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THE INEXACT, INEXACT PERTURBED,
AND QUASI-NEWTON METHODS

ARE EQUIVALENT MODELS

EMIL CĂTINAŞ

Abstract. A classical model of Newton iterations which takes into account
some error terms is given by the quasi-Newton method, which assumes per-
turbed Jacobians at each step. Its high convergence orders were characterized
by Dennis and Moré [Math. Comp. 28 (1974), 549–560]. The inexact Newton
method constitutes another such model, since it assumes that at each step the
linear systems are only approximately solved; the high convergence orders of
these iterations were characterized by Dembo, Eisenstat and Steihaug [SIAM
J. Numer. Anal. 19 (1982), 400–408]. We have recently considered the inex-

act perturbed Newton method [J. Optim. Theory Appl. 108 (2001), 543–570]
which assumes that at each step the linear systems are perturbed and then
they are only approximately solved; we have characterized the high conver-
gence orders of these iterates in terms of the perturbations and residuals.

In the present paper we show that these three models are in fact equivalent,
in the sense that each one may be used to characterize the high convergence
orders of the other two. We also study the relationship in the case of linear
convergence and we deduce a new convergence result.

1. Introduction

Consider a nonlinear system F (x) = 0, where F : D ⊆ Rn → Rn. The local
convergence of the Newton iterates

F ′ (xk) sk = −F (xk) ,
xk+1 = xk + sk, k = 0, 1, . . . , x0 ∈ D,

to a solution x∗ ∈ intD is usually studied under the following conditions, which
will be implicitly assumed throughout this paper:

- the mapping F is Fréchet differentiable on intD, with F ′ continuous at x∗;
- the Jacobian F ′ (x∗) is invertible.
Given an arbitrary norm ‖·‖ on Rn, these hypotheses assure the existence of a

radius r > 0 such that the Newton iterates converge superlinearly to x∗ for any
initial approximation x0 with ‖x0 − x∗‖ < r [27, Th.10.2.2] (see also [33, Th.4.4]).
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Recall that an arbitrary sequence (xk)k≥0 ⊂ Rn is said to converge q-superlinearly
(superlinearly, for short) to its limit x̄ ∈ Rn if

(1.1) Q1{xk} := lim sup
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖

= 0, (assuming xk 6= x̄ for all k ≥ k0),

also denoted by ‖xk+1 − x̄‖ = o (‖xk − x̄‖) , as k → ∞. For rigorous definitions
and results concerning the high convergence orders, we refer the reader to [27, ch.9]
and [31] (see also [33, ch.3] and [32]).

However, in many situations, different elements from the Newton iterations are
only approximately determined. The first such case considers approximate Jaco-
bians at each step, and leads to the quasi-Newton (QN) iterates

Bksk = −F (xk) ,
xk+1 = xk + sk, k = 0, 1, . . . , x0 ∈ D.

There exist a number of studies dealing with the approximation of F ′ (xk) by various
techniques (see for instance [27], [15], [23], [33] and the references therein). The
superlinear convergence of these sequences was characterized by Dennis and Moré.
We state here a slightly weaker form of this result.

Theorem 1 ([13]). Consider a sequence (Bk)k≥0 ⊂ Rn×n of invertible matrices
and an initial approximation x0 ∈ D. If the QN iterates converge to x∗, then they
converge superlinearly if and only if

(1.2)

∥∥(Bk − F ′(x∗)) (xk+1 − xk)
∥∥

‖xk+1 − xk‖
→ 0 as k →∞.

Another practical model of Newton iterates assumes that the linear systems from
each step are not solved exactly:

F ′ (xk) sk = −F (xk) + rk,

xk+1 = xk + sk, k = 0, 1, . . . , x0 ∈ D.

The terms rk ∈ Rn represent the residuals of the approximate solutions sk. Dembo,
Eisenstat and Steihaug characterized the superlinear convergence of the inexact
Newton (IN) method above.

Theorem 2 ([12]). Assume that the IN iterates converge to x∗. Then the conver-
gence is superlinear if and only if

(1.3) ‖rk‖ = o
(
‖F (xk)‖

)
as k→∞.

They also obtained the following local convergence result.

Theorem 3 ([12]). Given ηk ≤ η̄ < t < 1, k = 0, 1, . . ., there exists ε > 0 such
that for any initial approximation x0 with ‖x0 − x∗‖ ≤ ε, the sequence of the IN
iterates (xk)k≥0 satisfying

(1.4) ‖rk‖ ≤ ηk ‖F (xk)‖ , k = 0, 1, . . . ,

converges to x∗. Moreover, the convergence is linear in the sense that

(1.5) ‖xk+1 − x∗‖∗ ≤ t ‖xk − x∗‖∗ , k = 0, 1, . . . ,

where ‖y‖∗ = ‖F ′ (x∗) y‖.
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We have recently considered in [8] the inexact perturbed Newton (IPN) method

(F ′ (xk) + ∆k) sk = (−F (xk) + δk) + r̂k,

xk+1 = xk + sk, k = 0, 1, . . . , x0 ∈ D,
where ∆k ∈ Rn×n represent perturbations to the Jacobians, δk ∈ Rn perturbations
to the function evaluations, while r̂k ∈ Rn are the residuals of the approximate
solutions sk of the perturbed linear systems (F ′ (xk) + ∆k) s = −F (xk) + δk.

We have obtained the following results.1

Theorem 4 ([8]). Assume that the IPN iterates are uniquely defined (i.e., the
perturbations (∆k)k≥0 are such that the matrices F ′ (xk) + ∆k are invertible for
k = 0, 1, . . .) and converge to x∗. Then the convergence is superlinear if and only if∥∥∆k(F ′(xk) + ∆k)−1F (xk) +

(
I −∆k(F ′(xk) + ∆k)−1

)
(δk + r̂k)

∥∥ = o
(
‖F (xk)‖

)
,

as k →∞.
Theorem 5 ([8]). Given ηk ≤ η̄ < t < 1, k = 0, 1, . . ., there exists ε > 0 such that
if ‖x0 − x∗‖ ≤ ε and the IPN iterates are uniquely defined, satisfying∥∥∆k(F ′(xk) + ∆k)−1F (xk) +

(
I −∆k(F ′(xk) + ∆k)−1

)
(δk + r̂k)

∥∥ ≤ ηk‖F (xk)‖,
where k = 0, 1, . . ., then these iterates converge to x∗ at the linear rate

‖xk+1 − x∗‖∗ ≤ t ‖xk − x∗‖∗ , k = 0, 1, . . . .

The same conclusion holds if the above condition is replaced by

‖∆k (F ′ (xk) + ∆k)−1 ‖ ≤ q1ηk and

‖δk‖+ ‖r̂k‖ ≤ q2
1+q1

ηk ‖F (xk)‖ , for k = 0, 1, . . . ,

where 0 < q2 < 1− q1 and t ∈ (q1 + q2, 1).

Remark 1. It is not difficult to prove that, in fact, the above theorem also holds
with q1 + q2 = 1 and η̄ < t < 1 (instead of 0 < q1 + q2 < t < 1).

The aim of this paper is to perform an analysis of the three methods mentioned
in order to reveal the natural connection between them. This will allow us to
obtain sharp conditions ensuring the local convergence of the inexact perturbed,
and quasi-Newton methods.

We shall show first that each one of the inexact, inexact perturbed, and quasi-
Newton methods may be used to characterize the high convergence orders of the
other two. In this sense, we remark (see [8]) that the proofs of Theorems 4 and 5
were obtained by rewriting the IPN iterations as IN iterations having the residuals

rk = ∆k (F ′ (xk) + ∆k)−1
F (xk) +

(
I −∆k (F ′ (xk) + ∆k)−1 ) (δk + r̂k) ,

and then applying Theorems 2 and 3, respectively. We also note that the IN model
is a particular instance of the IPN model. These facts show the equivalence of these

1We have recently noticed that Wilkinson [36] has previously considered the iterates

xk+1 = xk −
(
F ′(xk) +Ek

)−1(
F (xk) + ek

)
+ gk, k = 0, 1, . . . , x0 ∈ D,

very similar to the IPN ones, while Potra [29], [30] has considered some inexact perturbed secant
iterates:

xk+1 = xk −
(
[xk−1, xk;F ] + Ek

)−1(
F (xk) + ek

)
+ gk, k = 1, 2, . . . , x0, x1 ∈ D,

where [x, y;F ] represents the first order divided difference of F on x and y. However, these authors
have not dealt with the local convergence of these iterates.
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two models regarding their linear and superlinear convergence; the same connection
appears in fact for the convergence orders 1 + p, p ∈ (0, 1], under supplementary
Hölder continuity conditions on F ′ at x∗.

It remains therefore to analyze the connection between the inexact and the quasi-
Newton iterations. This will be done in the following section, while in §3 we shall
give a new local linear convergence result and relate some existing ones.

2. Superlinear convergence of inexact and quasi-Newton methods

We begin this section by presenting some auxiliary results.
Walker has shown that the convergence of an arbitrary sequence from Rn is

tightly connected to the convergence of its corrections.

Lemma 1 ([35]). Consider an arbitrary sequence (xk)k≥0 ⊂ Rn converging to some
element x̄ ∈ Rn. Then the convergence is superlinear if and only if the corrections
(xk+1 − xk)k≥0 converge superlinearly to zero. In case of superlinear convergence
it follows that

lim
k→∞

‖xk − x̄‖
‖xk+1 − xk‖

= 1.

The last affirmation of this lemma was known for a longer time (see [13]).
The following result was given by Dembo, Eisenstat and Steihaug.2

Lemma 2 ([12]). Let β = ‖F ′ (x∗)−1 ‖ and α = max
{
‖F ′ (x∗)‖+ 1

2β , 2β
}

. Then
there exists ε > 0 such that

1
α ‖x− x

∗‖ ≤ ‖F (x)‖ ≤ α ‖x− x∗‖ , when ‖x− x∗‖ < ε.

Before stating our results, denote ∆k = Bk −F ′ (xk); the quasi-Newton iterates
are transcribed as

(F ′ (xk) + ∆k) sk = −F (xk) ,
xk+1 = xk + sk, k = 0, 1, . . . , x0 ∈ D,

and condition (1.2) characterizing their superlinear convergence becomes

(2.1)
∥∥(F ′ (xk) + ∆k − F ′ (x∗)

)
sk
∥∥ = o

(
‖sk‖

)
as k →∞.

Now we are able to present the results relating the superlinear convergence of
the IN and QN methods. First, we shall regard the QN iterates as IN iterates:

F ′ (xk) sk = −F (xk)−∆ksk, k = 0, 1, . . . , x0 ∈ D;

condition (1.3) characterizing their superlinear convergence becomes

(2.2) ‖∆ksk‖ = o
(
‖F (xk)‖

)
as k →∞.

The first step is accomplished by the following result.

Theorem 6. Conditions (2.1) and (2.2) are equivalent.

Proof. Some obvious reasons show that (2.1) holds iff

‖∆ksk‖ = o
(
‖sk‖

)
as k →∞.

Lemmas 1 and 2 show that the sequences (xk − x∗)k≥0, (sk)k≥0, and (F (xk))k≥0

converge superlinearly to zero only at the same time, which ends the proof. �
2A more general form of this lemma was previously obtained by Dennis and Schnabel [15,

Lm.4.1.16]; other variants may be found in [23, Lm.5.2.1], [18] and [33, Th.4.2].
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Remark 2. As noticed in [14], condition ∆k → 0, as k → ∞, is sufficient but not
also necessary for (2.2) to hold.

Formulas (2.1) and (2.2) do not explicitly require the invertibility of the per-
turbed Jacobians at each step. Consequently, one may restate Theorem 1 by de-
manding the corresponding iterates only to be well defined; i.e., the linear systems
(F ′ (xk) + ∆k) s = −F (xk) to be compatible. In this sense, Theorem 1 (as well as,
in fact, Theorem 2) can be retrieved from the following extension of Theorem 4.

Theorem 7. Assume that the IPN iterates are well defined and converge to x∗.
Then the convergence is superlinear if and only if

(2.3) ‖−∆ksk + δk + r̂k‖ = o
(
‖F (xk)‖

)
as k →∞.

Proof. One may use Theorem 2 in a straightforward manner by writing the IPN
iterates as IN iterates with residuals rk = −∆ksk + δk + r̂k. �

The utility of this result comes out for example when analyzing the local con-
vergence of the two Newton-Krylov methods described below.

Example 1. a) Given a linear system Ax = b, A ∈ Rn×n nonsingular, b ∈ Rn,
an arbitrary initial approximation x0 to the solution of this linear system, and
denoting r0 = b − Ax0, the GMBACK solver [21] determines an approximation
xGBm ∈ x0 +Km = x0 + span{r0, Ar0, . . . , A

m−1r0} by the minimization problem3∥∥∆GB
m

∥∥
F

= min
xm∈x0+Km

‖∆m‖F w.r.t. (A−∆m)xm = b.

As with all the Krylov solvers, the method is advantageous when good approxima-
tions are obtained for small subspace dimensions m ∈ {1, . . . , n}, n being supposed
large. Depending on the parameters, the problem may have no solution at all, a
unique solution xGBm , or several (at most m) solutions. In the first case the algo-
rithm may be continued either by increasing m or by restarting with a different x0.
In the second case the matrix A − ∆GB

m is invertible, while in the third case this
matrix is not invertible, but the linear system (A−∆GB

m )x = b is still compatible.
The superlinear convergence of the Newton-GMBACK iterates written as

(F ′(xk)−∆GB
k,mk

)sGBk,mk = −F (xk),

xk+1 = xk + sGBk,mk , k = 0, 1, . . . ,

may therefore be characterized by Theorem 7, taking ∆k = −∆GB
k,mk

and δk = r̂k =
0, since if the iterates converge we do not mind if they are not uniquely defined.

Apart from theoretical interest, the use of the QN model for these iterations is
worth considering also from the computational standpoint, when the residuals are
expensive to evaluate. Indeed, according to Remark 2, condition ‖∆GB

k,mk
‖ → 0 as

k →∞ is sufficient for the converging Newton-GMBACK iterates to attain super-
linear rate (see also [8]). This provides an alternative in controlling the convergence
rate of the above method, since the magnitude of ∆GB

m may be estimated by com-
puting the smallest eigenvalue of a generalized eigenproblem of (low) dimension
m+ 1, during the same process of determining xGBm .

3We shall use ‖·‖F to denote the Frobenius norm of a matrix, ‖Z‖F = tr(ZZt)1/2, and ‖·‖2
to denote the Euclidean norm from Rn and its induced operator norm.
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b) The other Krylov solver we mention is the MINPERT method [22], which
minimizes the joint backward error [∆m δm] ∈ Rn×(n+1):∥∥[∆MP

m δMP
m ]

∥∥
F

= min
xm∈x0+Km

∥∥[∆m δm]
∥∥
F

w.r.t. (A−∆m)xm = b + δm.

Theorem 7 is again the choice for characterizing the superlinear rate of the
Newton-MINPERT iterations when framed in the perturbed Newton method(

F ′(xk)−∆MP
k,mk

)
sMP
k,mk = −F (xk) + δMP

k,mk ,

xk+1 = xk + sMP
k,mk

, k = 0, 1, . . . ,

with the remark that the convergence of these iterates may be characterized by
eigenvalues computed in the inner steps (see [8]).

Returning to the analysis of the IN and QN methods, it remains to write the IN
as QN iterates. We get(

F ′ (xk)− 1
‖sk‖22

rks
t
k

)
sk = −F (xk) , k = 0, 1, . . . ,

condition (2.1) characterizing their superlinear convergence being transcribed as

(2.4)
∥∥(F ′ (xk)− 1

‖sk‖22
rks

t
k − F ′ (x∗)

)
sk
∥∥ = o

(
‖sk‖

)
as k →∞.

The equivalence of the QN and IN models is completed by the following result,
which again has a straightforward proof.

Theorem 8. Conditions (1.3) and (2.4) are equivalent.

Remark 3. a) In case of superlinear convergence of the IN iterates, the invertibility
of the matrices F ′ (xk) − (1/ ‖sk‖22) · rkstk is automatically satisfied from a certain
step. Indeed, since ∥∥rkstk∥∥2

= ‖rk‖2 ‖sk‖2
(see [20, P.2.3.9]), some standard arguments show that the assumptions on the
mapping F assure the stated property.

b) Condition (1.3) appeared in a natural way in characterizing the convergence
orders of the IN iterates; it is especially suitable for example in the case of the
standard Newton-GMRES method, when the norms of the residuals may be cheaply
computed at each inner step m = 1, 2, . . . , m̄, m̄ ∈ {1, . . . , n}, without the cost of
forming the actual corrections [34]. However, in some situations this condition may
require unnecessarily small residuals (oversolving), as reported in several papers
(see, e.g., [18]).

According to Lemmas 1 and 2, the sequences (xk − x∗)k≥0, (xk+1 − xk)k≥0, and
(F (xk))k≥0 converge superlinearly to zero only at the same time, and therefore one
may devise some combinations to use instead of (1.3). We mention the following
condition, which characterizes the quadratic convergence of the IN iterations:

‖rk‖
‖F (xk)‖+ ‖sk‖

= O
(
‖F (xk)‖

)
as k →∞.

It emerged naturally by backward error analysis [7], and it clearly shows that the
oversolving does not appear when the corrections are sufficiently large. We intend
to analyze the controlling of the convergence orders in a future work.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE EQUIVALENCE OF THREE NEWTON-TYPE METHODS 297

3. Local linear convergence of the IPN method

Morini [26] and Gasparo and Morini [19] have obtained some local linear conver-
gence results for the iterates

(F ′ (xk) + ∆k)sk = −F (xk) + r̂k,(3.1)
xk+1 = xk + sk, k = 0, 1, . . . .

We shall relate them with Theorem 5, but in its special instances for the QN and
IN sequences.

We notice first that, similarly to Theorem 7, one may easily prove the following
result.

Theorem 9. Given ηk ≤ η̄ < t < 1, k = 0, 1, . . . , there exists ε > 0 such that for
any initial approximation x0 with ‖x0 − x∗‖ ≤ ε, if the IPN iterates (xk)k≥0 are
well defined and satisfy

(3.2) ‖−∆ksk + δk + r̂k‖ ≤ ηk ‖F (xk)‖ , k = 0, 1, . . . ,

then they converge to x∗ and obey

‖xk+1 − x∗‖∗ ≤ t ‖xk − x∗‖∗ , k = 0, 1, . . . .

Since condition (1.4) is known to be sharp for ensuring the local convergence of
the IN iterates, the same property follows for (3.2) concerning the IPN method.

We may also obtain the sharp condition regarding the QN model by taking
δk = r̂k = 0 in (3.2). When the QN iterates are uniquely defined, Theorem 5 yields
another sufficient condition for convergence (by Remark 1, we took q1 = 1),

(3.3)
∥∥∆k(F ′(xk) + ∆k)−1

∥∥ ≤ ηk, k = 0, 1, . . . ,

which is not always sharp since it is deduced using an estimate of the form ‖Av‖ ≤
‖A‖ ‖v‖.

There exist few local linear convergence results for the QN method in the litera-
ture, despite the frequent use of this model. A first result was obtained by Ortega
and Rheinboldt [27, p.311], who considered a mapping B : D → Rn×n and

xk+1 = xk −B(xk)−1F (xk), k = 0, 1, . . . .

The local linear convergence result for the above sequence is followed by the Os-
trowski attraction fixed point theorem, under the strong basic assumption that B
is continuous at x∗ and, moreover,

ρ(I −B(x∗)−1F ′(x∗)) < 1,

where ρ(A) = max{|λ| : λ ∈ C, λ eigenvalue of A} denotes the spectral radius of A.
In our notation, the above condition becomes

ρ
(
(F ′(x∗) + ∆(x∗))−1∆(x∗)

)
< 1,

and is implied, for example, when
∥∥(F ′(x∗) + ∆(x∗))−1∆(x∗)

∥∥ < 1.
Other results we are aware of can be retrieved from those in [26] and [19], as

we shall see in the following. In these papers conditions were assumed of the form
‖Pk r̂k‖ ≤ θk ‖PkF (xk)‖ , k = 0, 1, . . .. The invertible matrices Pk arise in the
context of preconditioning strategies for solving linear systems. We shall consider
here the case Pk = I, k = 0, 1, . . ., in order to be able to relate with the previous
results. We recall that the condition number of A ∈ Rn×n in norm ‖·‖ is given
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by cond(A) = ‖A‖ · ‖A−1‖. The mapping F was assumed to belong to the class
F(ω,Λ∗), i.e., obeying the following additional assumptions:

• the set D (on which F is defined) is open;
• the derivative F ′ is continuous on D;
• the solution x∗ is unique in the ball B̄ω(x∗) = {x ∈ Rn : ‖x− x∗‖ ≤ ω}

and B̄ω(x∗) ⊆ D;
• for all x, y ∈ B̄ω(x∗) one has

‖F ′ (x∗)−1 (F ′ (y)− F ′ (x))‖ ≤ Λ∗‖y − x‖.
These hypotheses implied the existence of σ < min{ω, 1/Λ∗} such that F ′(x) is

invertible for all x ∈ B̄ = B̄σ(x∗) and

‖F ′ (x)−1 (F ′ (y)− F ′ (x))‖ ≤ Λ‖y − x‖,
where Λ = Λ∗/(1− Λ∗σ).

The following result was obtained.

Theorem 10 ([26]). Let the approximations F ′(x) + ∆(x) to F ′(x) be invertible
and satisfy for all x ∈ B̄ the properties

‖(F ′ (x) + ∆(x))−1∆(x)‖ ≤ τ1,(3.4)

‖(F ′ (x) + ∆(x))−1F ′(x)‖ ≤ τ2.
Let F ∈ F(ω,Λ∗), ‖x0 − x∗‖ ≤ δ, denote νk = θk cond (F ′ (xk) + ∆k), with

νk ≤ ν̄ < ν. If
α = ρ(ρ+ τ1 + ντ2) + τ1 + ντ2 < 1,

where ρ = 1
2Λδ(1 + ν)τ2, then the sequence (xk)k≥0 given by (3.1) and obeying

‖r̂k‖ ≤ θk ‖F (xk)‖, k = 0, 1, . . ., is uniquely defined and converges to x∗, with

‖xk+1 − x∗‖ ≤ (τ1 + ντ2) ‖xk − x∗‖ , for all k sufficiently large.

For the case of the quasi-Newton iterates we take ν = 0 in the above theorem,
being lead to relation

(3.5)
‖xk+1 − x∗‖
‖xk − x∗‖

≤ τ1, for all k sufficiently large,

while conditions (3.3) imply the convergence rate (1.5), which can be estimated in
norm ‖·‖ by

(3.6)
‖xk+1 − x∗‖
‖xk − x∗‖

≤ t cond(F ′(x∗)), k = 0, 1, . . . .

Though assumptions (3.4) and (3.3) seem to be somehow similar, the above esti-
mated upper bound appears to be larger than the one in (3.5).

For the IN iterates we take τ1 = 0 and τ2 = 1 in Theorem 10, and denoting θ̄ =
lim supk→∞ θk one gets the following upper bound for the q-factor defined in (1.1):

Q1{xk} = lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

≤ θ̄ cond(F ′(x∗)).

Theorem 3 attracts (3.6), and since t ∈ (η̄, 1) is arbitrary, we arrive at a similar
bound: Q1{xk} ≤ η̄ cond(F ′(x∗)). However, the assumptions θk cond(F ′(xk)) ≤
ν̄ < ν < α < 1 in Theorem 10 are obviously stronger than ηk ≤ η̄ < t < 1.

The results in [19] show somehow similar bounds for Q1{xk}, and again explicit
inverse proportionality between the condition numbers of F ′ (xk) + ∆k and the
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forcing terms θk, but under weaker smoothness assumptions on F ′ (more exactly,
requiring only continuity, and not also the Lipschitz-type condition involving the
constant Λ∗).

The following aspects are known to occur in practical applications, when the
condition numbers are large. First, linear convergence in norm ‖·‖∗ does not neces-
sarily attract linear convergence (or linear convergence with sufficiently good rate)
in norm ‖·‖, required in certain problems. Second, the excessively small residuals
required to ensure good convergence properties affect the overall efficiency of the
method (by additional inner iterates in solving the linear systems).

The results in [26] and [19] show that the use of preconditioners reducing the
condition numbers allow larger forcing terms. Another important feature is that
the condition number involved is not of the Jacobian at the solution (which is not
known) but of the Jacobian (or preconditioned perturbed Jacobian) at the current
approximation. The estimators of the condition numbers bring the practical utility
of these results.

Conclusions

We have proved that the inexact, the inexact perturbed and the quasi-Newton
methods are related in a natural way: the conditions for characterizing their high
convergence orders remain invariant under reconsidering the source(s) of the error
terms. This approach allowed us to obtain a new convergence result, but it also
shows that any property specific to one model of perturbed Newton method may
now be transcribed to the other models. For example, the affine invariant conditions
for the Newton and the inexact Newton methods (see [16], [17], [37] and [26]) may
be considered for the inexact perturbed and the quasi-Newton methods.

Another example of transposing a class of iterations in a different frame can be
found in [9], where the successive approximations for smooth iteration mappings
were regarded as IN sequences, and the Ostrowski attraction fixed point theorem
was refined by characterizing the fast convergent trajectories. This approach is
full of potential for further developments, and we should mention, for instance, the
obtaining of estimates for the radius of the attraction balls.
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[6] E. Cătinaş, Newton and Newton-Krylov Methods for Solving Nonlinear Systems in Rn, Ph.D.
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