases

with deformation rate more slowly than the Reynolds num-

ber Re(γ̇) = ρV̄cl/η(γ̇). This may be seen very clearly in

the data plotted in Wi–Re space in Fig. 2. The importance

of this difference between rate-dependent and -independent

material functions for numerical simulations has also been

discussed at length by Boger et al. [47]. For clarity, we fol-

low the approach of Rothstein and McKinley [24] and report

our flow parameters in terms of the measured zero-shear-rate

material properties. The primary implication of this definition

for the relevant dimensionless operating parameters is that the

calculated values of Wi are upper bounds, and actual levels

of fluid elasticity (calculated using rate-dependent material

functions) are expected to increase more slowly with defor-

mation rate. This effect propagates into the calculated values

of the elasticity number, which are also an upper bound. The

differences between the values of the dimensionless param-

eters calculated based on rate-dependent material functions

and rate-independent viscometric parameters becomes more

substantial at high shear-rates and higher polymer concentra-

tions, for which the material functions deviate increasingly

from the zero-shear-rate properties.

2.5.2. Dimensionless vortex length

The dimensionless vortex length, χL = Lv/wu is defined

according to the convention in previous macro-scale entry

flow experiments [17], to quantify the axial distance upstream

from the contraction plane at which the primary flow first

detaches from the channel wall.

2.5.3. Dimensionless pressure drop

In computational studies of viscoelastic flow through con-

tractions it is customary to report the Couette correction C =

�Pen/2τw [48], in which �Pen is the entrance pressure drop

across the contraction plane and τw is the wall shear stress in

the contraction. In experiments however it is a global pressure

drop across the entire geometry �P12 that is most readily

measured by macroscopic pressure transducers located at

points ‘1’ and ‘2’ upstream and downstream of the contrac-

tion. In the case of axisymmetric flows with constant viscosity

Boger fluids it is possible to subtract the contribution to the

overall pressure drop that arises from the fully developed

Poiseulle flow in the pipes upstream and downstream of the

contraction [24,49]. However, the three-dimensional nature

of the flow in rectangular micro-fluidic channels, coupled

with shear-thinning in the fluid rheology at high shear-rates

makes this impractical here. We therefore report the total

pressure drop �P12 between the two transducers (located

3 mm upstream and downstream of the contraction plane).

The dimensionless pressure, �P, is obtained by normalising

the differential pressure �P12 by the linear slope of the pres-

sure drop/flowrate curve that is observed in all experiments

at low Wi [16], such that �P(Re, Wi) = �P12/(sQ), where

s = d(�P12)/dQ as Q → 0.

3. Results and discussion

We begin by comparing the flow patterns observed in the

micro-contraction using a Newtonian fluid (DI water) with

those obtained using viscoelastic polymer solutions. We then

systematically compare the vortex size, fluid streamlines and

flow stability in each of the three viscoelastic fluids as a

function of increasing shear rate. Finally, we quantify the

dimensionless vortex size and the associated increase in the

pressure drop resulting from the contraction flow.

3.1. The effect of elasticity

In Fig. 8, we illustrate a well-known feature of non-

Newtonian flows, in which elasticity has the opposite effect

to inertia [50]. Similar trends have also been simulated in

narrow ‘slit-like’ planar contraction geometries by Baloch

et al. [29]. Here, we compare the flow of the 0.05% PEO

solution (Fig. 8a) in which the effects of both elasticity and

inertia affect the kinematics, with the flow of water (Fig. 8b)

at the same value of Re. At low flowrates (Re ≃ 5), the

streak lines appear visually identical in both (a) the 0.05%

PEO solution (QEl=3.8 = 1.25 ml h−1) and (b) the DI water

(QEl=0 = 0.5 ml h−1). In the Newtonian case (Fig. 8b), an

increase in Reynolds number to Re = 11 (QEl=0 = 1.5 ml h−1),

results in a barely perceptible flattening of streamlines on the

upstream side of the contraction plane, and the formation of

a pair of small “lip vortices” on the downstream side. These

vortices first appear for Re ≥ 11, and continue to grow until

Re ≃ 20 (QEl=0 ≃ 2.75 ml h−1), at which point these isolated

‘lip vortices’ grow into the stagnant downstream corner as

shown in the fourth image of Fig. 8b. The downstream corner

vortices continue to grow and extend downstream in a sym-

metric fashion for the entire range of flowrates tested up to

Re = 60 (QEl=0 = 8 ml h−1). This is higher than the predicted

onset of a symmetry-breaking bifurcation, which is expected

for Re ≥ 54 according to the two-dimensional simulations of

Newtonian planar expansion flows. The onset of this bifurca-
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Fig. 8. Comparison of Newtonian and non-Newtonian entrance planar entry flows at the same Re: (a) 0.05% PEO (El = 3.8) and (b) DI water (El = 0) in a 16:1

contraction–expansion for 4 � Re � 60. The length of the contraction of the geometry containing the Newtonian fluid, Lc = 200 �m is twice that of the geometry

containing the elastic fluid, Lc = 100 �m. Flow is from left to right.

tion at the same critical Reynolds number has been predicted

by several other authors using a range of techniques [51–54].

Streak line analysis showed that the flow appeared to be

stable over the entire range of flowrates tested, 0.15 < Re < 60.

The images at Re = 18 and 29 (QEl=0 = 2.5 and 5 ml h−1) are

similar to those observed by Townsend and Walters in their

macro-scale 14:1 planar expansion geometry. Small quanti-

tative discrepancies arise as a result of difference in contrac-

tion ratio and the use of a square cross-section contraction

throat in the work of [55], as compared with our geometry,

which has an aspect ratio (contraction channel width/depth)

of wc/h = 0.5. Rescaling our own values of Re according to

the contraction width instead of hydraulic diameter yields a

modified Reynolds number R̃e = ρV̄cwc/η = 27, which is in

good agreement with [21]. This emphasises the importance

of choosing appropriate definitions of dimensionless param-
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eters when seeking to make quantitative comparisons with

previous studies.

It should be noted that in Fig. 8, the length of the contrac-

tion used for the Newtonian fluid experiments (Lc = 200 �m)

is longer than the length of the contraction in the experi-

ments using the 0.05% PEO solutions (Lc = 100 �m). The

streaklines that are observed in the viscous Newtonian fluid

downstream of the contraction plane are fully developed and

independent of contraction length. By this argument, pro-

vided Lc is kept constant for all experiments with each of the

non-Newtonian fluids (in which fluid memory is important),

it does not matter what value of Lc is chosen for the New-

tonian fluid (which has zero fluid memory). This is the case

only for streakline analyses, and a constant Lc = 100 �m has

been used for all pressure drop experiments.

In the case of the 0.05% PEO solution (El = 3.8), the effects

of fluid elasticity are to suppress the formation of downstream

vortices for all flowrates. Only at Re � 50, are the inertial

effects great enough to support downstream vortex growth

(Re = 56, Wi = 212, Q = 14 ml h−1). Upstream of the contrac-

tion, Newtonian-like behaviour is observed up to Wi ≃ 60, at

which point the streak lines begin to show significant vis-

coelastic bending in the entrance region (−2wc ≤ z ≤ 0).

This transition between the bending streamlines and vor-

tex growth regimes is depicted more clearly in Fig. 9 for

the 0.05% PEO solution. Analysis of the streaklines of the

0.05% PEO solution indicate that the flow is stable at Re = 18,

Wi = 68, although the effects of elasticity are clearly evident

in the bending streamlines near the contraction entrance.

For 19 ≤ Re ≤ 23, 72 ≤ Wi ≤ 87, the flow becomes inertio-

elastically unstable and unsteady in nature. At sufficiently

high Reynolds numbers and Weissenberg numbers, Re ≥ 4,

Wi ≥ 91, a large viscoelastic corner vortex forms abruptly,

and is bistable; i.e. the vortex may rapidly jump from being

initially attached to the ‘lower’ surface of the upstream con-

traction (as observed in the microscope images) to then being

attached to the ‘upper’ surface as shown in Fig. 9 at Re = 24.

At higher flowrates, asymmetric vortices continue to grow

upstream for 24 < Re < 72 and 91 < Wi < 272.

These results primarily illustrate that significant changes

in the flow kinematics occur upstream and downstream of

the contraction as a result of adding only a small amount of

polymer. At a Reynolds number of Re = 24, the shear-rate

in the throat is γ̇c = 2V̄c/Wc ≃ 105 s−1, so that even aque-

ous polymer solutions with small relaxation times experience

significant molecular deformation. Fluid elasticity causes

vortices to grow upstream of the contraction, while suppress-

ing downstream vortices; the latter being a characteristic of

expansion flows of Newtonian fluids.

3.2. The effect of increasing elasticity; El = 3.8, 8.4 and

89

In Fig. 10, we illustrate the evolution of the upstream

flow structure prior to the formation of the elastic corner

vortex in three solutions of varying elasticity; 0.05% PEO

(El = 3.8), 0.1% PEO (El = 8.4) and 0.3% PEO (El = 89). In

both Figs. 10 and 11, each column documents the sequence of

streak lines associated with a single solution as the flowrate

is progressively increased. The three images in each row

illustrate the streak lines at approximately the same value

of Wi for each solution, but with varying degrees of iner-

tia. The onset of visually discernable elastic effects occurs at

Wicrit ≃ 50, at which point the smoothly converging stream-

lines are replaced by ‘wine-glass’-shaped streamlines, which

are particularly clear in the 0.05% PEO solution. The val-

ues of Wicrit correspond to shear-rates of 59 × 103, 33 × 103

and 11 × 103 s−1 for the 0.05, 0.1 and 0.3% PEO solu-

tions, respectively. At slightly higher Weissenberg numbers,

67 � Wi � 80, the 0.05 and 0.1% PEO solutions undergo

inertio-elastic instabilities immediately upstream of the con-

traction plane. Further reducing the Reynolds number at a

constant Weissenberg number (0.3% PEO) results in insta-

bilities that are similar in nature and confined to the core

region around the contraction entrance, however the streak-

lines are more coherent and show less pronounced inertial

fluctuations.

At Wi ≃ 0 and Re � 9, inertio-elastic instabilities extend

into the upstream corners of the contraction and envelop a

large part of the entrance region (−5wc ≤ z ≤ 0). In con-

trast, the more elastic 0.3% PEO solution (Wi = 78, Re = 0.87)

develops a small quasi-stable lip vortex. For all three solu-

tions, the inertio-elastic instabilities are ultimately replaced

by quasi-stable upstream corner vortices for 120 < Wi < 270.

These vortices appear to be stable over extended periods,

such that the mean value of the vortex length L̄v has a well-

Fig. 9. The development of streaklines in the flow of 0.05% PEO (El = 3.8) in the 16:1 planar contraction during the transition from the bending streamlines to

vortex growth regimes. For this fluid, this transition occurs over the range of flowrates (4.5 ≤ Q ≤ 6 ml h−1) corresponding to 18 ≤ Re ≤ 24 and 68 ≤ Wi ≤ 91.
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Fig. 10. Effect of the elasticity number; streak images of 0.05% PEO (El = 3.8), 0.1% PEO (El = 8.4) and 0.3% PEO (El = 89) flowing through a 16:1 planar

contraction around the onset of non-Newtonian behaviour, compared at the same value of Weissenberg number, 40 � Wi � 80.

defined constant value over time, although the instantaneous

value fluctuates around L̄v with a frequency that depends on

the speed of the flow.

As the Weissenberg number is increased further, the large

elastic vortices grow upstream in all cases, however the tran-

sient dynamics associated with establishing a stable vortex

position varies systematically from one fluid to another, as

shown in Fig. 11. For the least elastic solution (0.05% PEO),

the flow remains asymmetric for all values of Wi attained.

For 120 ≤ Wi ≤ 170, the upstream corner vortices continue to

grow in size, however their orientation periodically switches

from ‘upper’ to ‘lower’ surfaces. Eventually, for Wi ≥ 180,

vortices form in both upstream corners, although they remain

unequal in size. The 0.1% PEO solution displays similar

behaviour, although a quasi-stable, top–bottom symmetric

flow pattern is achieved at a much lower Weissenberg num-

ber (100 < Wi < 120, 12 < Re < 14). In conjunction with this

development, a “diverging flow” regime develops upstream

of the elastic corner vortices, and is clearly evident at Wi = 240

as indicated by the broken lines in Fig. 11. The flow patterns

of the 0.05% PEO solution upstream of the contraction at

Wi = 272 can also be characterised as “diverging”, although

this divergence is skewed by the asymmetry of the flow. The

0.3% PEO solution displays vortex growth of the same order

of magnitude, although the flow asymmetry is greatly exag-

gerated at high Wi.

The precise dynamical mechanism that leads to the devel-

opment of diverging streamlines upstream of the contraction

plane is still unclear. The few numerical simulations that

have predicted diverging flow upstream of the contraction

[28–30,56] have not focussed on this phenomenon in any

detail. However it appears to require the combination of

significant fluid elasticity (Wi > 1), rate-dependent material

functions (such as those predicted by the PTT constitutive

model) and also the effects of fluid inertia (Re �= 0).

The primary effect of increasing the elasticity number is

to increase the stability of elastically induced flow structures

(such as lip vortices). While the nature of the elastic insta-

bility and the magnitude of the vortex length upstream of

the contraction plane is approximately consistent between

the three solutions (for the same Wi), the transient dynamics

associated with the development of these structures depends

on both fluid viscoelasticity and inertia.

3.3. Evolution in vortex length

The streak images presented in Sections 3.1 and 3.2 have

shown that there are significant changes in the vortex activ-

ity both upstream and downstream of the contraction plane

with increasing flowrate. In Fig. 12, we quantify the vortex

growth for all three solutions by plotting the dimensionless

vortex size χL as a function of the Weissenberg number. Data
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Fig. 11. Effect of the elasticity number; streak images of 0.05% PEO (El = 3.8), 0.1% PEO (El = 8.4) and 0.3% PEO (El = 89) flowing through a 16:1 planar

contraction during vortex growth regime, compared at the same value of Weissenberg number, 215 � Wi � 280.

for all three solutions collapse onto the same curve, which

represents an almost-linear relationship between dimension-

less vortex length and Wi, although the slope appears to

progressively decrease at high Wi. Substantial vortex growth

is only observed for Wi ≥ 100. The Weissenberg number is

based on conditions in the downstream contraction throat.

Numerical simulations by Alves et al. [57] show that vor-

tex size characteristics for different contraction ratios can

also be superimposed if flow conditions are referenced to

Fig. 12. Dimensionless vortex length as a function of Wi for flow through a

16:1 planar contraction: (�) 0.05% PEO (El = 3.8), (�) 0.1% PEO (El = 8.4)

and (�) 0.3% PEO (El = 89).

the upstream tube. For planar 16:1 geometries such as the

present micro-fluidic channels, V̄u = V̄c/16 and wu = 16wc,

and therefore the Weissenberg number in the upstream tube is

thus Wiu = 2λV̄u/wu = Wi/162 and vortex growth appears

to start at Wiu ≃ 100/162 = 0.4.

The most appropriate dimensionless measure for corre-

lating elastic effects in planar entry flows is expected to be

in between the values of the Weissenberg numbers evaluated

using conditions in the upstream tube and in the contraction

throat. The elongational component of the velocity gradi-

ent as the fluid approaches the contraction plane is set by

both upstream and downstream geometric conditions. Fur-

thermore, although the flow converges in only one plane,

substantial three-dimensional effects on the velocity field can

be expected in micro-fluidic geometries because of the very

shallow aspect ratio in the ‘neutral’ direction. We therefore

consider Wic and Wiu to be an upper and lower bound of the

true magnitude of viscoelastic effects in the entry region. For

clarity, we henceforth use Wic to characterise the planar entry

flows discussed in following sections.

The primary effect of fluid inertia is to reduce the size

of the upstream corner vortex, and this can be seen most

clearly in cases for which elasticity is not important. In

the current work, the dimensionless vortex length decreases

to a minimum value of χL = 0.1, which is half of the pre-

dicted value χL → 0.2 for creeping flows of a Newtonian

fluid through a planar contraction, for β ≥ 10 [57]. For the

0.3% PEO solution, in which a minimum Reynolds num-
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ber of Re = 0.5 was achieved, the minimum vortex length

was 0.18, substantially closer to the creeping flow predic-

tion. Although substantial scatter is observed in the χL–Wi

data for 50 ≤ Wi ≤ 150, the vortex length in the polymer sec-

tion increases approximately linearly with flow rate. This is

in agreement with previous experiments using shear-thinning

solutions, in which the vortex size has been shown to increase

approximately linearly or logarithmically with Weissenberg

number [12,13]. The degree of shear-thinning that occurs in

these dilute/semi-dilute polymer solutions at the deformation

rates in our experiments is not known quantitatively, however

from the steady shear rheology we would expect that the high-

est degree of shear-thinning would occur in the semi-dilute

0.3% PEO solution (c/c* = 3.5).

It is anticipated that the shear-rate-dependence of the

material functions for the 0.1 and 0.05% PEO solutions is

almost negligible. As a result of the nearly constant shear vis-

cosity of the 0.05 and 0.1% PEO solutions, one may expect to

see parallels between the vortex growth behaviour observed

in the present PEO solutions and the flow behaviour previ-

ously seen for Boger fluids in planar contraction geometries.

We would therefore expect to see at least a reduction in

the vortex growth rate, if not a complete absence of vor-

tex growth for the 0.05 and 0.1% PEO solutions. Our results

therefore stand in contrast to previous results observed both

experimentally [13,16] and numerically for Boger fluids in

planar contraction geometries [48]. This may be a result of

the very different and shallow aspect ratios (h/wu = 2) nat-

urally obtained in micro-fluidic geometries, or alternatively,

may be related to the higher Reynolds numbers achieved in

the present experiments, compared with previous planar entry

flow experiments with Boger fluids. Both of these possibili-

ties are subjects of further research.

3.4. Pressure drop measurements

The steady-state pressure drop measurements �P12(Q)

obtained between two positions 3 mm upstream and 3 mm

downstream of the contraction for a range of flowrates are

presented in Fig. 13a. First note that for all flowrates (corre-

sponding to Re < 60) the total pressure drop measured for

water increases linearly with Q. The linear slope of the

pressure drop/flowrate curve at low Q has been used to nor-

malise differential pressure data in each fluid as shown in

Fig. 13b. Values of the initial gradient (s = d(�P12)/dQ when

Q → 0) used to calculate the dimensionless pressure drop

�P, were 4.33, 1.70 and 1.63 kPa/(ml hr−1) for the 0.3, 0.1

and 0.05% PEO solutions, respectively. The constant dimen-

sionless pressure drop illustrated in Fig. 14a for water at all

Re within the range tested, shows that inertial contributions to

the fully developed pressure drop in Newtonian flows through

the 16:1 contraction are negligible for Re < 60. However, pre-

vious work suggests that there is a strong coupling between

inertia and elasticity, such that the effects of inertia on both

the kinematics (i.e. streaklines) and on the dynamics (i.e.

pressure drop) can be seen at Reynolds numbers far lower

than expected from Newtonian fluid analysis [8].

All differential pressure measurements were performed

over approximately the same range of Weissenberg numbers,

0 < Wi < 500 for each fluid. The dimensionless pressure drop

�P = �P12/sQ is shown in Fig. 14b. For the most elastic

solution (0.3% PEO), �P asymptotically approaches a value

of 3.5 at high Wi. Both the shape and magnitude of the growth

in �P is in agreement with the pressure drop measurements

of [24], in which the authors measured an asymptotic value

of �P ≃ 4 in a 4:1:4 axisymmetric contraction–expansion,

although for much lower values of Wi (0 < Wi < 8) and using

a PS/PS Boger fluid.

The results for the 0.1 and 0.05% PEO solutions are

more dramatic and show that a higher dimensionless pres-

sure drop is observed in both cases compared with the 0.3%

PEO solution. Again, considering our analogy of the 0.05

and 0.1% solutions to Boger fluids, we can highlight the

contrast between the present results and those of Nigen

and Walters [16], who consistently measure a dimension-

less pressure drop of 1 for the flow of Boger fluids through

Fig. 13. Total pressure drop (�P12) vs. flowrate (Q) for the (�) 0.05% PEO, (�) 0.1% PEO, (�) 0.3% PEO polymer solutions and for (�) water flowing

through a 16:1 planar contraction: (a) all data and (b) determining slope at low flowrates for normalising pressure data.
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Fig. 14. Dimensionless pressure drop vs. (a) Re and (b) Wi for: (△) 0.05% PEO, (�) 0.1% PEO, (�) 0.3% PEO and (�) water ((a) only) in a 16:1 planar

contraction.

a planar contraction over their entire range of flowrates and

for a number of contraction ratios 4 ≤ β ≤ 40. However, they

also observe flow instabilities and bistable corner vortices at

higher flowrates, although this is seen in 20:1 planar contrac-

tion geometries, using high zero-shear viscosity Boger fluids

(16.5 Pa s). The absence of relaxation times for their fluids

makes it difficult to determine meaningful values of the cor-

responding Weissenberg numbers, which would be required

to make adequate comparison with our own results. Elastic

corner vortices were only observed upstream of the contrac-

tion during a flow instability, however a constant value of

�P = 1 was still measured under all flow conditions.

The saturation in �P observed for all three PEO solu-

tions in the current experiments is probably a consequence

of polymer chains reaching their finite extensibility limit.

As full extension is approached, the polymer chains act as

a highly anisotropic viscous fluid, with extensional viscosity

ηE, such that �P ηEε̇ ∼= QηE/(w2
ch). As polymer concen-

tration increases, the mobility of individual polymer chains

is hindered through chain–chain interactions, resulting in

anisotropic drag on the chains and/or an overall reduction

in the finite extensibility of the polymer. Both of these effects

will result in a lower value of the extensional viscosity, ηE.

Of the three solutions, only the 0.05% PEO solution has a

concentration less than c*, and consequently we find that the

maximum dimensionless pressure drop decreases for increas-

ing concentration.

The local maxima in the dimensionless pressure drop for

the 0.05 and 0.1% PEO solutions, compared with the plateau

observed for the 0.3% PEO solution, is believed to be a result

of the higher inertial effects in these lower viscosity solutions.

This maximum becomes more pronounced and shifts to lower

Wi as the effects of inertia increase. This “inertial” maximum

observed in the dimensionless pressure drop measurements

for the 0.05 and 0.1% PEO has also been observed by James

and Saringer [31], in their exponentially-converging chan-

nel experiments using dilute PEO solutions. This behaviour

was observed most distinctively for their highest concentra-

tions, which were only 0.07c* and 0.13c*; significantly lower

than the values 0.7c* and 1.34c* for our 0.05 and 0.1% PEO

solutions, respectively. There is no previous work that we

are aware of which presents pressure drop measurements

for shear-thinning polymeric fluids flowing through planar

contractions. In terms of comparing our work with simu-

lations, numerical models are currently unable to correctly

predict the pressure drop in planar geometries [48] even for

shear-thinning fluids, and tend to predict negative Couette

correction coefficients.

3.5. Flow diagnostics

This study represents one of the first detailed studies of

non-Newtonian flow in micro-fluidic geometries. As such,

additional factors should be kept in mind. Firstly, the finite

depth of the imaging system (δzm = 27 �m) results in imaging

of particle streaklines over a substantial depth of the channel,

rather than within a single plane. Quantitative 2D imaging

(i.e. by minimising δzm) is achievable using micro-particle

image velocimetry (�PIV) techniques [58], and will be the

subject of future experiments. The three-dimensional flow

structure and time-dependent nature of the flow also con-

tributes to the multiple streaklines that can be observed in

each image. All of the images for Wi ≥ 60 show overlap-

ping particle pathlines. It should be kept in mind that the

images associated with the 0.3% PEO solution are taken

with the same exposure time (16 ms) as the other solu-

tions. Because the flow velocities are substantially smaller,

the coherence of the streak lines for the 0.3% PEO solu-

tion may therefore be deceiving as they represent a smaller

path length �l = |v(x)| δt than in the faster moving flows.

It is also worth noting that the very shallow depths (typi-

cally 50 �m or less) of the present micro-fabricated chan-

nels are a characteristic of all micro-fluidic devices and this

results in aspect ratios that are substantially different than

those typically employed in macro-scale planar contraction

experiments.
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A second imaging artefact is associated with the time reso-

lution of the image capture system relative to the frequency of

vortex size oscillations. Analysis of both single frame streak

images and video-microscopy images led to the conclusion

that the oscillation frequency of the vortex size is dependent

on the flowrate. At low flowrates, instabilities can be resolved

because of the slower frequency and better time resolution of

the local fluctuations. At higher flowrates, the high frequency

of oscillations results in an image that effectively contains

an ensemble average of multiple oscillations. Although the

image will be less defined, as is observed for the 0.1% PEO

solution at high flowrates, the flow feature (e.g. vortex size)

will be less variable between images. On the other hand, the

vortex in the 0.3% PEO solution appears to be more clearly

resolved, although its size is more variable between individ-

ual images.

In addition to imaging artefacts, the integrity of the chan-

nel geometry as well as material build-up in the device also

grossly affect the pressure drop measurements and the asym-

metry of the flow. The asymmetry associated with the 0.1 and

0.3% PEO flows can be affected by small amounts of mate-

rial that have been carried by the flow, and deposited on the

surface of the channel near the contraction throat. Depend-

ing on the amount of deposited material, this can effectively

cause asymmetries in the geometry, resulting in asymmetric

flow. The pressure-driven flow of dilute aqueous PEO solu-

tions, particularly at moderate Reynolds number, has also

been known to cause a build-up of material at the contraction

entrance [31], resulting in a build-up of “crystallised” PEO

strands that would occur on timescales of the order of min-

utes to hours. The extent of this PEO build-up in the present

experiments has not been determined.

Pressure taps that are mounted flush with a channel wall

are known to cause errors in pressure measurements, due to

a flow disturbance caused by the presence of the hole [45].

These errors consist of both inertial and elastic contributions

for a viscoelastic fluid, and are dependent on the first and

second normal stress differences, and on the shear stress;

all of which are a function of the local shear-rate and rhe-

ological properties of the fluid. In the present experiments

both pressure taps are located upstream and downstream of

the contraction plane in regions of equal cross-sectional area

(400 �m × 50 �m), and therefore experience the same local

shear-rate. Since the pressure-tap holes are also of equal size,

we expect the hole-pressure error to be equal at both positions.

These errors cancel each other as a result of the differential

measurement.

4. Conclusions

Exploiting the high deformation rates and small length-

scales of micro-fabricated flow geometries makes it possible

to generate very high shear-rates and high Weissenberg num-

bers that far exceed those achievable in traditional macro-

scale entry flow experiments. We have studied the behaviour

of three dilute and semi-dilute PEO solutions in geometries

with a characteristic lengthscale of l ≈ 25 �m (El = 3.8, 8.4

and 89), and characterised these micro-scale entry flows in

terms of the steady flow patterns observed, and the onset

Fig. 15. Summary of flow regimes in Wi–Re space for semi-dilute aqueous PEO solutions through micro-fabricated geometries.
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of inertio-elastic instabilities (at high Wi). Furthermore, the

evolution in the dimensionless vortex length and dimen-

sionless pressure drop with increasing flowrate has been

quantified.

Returning to the Wi–Re parameter space that was intro-

duced in Section 1, the evolution in the dynamical behaviour

of the three polymer solutions at El = 3.8, 8.4 and 89 is char-

acterised by the development of a number of specific flow

regimes. In Fig. 15, we illustrate these flow regimes, and their

location in Wi–Re space. For all three solutions, the onset of

elastic instabilities close to the throat is manifested by the

development of additional streamline curvature and fluctua-

tions in the local velocity at a critical Wicrit ≃ 50. In the case

of high levels of fluid elasticity (El = 89), this is followed

by the development of coherent and stable lip vortices for

50 < Wi < 100, which subsequently develop into asymmetric

viscoelastic corner vortices that continue to grow upstream

for Wi > 100. For lower levels of fluid elasticity, inertio-elastic

instabilities upstream of the contraction plane at Wicrit ≃ 50,

replace the lip vortices observed at higher elasticity numbers.

For 100 < Wi < 150, elastic vortices grow steadily upstream.

These vortices are essentially symmetric for El = 9 but as iner-

tial effects become increasingly important they become tem-

porally unsteady and spatially bistable structures for El = 3.8.

Diverging streamlines eventually develop for Wi > 150, just

upstream of the elastic vortex structures. These appear to be a

common feature of non-Newtonian entry flows that are gov-

erned by the competing effects of inertia and fluid elasticity

[9,10].

The present work has important implications in the design

and operation of micrometer-scale processes that involve the

transportation of dilute aqueous polymer solutions, such as

lab-on-a-chip and inkjet devices. Furthermore, the expansive

region of Wi–Re space that is accessible in micro-fluidic

geometries is unparalleled by macro-scale experimental

geometries, and provides a simple means of probing exper-

imentally a wide range of elasticity numbers. The ability

to quantify the excess pressure drop across the contraction

plane also indicates such devices might be used to construct

micro-fluidic extensional rheometers. Finally, the present

experiments illustrate the potential of micro-fluidic devices

in testing the performance of current constitutive models

over a wide range of flow conditions; they can provide

test data for evaluating the capabilities of time-dependent

and/or three-dimensional numerical codes that incorporate

elasticity, inertia and constitutive non-linearities.
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