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Abstract
Background: Antibiotic resistance is an increasing threat to human health. The human gut microbiome
harbors a collection of bacterial antimicrobial resistance genes (ARGs) known as the resistome. The
factors associated with establishment of the resistome in early life are not well understood and clarifying
these factors would inform strategies to decrease antibiotic resistance. We investigated the early-life
exposures and taxonomic signatures associated with resistome development over the �rst year of life in
a large, prospective cohort in the United States. Shotgun metagenomic sequencing was used to pro�le
both microbial composition and ARGs in stool samples collected at 6 weeks and 1 year of age from
infants enrolled in the New Hampshire Birth Cohort Study. Negative binomial regression and statistical
modeling was used to examine infant factors such as sex, delivery mode, feeding method, gestational
age, antibiotic exposure, and infant gut microbiome composition in relation to the diversity and relative
abundance of ARGs.

Results: Metagenomic sequencing was performed on paired samples from 195 full term (at least 37
weeks’ gestation) and 15 late preterm (33-36 weeks’ gestation) infants. 6-week samples compared to 1-
year samples had 4.37 times (95% CI: 3.54-5.39) the rate of harboring ARGs. The majority of ARGs that
were at a greater relative abundance at 6 weeks (chi-squared p < 0.01) worked through the mechanism of
antibiotic e�ux (i.e., by pumping antibiotics out of the cell). The overall relative abundance of the
resistome was strongly correlated with Proteobacteria (Spearman correlation = 78.9%) and speci�cally E.
coli (62.2%) relative abundance in the gut microbiome. Among infant characteristics, delivery mode was
most strongly associated with the diversity and relative abundance of ARGs. Infants born via cesarean
delivery had a higher risk of harboring unique ARGs [relative risk = 1.12 (95% CI: 0.97 – 1.29)] as well as a
having an increased risk for overall ARG relative abundance [relative risk = 1.43 (95% CI: 1.12 – 1.84)] at 1
year compared to infants born vaginally. Additionally, 6 speci�c ARGs were at a greater relative
abundance in infants delivered by cesarean section compared to vaginally delivered infants across both
time points.

Conclusions: Our �ndings suggest that the developing infant gut resistome may be alterable by early-life
exposures. Establishing the extent to which infant characteristics and early-life exposures impact the
resistome can ultimately lead to interventions that decrease the transmission of ARGs and thus the
possibility of antibiotic resistant life threatening infections.

Introduction
The overuse of antibiotics in medicine and agriculture has contributed to the growing public health
burden of antimicrobial resistance [1]. Studies have identi�ed sets of antimicrobial resistance genes
(ARGs) known collectively as the resistome [2,3] in animals, humans, and the environment [4–6]. The
human gut microbiome is a critical reservoir of ARGs [7,8], but differential acquisition and composition of
ARGs in the beginning of life is still largely unexplored.
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Infants and young children are prescribed more antibiotics than any other age group [9,10]. Multiple
studies have focused on understanding the role of early-life antibiotic exposures to the infant gut
resistome noting enrichment for ARGs that did and did not confer resistance to the antibiotic prescribed
[11–14]. Moreover, ARGs have been identi�ed in infants’ �rst stools following delivery and prior to any
direct antibiotic exposure [15–17]. The abundance of ARGs in the infant gut has been shown to decrease
with age [11,15,18,19]. These �ndings have motivated studies to explore early-drivers that shape the
resistome beyond infant antibiotic usage. Factors that have speci�cally been assessed in relation to the
infant gut resistome include age of the infant [11,18,19], type of delivery [15,20], breast versus formula
feeding [21], gestational age [11,13,21], and intrapartum antibiotic usage [19]. Prior investigations
assessing how early-life factors impact the resistome have focused on preterm infants [11,13,22] or were
based on small cohorts (< 50) of full term infants [8,12,14,17–19]. The two largest studies in full-term
infants [15,20] reported on the count and types of ARGs but did not examine longitudinal changes in
ARGs or early-life factors associated with resistome development. This has led to a gap in understanding
how early-life factors shape the resistome of full term infants.

Resistomic and taxonomic composition are intrinsically intertwined, but the extent to which early-life
factors shape the resistome via infant gut microbial composition has not been established. Variation to
ecological successional patterns of microbiome assembly has been observed by our group and others in
association with gestational age [13], delivery mode [15,20,23], feeding mode [23,24], intrapartum
antibiotic exposure [13,19,20,25–28], geographic diversity [29,30], and antibiotic usage [11,12,29,31]. As
ARGs can be passed horizontally between bacteria through mobile genetic elements or vertically within
the infant gut [11,12,19] and differential infant characteristics impact the trajectory of microbial
composition [12,15,32], taxonomic composition is an important factor to consider in context to resistome
development.

Despite the wide number of studies that have investigated the resistome, no study has simultaneously
evaluated the independent effects of differential infant exposures and microbiome taxonomic
composition on the resistome in a general population of infants. Our study objectives were to �ll two
important gaps in the epidemiology of human resistome development. First, we aimed to establish the
baseline composition of the resistome at approximately 6 weeks and 1 year of life in a general population
United States birth cohort. Second, we aimed to assess how early-life exposures, in conjunction and
independently to microbial composition, affect the infant gut resistome. We found that infant gut
microbiota harbored a greater relative abundance of ARGs at 6 weeks than 1 year. A similar number of
unique ARGs were found at each time point, but the types of ARGs varied considerably. Overall,
differential resistome composition was impacted by early-life exposures including delivery mode, but was
primarily driven by taxonomic composition during the �rst year of life.

Results

Sample selection and baseline characteristics
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We performed whole metagenome sequencing on stool samples from infants enrolled in the New
Hampshire Birth Cohort Study (NHBCS) to pro�le the gut resistome and microbiome. Our study consisted
of infants born between 2012 and 2017 who had a stool sample collected at approximately 6 weeks and
12 months of life. From 238 infants with paired 6-week and 1-year samples, we excluded infants if one or
both samples had missing sample age, feeding mode, or intrapartum antibiotic exposure data. This
resulted in a total of 420 stool samples from 210 infants. Of these, 195 (92.9%) infants were born full
term (at least 37 weeks’ gestation) and 15 (7.1%) were born late preterm (33-36 weeks’ gestation) (Table
1). Infants commonly were vaginally delivered (n = 152; 72.4%) and slightly more than half were exposed
to intrapartum antibiotics (n = 115; 54.8%). The majority of infants who were vaginally delivered and
received intrapartum antibiotics (n = 63) were given penicillin-like antibiotics (n = 41; 65%) while the
majority of women receiving intrapartum antibiotics for a cesarean birth (n = 52) received cephalosporins
(n = 34; 65%). Most infants (93.8%) were ethnically of European Ancestry and White race which re�ects
the underlying study population in the surrounding rural northern New England community. No covariate
analyzed was associated with analysis using single or paired-end reads (Additional File 2: Table S1).

 

Table 1: Baseline Characteristics of Paired Infant Samples (n = 210)
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Infant Characteristics

Infant Sex (%)  

     Female 89 (42.4)

     Male 121 (57.6)

Infant Race (%)  

     White 197 (93.8)

     Other 13 (6.2)

Feeding Mode at 6-Week Sample (%)  

     Breast fed 157 (74.8)

     Formula fed 7 (3.3)

     Combination 46 (21.9)

Feeding Mode at 1-Year Sample (%)  

     Breastfed 70 (33.3)

     Formula fed 7 (3.3)

     Combination 133 (63.3)

Antibiotics During Initial Hospitalization (%)  

     No 203 (96.7)

     Yes 7 (3.3)

Gestational Age at Birth in Weeks [Mean (SD)] 39.05 (1.56)

Birth Weight in Grams [Mean(SD)] 3414 (507)

Age at 6-Week Sample Collection in Days [Mean (SD)] 46.78 (18.44)

Age at 1-Year Sample Collection in Days [Mean (SD)] 375.32 (35.69)

Maternal Characteristics

Delivery Mode (%)  

      Vaginal 152 (72.4)

      Cesarean section 58 (27.6)

Prenatal Antibiotics Prior to Delivery (%)  
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      No 157 (74.8)

      Yes 39 (18.6)

      Missing 14 (6.7)

Group B Streptococcus Positive (%)  

      No 137 (65.2)

      Yes 68 (32.4)

      Missing 5 (2.4)

Parity (%)*  

     Nulliparous 104 (49.8)

     One 72 (34.4)

     At least two 33 (15.8)

Intrapartum Antibiotic Exposure Class** (%)  

     None 95 (45.2)

     Penicillin 43 (20.5)

     Cephalosporin 43 (20.5)

     Multiple 25 (11.9)

     Other 4 (1.9)

*One mother was missing parity status

**Infants were grouped according to intrapartum antibiotic exposures using the following categories:
no antibiotics; penicillin-like antibiotics only (amoxicillins, penicillins); cephalosporins only (cefazolin,
cephalexin); multi-drug classes (two or more antibiotics characterized as penicillin, cephalosporin,
vancomycin, clindamycin, and/or gentamicin); or “other” antibiotics such as aminoglycosides,
glycopeptides, or lincomycin.

 

Descriptive overview of the resistome and microbiome
Using ShortBRED [33], we pro�led ARGs using markers for ARGs derived from shortened proteins stored
in the Comprehensive Antibiotic Resistance Database [34]. Our primary outcomes were the number of
unique ARGs and the overall relative abundance of ARGs in reads per kilobase of reference sequence per
million sample reads (RPKM). The prevalence, mean, and median values for all ARGs pro�led (n = 887)
were calculated across all samples and among samples with the gene present (Additional File 2: Table
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S2). 359 different ARG markers were identi�ed in the 420 samples and 241 were identi�ed in at least 1%
of samples. There was a median of 77 (interquartile range: 45-94) unique ARG markers per sample and
all samples had at least 7 unique antimicrobial resistance markers (Additional File 1: Figure S1a). Total
median (interquartile range) relative abundance of ARG markers was 1086 (570-2459) RPKM.

Resistome relative abundance and composition differed in the 6-week and 1-year samples. The overall
relative abundance of ARGs was signi�cantly higher at 6 weeks than 1 year (Figure 1a; Additional File 1:
Figure S1b). Many differentially abundant ARG markers by postnatal age of the infant were related to
antibiotic e�ux (Additional File 1: Figure S2). The most commonly identi�ed (94.3% prevalence) ARG
marker for 6-week samples was Enterobacter cloacae acrA [Antibiotic Resistance Ontology (ARO):
3004042], a resistance-nodulation-cell-division antibiotic e�ux pump. tetO (ARO: 3000190) was most
commonly found in 1-year samples (97.6%). Through assessing the resistome compositionally, we
identi�ed that 6-week samples had a more even dispersion of unique ARGs while 1-year samples mainly
were composed of 1 or 2 dominant ARGs (Figure 1b). Speci�cally, 1-year samples had a high relative
abundance of either tetO, tetW, or tetQ which confer resistance to tetracycline antibiotics, along with dfrF
which confers resistance to diaminopyrimidine antibiotics and cfxA6 a beta-lactamase gene conferring
resistance to cephamycin. The overall relative abundance in RPKM of ARGs conferring resistance to
tetracycline, however, was greater in 6-week samples as compared to 1-year samples.

To determine the in�uence of microbial composition on resistome composition, we taxonomically pro�led
the infant stool samples using MetaPhlAn2 [35]. As previous research has identi�ed Proteobacteria
abundance to be associated with certain ARGs [13,15,19,36,37] and we visually examined and identi�ed
Proteobacteria to be correlated with the relative abundance of the resistome (Figure 1c), we focused on
this taxon as a potential mediator between infant characteristics and resistome composition.

 

The resistome is driven by early-life factors
After pro�ling resistomic and taxonomic composition, we aimed to explore which covariates and early-life
factors may impact resistome development. We used negative binomial regression to assess how
delivery mode, feeding mode, intrapartum antibiotic exposure, sex, and initial antibiotic exposure during
hospitalization, controlling for log10-number of reads, impacted the count of unique ARG markers
(Additional File 2: Table S3). Sample age (6-week vs. 1-year) was not associated with unique ARGs
(relative risk = 0.99; 95% CI: 0.9-1.08). Nonetheless, we strati�ed the remainder of our results because we
hypothesized that, since different types of ARGs were present at 6 weeks and 1 year, covariates and early-
life factors may be differentially associated at each time point. Cesarean delivery, as compared to vaginal
delivery, was associated with differential risk of having unique ARGs but in different directions at 6 weeks
and 1 year. Cesarean section delivered infants had a decreased risk [0.84 (95% CI: 0.72 - 0.99)] at 6 weeks
and yet an increased risk [1.12 (95% CI: 0.97 -1.29)] at 1 year of having unique ARGs compared to
vaginally delivered infants. Compared to exclusive breastfeeding at 6 weeks, any formula feeding



Page 9/33

exposure was associated with an increased risk of having diverse ARGs [relative risk = 1.29 (95% CI: 0.92-
1.89) for infants formula fed exclusively and relative risk = 1.13 (95% CI: 0.97-1.33) for combination fed
infants] with the opposing trend at 1 year [relative risk = 0.74 (95% CI: 0.54-1.04) for infants formula fed
exclusively; relative risk = 0.81 (95% CI: 0.72-0.92) for combination fed infants]. Although males had no
differential risk of harboring a unique number of ARGs at 6 weeks compared to females, at 1 year males
had a decreased risk [relative risk = 0.84 (95% CI 0.75-0.95)] of harboring unique ARGs.

In addition to pro�ling how covariates and early-life factors may contribute to different types of ARGs, we
also assessed how these factors impacted the overall relative abundance of the resistome. In negative
binomial regression analyses assessing total RPKM of ARG markers, we found that 6-week samples
harbored a higher relative abundance of ARGs compared to 1-year samples. After adjustment for delivery
mode, feeding mode, initial antibiotic exposure after hospitalization, intrapartum antibiotic exposure,
gestational age, and sex, 6-week samples, as compared to 1 year samples, had 4.37 times (95% CI: 3.54-
5.39) the rate of harboring ARG markers (Additional File 2: Table S4). At 6 weeks, male infants had a 1.41
times (95% CI: 1.02-1.94) higher rate of harboring ARGs compared to females but there was no sex
difference at 1 year. At one year, antibiotic exposure (n =7) during initial hospitalization was associated
with an overall lower risk of harboring ARGs compared to infants not given these antibiotics [relative risk:
0.41 (95% CI: 0.23-0.78)]. Infants exposed to penicillin-like intrapartum antibiotics had a 1.48 (95% CI:
1.10-2.00) times greater risk of harboring ARGs at one year compared to infants not exposed to
intrapartum antibiotics. However, once we removed two 1-year samples that were considered outliers
(RPKM of ARGs > 10,000), there was no association between penicillin exposure and relative abundance
load of ARGs (Additional File 2: Table S5) but there was an association between resistome relative
abundance and cesarean section [relative risk = 1.43 (95% CI: 1.12 – 1.84)]. To explore the interaction
between intrapartum antibiotic exposure and delivery mode, we categorized the 210 infants into four
groups: (1) vaginal delivery and no intrapartum antibiotic exposure (n = 89), (2) vaginal delivery and
intrapartum antibiotic exposure (n = 63), (3) cesarean delivery and no intrapartum antibiotic exposure (n =
6), and (4) cesarean delivery and intrapartum antibiotic exposure (n = 52). With the inclusion of the two
outliers, groups (2) and (4), which both had intrapartum antibiotic exposure, were both independently
associated with harboring higher quantities of ARGs [relative risk = 1.30 (95% CI: 0.99-1.70) and relative
risk = 1.54 (95% CI 1.16-2.07)] relative to group (1). Without inclusion of the outliers which both occupied
group (2), only group (4) remained statistically signi�cant [relative risk = 1.51 (95% CI: 1.16-1.96)].
Additional sensitivity analysis restricted to vaginal delivery suggested a similar trend; intrapartum
antibiotics was not independently a risk factor for ARG load. Feeding mode was not statistically
signi�cant at either time point.

After assessing overall measures of the resistome and determining differences by covariates and early-
life factors, we hypothesized that these factors may be associated with the relative abundance of
individual ARGs. We used MaAsLin2 [38] to test if the relative abundance of ARGs varied by covariates
and early-life exposures (Additional File 2: Table S6). Using a multiple hypothesis correction (Benjamini-
Hochberg q < 0.01), we found ARGs associated primarily with postnatal age of the infant of which a
statistically signi�cant majority (chi-squared test p < 0.01) worked through the mechanism of antibiotic
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e�ux (Figure 2). The only early-life factor that was associated with speci�c differentially abundant ARGs
was delivery mode. ARG markers associated with increased relative abundance in infants delivered via
cesarean section were Enterobacter cloacae acrA (ARO: 3004042), CRP (ARO: 3000518), and sdiA (ARO:
3000826) all of which encode resistance-nodulation-cell division antibiotic e�ux pumps. Additionally,
Escherichia coli soxS with mutation conferring antibiotic resistance (ARO: 3003511), uhpT with mutation
conferring resistance to fosfomycin (ARO: 3003890), and rpoB mutants conferring resistance to
rifampicin (ARO: 3003288), were identi�ed and are linked to a variety of pathogenic species [34].

 

Resistome composition is impacted by early-life factors
primarily via E. coli
To directly determine the association between E. coli and Proteobacteria with overall resistome outcomes,
we plotted the relative abundance of each versus the resistome overall relative abundance (Figure 3a and
Figure 3b) and number of unique ARGs (Figure 3c and Figure 3d). We found that the overall relative
abundance of the resistome was correlated (using Spearman correlation) with Proteobacteria (78.9%)
and E. coli (62.2%) relative abundance. Speci�cally for Figure 3b, the samples with high Proteobacteria
relative abundance and high ARG relative abundance were samples with high E. coli relative abundance.
The relative abundance of E. coli had a 78.1% correlation with the number of unique ARGs, but only
44.2% correlation with Proteobacteria relative abundance. Unlike Figure 3a, the association shown in
Figure 3c isn't linear (i.e., no positive or negative association) but is representative of a threshold effect.
For instance, all samples that had an E. coli relative abundance greater than 5% had at least 68 unique
ARGs, but a sample could still have a substantial number of unique ARGs with having a 0% or near 0%
relative abundance of E. coli.

Between sample (beta) resistome diversity using CLR-transformed ARG relative abundance and principal
component analysis (PCA) was used to further understand which covariates or taxa were associated with
the dispersion of samples’ resistome compositions. The PCA was described by two main principal
components explaining 31.1% and 10.2% of the variation respectively. Upon visual inspection, we found
that infant age was associated with principal component 2. In an attempt to understand the bimodal
distribution of unique ARG markers (Additional File 1: Figure S1a), we colored the PCA by the number of
unique ARGs. The coloring aligned with the horizontal of principal component 1 sample separation
(Figure 4a). To assess the underlying mechanisms for this dispersion by the number of unique markers,
we considered the impact of different Proteobacteria species. Consistent with the results of the
scatterplots associating E. coli relative abundance with resistome outcomes, we found that E. coli relative
abundance best described the dispersion patterns in the PCA (Figure 4b). To statistically test whether E.
coli composition described the dispersion of resistomes across samples, we conducted a PERMANOVA of
the CLR-transformed resistome composition adjusting for CLR-transformed relative abundance of E. coli,
covariates, early-life factors, and individual variation. We found the relative abundance of E. coli to be
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associated with 24.7% of the variation of the relative abundance of the resistome. In comparison, each
individual’s resistome described 35.3% of the variation. Additionally, sample age described 5.0% of the
variation and feeding mode 2.4%, but no other factor described more than 1% of the variation (Additional
File 2: Table S7). To further explore how E. coli relative abundance may affect the relative abundance of
ARGs, we plotted each sample against the ARGs with the highest overall relative abundance across all
samples (>7000 RPKM) using a heat map. Samples clustered mostly by the number of unique ARG
markers and CLR-transformed E. coli abundance and not primarily by any other factor (Figure 5).

To test if microbiome or resistome composition progressed asymmetrically due to early-life exposures, we
took advantage of the paired sample design and tested if CLR-transformed relative abundance of ARGs,
number of unique ARGs, or CLR-transformed relative abundance of E. coli was differential between the
two time points. Using adjusted linear regression models, we found that cesarean section delivered
infants had on average 18.5 (4.6 – 32.4) additional unique ARG markers that increased from 6 weeks to 1
year compared to vaginally delivered infants (Additional File 1: Figure S3a). Infants born by cesarean
section also had on average 4.1 (95% CI: 1.7 – 6.4) units higher CLR-transformed relative abundance of
E. coli compared to vaginally born infants (Additional File 1: Figure S3b; Additional File 2: Table S8). This
was not a result of differential sample collection ages between the 6-week and 1-year time points by
delivery mode. These results suggest that cesarean delivery may be associated with differential
acquisition of E. coli over time which may lead to increased relative abundance of ARGs.

Since we found E. coli to be strongly correlated with the number of ARG markers and early-life exposures,
we hypothesized that early-life factors proliferate E. coli strains with unique genes. We used PanPhlan
[39] to determine if the dominant strain of E. coli for each sample had different types of genes due to any
early-life exposure. A PCA and heat map revealed that the gene presence/absence matrix separated into
three groups predominantly based on the number of genes present and absent (Additional File 1: Figure
S4a). The �rst principal component of the strain analysis described 51.2% of the variation and was
visually determined to be the total number of genes present and not related to any covariates (Additional
File 1: Figure S4b). A logistic regression analysis assessing sample age, feeding mode, mode of delivery
and intrapartum antibiotic exposures, and number of reads (with gene presence/absence as the
outcome) identi�ed one gene to be statistically signi�cantly associated with increased presence in 1-year
samples after a multiple hypothesis correction (q < 0.1). A BLAST search of the gene using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) revealed it was a 23S ribosomal RNA gene. Mutations
within 23S ribosomal RNA are associated with different types of antibiotic resistance (CARD ARO:
3000336). As this gene was only associated with sample age, this �nding suggests that no individual
ARG within the E. coli pangenome was independently associated with early-life exposures in our dataset.

Lastly, we assessed if mobile genetic elements (MGEs) were associated with infant characteristics and E.
coli relative abundance. Using results from HUMAnN2, we identi�ed three MGEs related to transposition
(GO:0004803 [molecular function] transposase activity; GO:0006313: [biological process (BP)]
transposition, DNA-mediated; and GO:0032196 [BP] transposition) and one related to plasmid
maintenance (GO: 0006276 [BP]). We tested each MGE versus infant characteristics and early-life factors
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using MaAsLin2. We found that all of the MGEs were statistically signi�cantly associated with sample
age with transposase activity and DNA-mediated transposition at a greater relative abundance at 1 year
while transposition and plasmid maintenance were at a greater relative abundance at 6 weeks (Additional
File 2: Table S9). For plasmid maintenance in particular, E. coli was an important contributor to the MGE’s
relative abundance (Additional File 1: Figure S5).

Discussion
In this prospective cohort study of paired 6-week and 1-year stool samples from 210 infants, we
characterized the developing infant gut resistome and determined which factors affect its composition.
Results from this resistome epidemiology study align with previous studies; postnatal age of the infant
and taxonomic composition drive both individual ARGs and overall resistome composition but other
factors play a role either directly or indirectly including delivery mode, feeding method, and sex. Overall,
our results provide insight into the acquisition and development of ARGs in a general population cohort
of infants.

 

The infant gut resistome changes primarily in relation to the
microbiome
The infant gut resistome samples pro�led at 6 weeks were different than those pro�led from the same
infants at 1 one year of age, which we primarily attribute to shifts in microbial composition. We found a
higher relative abundance of ARGs at 6 weeks than 1 year. This �nding agrees with other studies
analyzing the resistome that have found greater relative abundances of ARGs in younger infants
compared to young children or adults [11,15,18,19]. Additionally, although we did not identify a difference
in the observed number of unique ARGs across the two time points, the types of ARGs varied. These
trends occurred in parallel to the taxonomic composition development within the infant gut. Speci�cally,
the 6-week samples had a high relative abundance of Proteobacteria compared with one year samples. In
our study, the relative abundance of both E. coli and Proteobacteria were highly correlated with the
composition of the resistome.

Our �ndings agree with other studies that have identi�ed Proteobacteria [13,15,19,36,37] and speci�cally
E. coli [13,19,37] as signi�cant sources of ARGs. While it could be argued that these results are a
consequence of identi�ed ARGs, it is worth noting that studies across different species and ecosystems
using qPCR or assembly-based methods have also identi�ed that Proteobacteria harbor a proportionately
high level of ARGs [40,41]. Additionally, although E. coli are commonly found in low abundance within the
human gut and are recognized as early colonizers of the infant gut, microbial dysbiosis can lead to
Proteobacteria and E. coli blooms presenting increased opportunities for horizontal gene transfer of ARGs
[42,43]. As E. coli contain a high diversity of plasmids and high potential for horizontal gene transfer [43],
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this is a particular concern. Two recent papers [14,19] did not directly identify an association between any
speci�c MGE and E. coli in the infant gut, but do provide additional context that support this study’s
�ndings. Of particular interest, one study found that E. coli relative abundance was associated with an
increased ARG relative abundance and that plasmids and other MGEs were at a higher relative
abundance in infant guts at 1 month as opposed to 6 months [19]. Both studies also found MGEs to be at
a greater abundance in infants as opposed to mothers. [14,19]. This notion that E. coli is important to the
resistome and mobilome is also supported by the results of our MGE analysis as MGE relative abundance
was associated with E. coli-speci�c contributions especially regarding plasmid maintenance. Future
studies with additional timepoints before 1 year could evaluate in detail the dynamics of E. coli
abundance in the gut and how they relate to the development of the gut resistome over time. Findings
from these studies could provide insight on E. coli susceptibility patterns to available antibiotics in early
life and could be used to evaluate appropriate empiric regimens to early-life infections and bacteremia.
For instance, as both Group B Streptococcus and E. coli are leading causes of neonatal sepsis [44,45], it is
becoming increasingly important to assess how intrapartum antibiotic prophylaxis for Group B
Streptococcus may affect ARGs in E. coli and lead to neonatal sepsis or antibiotic resistant E. coli
infections.

 

Delivery mode and not intrapartum antibiotic exposure
contributes to resistome alterations
Intrapartum antibiotic exposure and delivery mode have previously been rarely explored in full term infant
gut resistome epidemiology. Only one study [19], has speci�cally assessed intrapartum antibiotic
exposure on ARGs in infant stool. The study included 16 vaginally delivered, full term (at least 37 weeks’
gestation) infants assessed at approximately 1 and 6 months. They found that intrapartum antibiotic
exposure did not impact overall resistome composition although some ARGs [including dfrE, efrA, and
lsa(A)] pro�led were at a higher abundance among infants in the exposed group. We did not �nd evidence
that any ARG was at a higher relative abundance after adjustment for other covariates and after
accounting for possible false positives through multiple hypothesis correction. Differences between
studies may be a result of varying sample age measurement; differential measurement of taxa and
genes; variation in the dose, duration, and type of intrapartum antibiotic administered; or differential
sensitivities to intrapartum antibiotics that vary by study population.

Delivery mode has also been associated with differential resistome load. One study [15] found that
infants that were vaginally delivered had a lower proportion of ARGs (as a fraction of the overall number
of genes) in their samples compared to cesarean delivered infants in newborn, 4-month, and 12-month
stool samples. We found that 6 ARGs were at an increased relative abundance in infants born via
cesarean delivery as compared to those delivered vaginally. These genes have been identi�ed in
sequences of Salmonella enterica, E. coli, and pathogens often associated with nosocomial transmission



Page 14/33

including some Enterobacter spp. and Klebsiella pneumoniae [34]. As we did identify that cesarean
delivery was associated with increased E. coli relative abundance between sample collection points, it is
worthwhile to note that cesarean section also alters the trajectory of taxonomic development within the
infant gut. Thus, our conclusion is that cesarean section likely impacts resistome composition directly
and indirectly via alterations to the successional timeline of microbes in the infant gut.

Studies often have not been powered to tease apart intrapartum antibiotic exposure from other exposures
that occur concomitantly at delivery including gestational age and delivery mode. This has contributed to
inconsistent results regarding the independent impacts of intrapartum antibiotic exposure. Although our
analysis of overall resistome load at 1 year (n = 210) found that intrapartum antibiotic exposure to
penicillin was associated with an increased risk of harboring ARGs, upon sensitivity analyses to remove 2
infants with RPKM of ARGs greater than or equal to 10,000 at 1 year, this result no longer persisted.
Further analyses reclassifying intrapartum antibiotic exposure and delivery mode into four groups
suggested only the combination of cesarean delivery and intrapartum antibiotic exposure to be
associated with an increased rate of harboring ARGs. While it’s possible a positive association between
intrapartum antibiotic exposure and the overall relative abundance of ARGs may exist only in infants that
are born by cesarean section (i.e., cesarean section is an effect modi�er), we hypothesize cesarean
section to be the more important factor driving the increased relative abundance of ARGs for several
reasons. First, it is worthwhile to note that the two 1-year samples that were removed had a high relative
abundance of E. coli (21% and 41% respectively) compared to the average among 1 year samples (1.3%
not including the outliers). This suggests that these two infant samples displayed evidence of an E. coli
bloom during sample collection which likely was unrelated to their intrapartum antibiotic exposure.
Second, there was only a small number (n = 6) of infants who were delivered by cesarean section but did
not receive intrapartum antibiotics. This likely precluded our ability to statistically signi�cantly detect the
independent exposure of cesarean section. Third, across multiple analyses, we identi�ed positive
associations between cesarean delivery and the resistome, but never with intrapartum antibiotics
regardless of the antibiotic type. Lastly, in sensitivity analyses limited to infants who were delivered
vaginally or by cesarean section, we found no association between intrapartum antibiotic exposure and
overall relative abundance of ARGs. Additional studies that have more infants that were born via
cesarean delivery but not exposed to intrapartum antibiotics could be used to validate this conclusion.
The higher ARG relative abundance in cesarean delivered infants could be due to the environment of the
operating room, preferential colonization from skin as opposed to vaginal microbes, differences in
mothers or infants who are born by cesarean delivery, or potentially a synergistic interaction between
intrapartum antibiotics and cesarean delivery.

 

Other covariates and early-life factors may alter the
trajectory of the microbiome and indirectly impact the
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resistome
Feeding method has been considered one of the most important factors in microbial and metabolic
development [29,32], but we found little evidence to suggest its impact directly on the resistome. A
previous study in preterm infants [21] identi�ed class D beta-lactamase genes to be enriched in formula
fed infants which were most frequently identi�ed in Clostridium di�cile. We did not �nd class D beta-
lactamase genes in infants who were formula fed. The remainder of our results suggest feeding method
acts on the resistome via increasing taxonomic diversity which could also be correlated with the
introduction of formula or solid foods. For instance, compared to infants that were exclusively breastfed,
infants that were given any formula at 6 weeks had an increased risk for developing unique ARGs but a
lower risk at 1 year. This �nding suggests that introduction of taxonomic diversity during unstable
periods in development can lead to more instability, but in more stable infant gut community, taxonomic
diversity provides colonization resistance [46].

Surprisingly, we identi�ed that male sex was associated with a greater overall relative abundance of
ARGs at 6 weeks, but with a decreased risk of unique ARGs at 1 year. A recent study [14] found that
among 40 infants that were 6 months old, males had a higher richness of ARGs (de�ned as the total
prevalence of ARGs in each sample) but found no difference in the summed relative abundance. Another
study [47] assessed sex differences in the gut resistome of adults. They found that females had a greater
mean prevalence of ARGs than males and attributed this primarily to differences in antibiotic prescribing
practices by sex. Sex differences in antibiotic prescription rates have not been fully teased apart [48] but,
for older children and adults, some of the differences are likely due to distinct urinary tract infection rates
or sex-based differences in care utilization [48,49]. As these factors may not be as applicable for infants,
antibiotic prescription rate differences may not explain the differential resistome composition. Instead, a
combination of microbial, hormonal, or developmental differences may explain variation between infant
male and female resistomes.  

 

Strengths and limitations
While our study had many strengths including our large sample size, paired sample design to reduce
individual-level variation, and prospective data collection framework, our study does have some
limitations. The NHBCS includes primarily White women and their infants from New Hampshire and
Vermont in the United States. Thus, our results may not be generalizable to other communities with
different ethnic [50] or geographic compositions [30].  Most variables were collected via standardized
medical record review including age, sex, delivery mode, and antibiotic exposures reducing multiple
possible biases. However, for reported covariates such as feeding mode within the �rst year, recall and
misclassi�cation bias was a concern. To mitigate this, we temporally assessed infant breast feeding
exposures beyond the marked interval time points to improve the accuracy of the feeding mode
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classi�cation (see Methods). Additionally, we conducted a duplicate analysis of one 6-week sample from
sequencing to analysis. The duplicate samples were highly correlated across taxonomic and resistome
metrics. We also did not include antibiotic exposures throughout the �rst year of life due to the variety
and timing of the exposures, but recognize future studies that primarily focus on antibiotics over the �rst
year of life should be conducted. Likewise, we acknowledge that there are inherent limitations to the
reference databases, many of which are updated frequently, and tools we used to pro�le ARGs and taxa.
To alleviate this concern, we used previously curated and highly used sources including a precompiled set
of ARG markers from 2017. Thus, we believe any misclassi�cation would be non-differential by infant
characteristic. Speci�c to ARGs, there is much debate regarding the classi�cation of ARGs and their
actualized signi�cance to differential health outcomes with some ARGs purely indicating the presence of
a particular species [51]. Regardless, these genes can functionally confer resistance to the associated
organism and is the predominant reason why we did not remove any possible ARGs from analysis. Future
papers could work to tease apart which genes functionally contribute to antimicrobial resistant infections
within and between hosts or use metatranscriptomics to further investigate the expression and utilization
of these ARGs.

Conclusion
We identi�ed that the infant gut resistome of 210 infants from the general population sampled at two
time points in the NHBCS varies by early-life exposures but predominantly tracks with taxonomic
succession. Proteobacteria and speci�cally E. coli were correlated with the overall relative abundance of
ARGs and the number of unique ARGs. Early-life factors and covariates beyond infant antibiotic exposure
were associated with the infant gut resistome with cesarean delivery most associated with differential
resistome acquisition and development. As one of the largest infant gut resistome epidemiology studies
to date, this work provides a baseline level of resistome development in a general population of infants.
Future studies should consider how other early-life factors and perturbations throughout development
may impact the infant gut resistome to offer insights on measures to reduce antibiotic resistance early in
life.   

Methods

Study population and design
The NHBCS is an ongoing prospective cohort study of over 2000 pregnant women and their offspring
recruited from prenatal clinics in New Hampshire, USA. Pregnant women ages 18-45 are recruited from
prenatal clinics beginning at approximately 24-28 weeks of gestation and all women must use private
well water as discussed previously [52]. Fecal samples were collected prospectively for infants at
approximately 6 weeks and 1 year. Institutional review board approval was obtained at Dartmouth with
yearly renewal.
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Covariate data collection
Extensive covariate data on lifestyle, medical history, and environmental exposures was collected in the
NHBCS from participants through medical records, postpartum questionnaires, and telephone interviews.
Delivery mode (vaginal or cesarean), feeding mode (exclusively breast fed, exclusively formula fed, or
combination of breast and formula fed), prenatal maternal antibiotic usage (yes or no), gestational age
(in days), birth weight (in grams), maternal Group B Streptococcus status (yes or no), infant sex (male or
female), and other demographic characteristics were collected from telephone questionnaires at 4, 8, and
12 months following birth and delivery medical records. Age of breast milk samples is also used to
determine feeding mode and additional information about the classi�cation of breastfeeding exposure.
Additional information about feeding method during infant stool sample collection can be found in
Additional File 1: Supplementary Methods. Infant antibiotic exposures were only classi�ed if oral,
injected, or intravenous antibiotic exposure was indicated during the initial hospitalization. Intrapartum
antibiotic exposures administered during labor and delivery were extracted from maternal medical
delivery records and were assessed both as a yes/no variable and explored by class of intrapartum
antibiotic received. Subjects were grouped according to intrapartum antibiotic exposures using the
following categories: no antibiotics; penicillin-like antibiotics only (amoxicillin, penicillin); cephalosporins
only (cefazolin, cephalexin); multi-drug classes (two or more antibiotics characterized as penicillin,
cephalosporin, vancomycin, clindamycin, and/or gentamicin); or “other” antibiotics such as
aminoglycosides, glycopeptides, or lincomycin.

 

Metagenomics collection and processing pipeline
Infant stool samples were collected at 6-weeks and 12-months maternal postpartum. Stool samples were
provided in diapers and stored by guardians in a home freezer (-20 °C) until they were able to return them
to the study site. Stool was thawed at 4 °C and aliquoted (range 350-850 mg) into 3ml RNAlater in
cryotubes and homogenized before storing at −80 °C. RNAlater stool samples were thawed and DNA was
extracted using the Zymo Fecal DNA extraction kit (Cat# D6010, Zymo Research, Irvine, CA), according to
the manufacturer’s instructions. For each sample extraction, 400ul RNAlater stool slurry (50–100 mg of
stool) was used to isolate DNA. Extractions were performed in batches of multiple samples and included
a composite RNAlater stool positive control and a RNAlater negative control. Lysis of stool slurry was
performed using 750ul Lysis Buffer in ZR BashingBead™ Lysis Tubes (0.5 mm beads), mixed and then
shaken on a Disruptor Genie for 6 min. Eluted DNA was quanti�ed on a Qubit™ �uorometer using the
Qubit™ dsDNA BR Assay. Average coe�cient of variation of DNA yields (ng/ul) for composite RNAlater
stool positive controls was 28%. No DNA was ever detectable in negative control elutions. Concentrations
of DNA samples used for metagenomic gene sequencing ranged from 1 ng/ul to 25 ng/ul.
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Metagenomic sequencing libraries were prepared at the Marine Biological Laboratory (MBL) in Woods
Hole, MA using established methods. These libraries were constructed using Nugen’s Ovation Ultralow V2
protocol. Using a Covaris S220 focused ultrasonicator, DNA samples were sheared to a mean insert size
of 400 base pairs.

Some metagenomic samples were processed as paired-end reads (n = 219; 52.1%) and others as single-
end reads (n = 201; 47.9%). Generally, sequencing batches of 12 were run for paired-end reads and
batches of 16 were run for single-end reads. Paired-end DNA reads were merged into one FASTQ �le and
all samples were trimmed with KneadData and Trimmomatic with default settings [53] for quality control.
Mean (SD) reads after this quality control for single-end reads was 22.3 million (9.6 million) and was 58.9
million (20.8 million) for paired-end reads.

Taxonomic analysis was conducted using both MetaPhlAn2 [35] and PanPhlAn version 1.2.2.5 (10 May
2018) [39]. MetaPhlAn2 [35], an output of the HUMAnN2 [54] version 0.11.2 pipeline, was used to analyze
relative abundance of taxa to the species level. MetaPhlAn2 characterizes microbial clades through the
use of clade-speci�c markers. PanPhlAn was used to conduct a strain-level analysis of E. coli. A
precompiled pangenome database of E.coli from 2016 [39] was utilized for this analysis. Using
PanPhlAn, each sample was mapped to the pangenome to assess presence and absence of genes
corresponding to the dominant strain of E. coli in each sample.

ARG markers were quanti�ed using ShortBRED version 0.9.5 [33]. ShortBRED works in two steps. First, it
creates a database of antimicrobial resistance gene markers and then uses this set of makers to identify
antibiotic resistance in samples. A precompiled list of markers [55] known to confer bacterial antibiotic
resistance from the Comprehensive Antibiotic Resistance Database (CARD) [34] was used and the relative
abundance of ARG markers in our samples were classi�ed using the “shortbred_quantify” script with
default parameters. Outputs from ShortBRED are normalized for average read length, marker length, and
sequencing depth and are represented in RPKM. Annotations for the ARGs were adapted from (Sinha et
al., 2018), which also used ARG markers from ShortBRED.

MGEs were identi�ed using HUMANn2 [54] with default settings. Brie�y, HUMAnN2 uses a ‘tiered search’
approach to �rst identify known species using reference markers, map these reads to the pangenome of
the species, and �nally conduct a translated search on all reads that were not classi�ed by known species
giving gene family in reads per kilobase. Output gene family �les were regrouped by gene ontology (GO),
normalized to relative abundance to account for sequencing depth, merged into one �le, and then
renamed. This was completed using the “humann2_regroup_table”, “humann2_renorm_table”,
“humann2_join_tables”, and “humann2_rename_tables” utility scripts available via bioBakery [56].

 

Baseline metrics of the resistome
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The prevalence, mean, and median values for all ARG markers was assessed overall and strati�ed by 6-
week and 1 year samples. Additionally, all values were assessed in comparison to all samples and to only
samples that had the gene present. ARGs were considered incident if they were present in at least one
sample. A heatmap was created using “pheatmap” [57] to assess the correlation between ARG markers
greater than 7,000 RPKM summed across all samples. Relative abundance of these ARGs was then log10-
transformed and plotted against the samples. ARGs were clustered using the Canberra distance and
samples were clustered using the Euclidean distance based on previously used methods [33].

 

Covariate selection
Early-life exposures and variables that we hypothesized to be associated with differential resistome
composition were chosen based on previous research demonstrating their impact on the resistome and
due to their speci�city. For our models we used the following covariates: postnatal age of the infant
(sampled at approximately 6 weeks or 1 year), gestational age (in weeks), sex (male or female), delivery
mode (vaginal or cesarean section), intrapartum antibiotic exposure (yes or no), feeding mode
(exclusively breastfed, exclusively formula fed, or mixed fed at the time of sample collection), and infant
antibiotic exposure before leaving the hospital (yes or no). Sensitivity analyses assessed sample age in
days as a linear variable with the infant as a random effect, intrapartum antibiotic exposures grouped by
class of antibiotic prescribed, never versus ever formula fed, and possible joint interactions between
intrapartum antibiotic exposure (yes or no) and delivery mode (vaginal or cesarean delivery). Inter-
individual differences were analyzed as it often accounts for the largest amount of variation in
microbiome studies [20,29,58]. Geographic location has also been associated with differential resistome
composition [36], but is controlled primarily through restricting to NHBCS infants.

 

Statistical analysis
The impacts of covariates on the resistome were assessed primarily using negative binomial regression
through quantifying two outcomes: i) the relative abundance of all ARG markers and ii) the presence of
unique ARG markers. Additionally, as microbes are hypothesized to be on the causal pathway between
many early-life exposures and the resistome, we tested how taxa are correlated with covariates, overall
relative abundance of ARGs, and number of unique of ARGs. The outcomes were analyzed across all our
samples controlling for sample age (6-week or 1-year) and strati�ed by the age of sample collection (i.e.,
cross-sectionally). Negative binomial regression was selected over regression models using the normal or
Poisson distribution to avoid overdispersion [19] and because the coe�cient can be exponentiated to
estimate relative risk. Thus, the interpretation of the negative binomial regression results for assessing
the overall number of unique ARGs would be: in comparison to the unexposed group, the exposed group
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had X times the risk of harboring unique ARGs. Relative risks can be considered statistically signi�cant if
they do not include 1, but, if they do cross 1, may be considered meaningfully signi�cant depending on
the width of the con�dence interval. To assess relative abundance of ARG markers and alpha diversity of
species together, Shannon alpha diversity metrics were extracted for species and used as an additional
exposure with overall ARG marker relative abundance and number of ARG markers observed as outcomes
in sensitivity analyses. To assess the direct correlation between microbial relative abundance and the two
overall resistome outcomes, we assessed the Spearman correlation between each CLR-transformed
species and phyla relative abundance against each outcome.

Phyloseq [59] objects were created to measure diversity metrics and to make compositional plots for
ARGs, taxa, and functional analyses. Alpha (within) sample diversity metrics were calculated using the
Shannon and Simpson diversity metrics. For beta (between) sample diversity, genes in RPKM were
transformed into compositional data. Using the “microbiome” package [60], a pseudo count of the
minimum value divided by two was used in place of any 0s and then the data was CLR-transformed [61].
PCA plots using Euclidean distances were created to visualize results by different covariates.
PERMANOVAs were created using the adonis2 function in “vegan” [62] to evaluate between sample
diversity.

To further explore similarities and differences in groups with adjustments for all other covariates,
MaAsLin2 [38] was used. MaAsLin2 uses a feature reduction technique involving additive boosting of
generalized linear models to choose covariates that are most associated with the outcome of interest.
Compositional abundance data for each ARG was associated with covariates in MaAsLin2. Deviation
from the default parameters included the use of a CLR normalization approach, no standardization of
continuous variables, no transformation, and only associations with Benjamini-Hochberg multiple
hypothesis correction (q-value) less than 0.01 were considered statistically signi�cant.

To understand whether E. coli strains varied by any covariates in our analysis, we used a variety of visual
and statistical tools. Multidimensional scaling using the jaccard distance on the presence/absence
matrix of genes with a prevalence of at least 10% was used to visualize sample similarities and
differences by covariates. A heat map including only genes that had between 20-80% prevalence was
used to cluster samples. Logistic regression with a Benjamini-Hochberg correction (q < 0.01) was used to
assess if any genes were differentially abundant by sample age, feeding mode, a combination of delivery
mode and intrapartum antibiotic exposure, or total number of reads. A BLAST search of statistically
signi�cant genes using KEGG was conducted to reveal differentially prevalent genes.

The goals of the MGE analysis were twofold as we wanted to assess if MGE relative abundance was
associated with (1) any covariate or (2) the species-speci�c contribution of E. coli. Using a custom R
script, we collapsed all taxonomic information in the resulting gene families �le outputted by HUMANn2
to calculate the relative abundance of each GO term for each infant sample (i.e., the summed gene family
relative abundance for each sample equaled 1). Using a CLR-normalization, MaAsLin2 was used to
assess which gene families were statistically associated with metadata including sample age, feeding
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method (ever or never formula fed), intrapartum antibiotic exposure, delivery mode, gestational age,
infant sex, and antibiotic use during the initial hospitalization. Statistically signi�cant results (q-value <
0.25) were queried for MGEs. Speci�cally, the terms “integrase”, “integron”, transpos”, or plasmid” were
used for the query as they previously have been used to identify MGE elements from HUMAnN2 results
[63]. Since we found these MGEs to only be associated with sample age, we assessed the species
speci�c contribution to each MGE broken down by sample age using the “humann2_barplot” script from
HUMAnN2. Bar plots were sorted by the sample sum coe�cient of the GO term and grouped by sample
age.

 

Quality control
Number of reads was not added as a covariate in any models where a relative abundance was calculated
as all techniques normalized for sample depth (number of reads). However, our assessment of unique
ARG markers and genes present in E. coli included log10-transformed number of reads as these
presence/absence analyses were impacted by sample depth. Sequencing type and batch effects were
assessed through a PCA of the resistome. No evidence of differential effects to the resistome were
identi�ed in either (Additional File 1: Figure S6a and Figure S6b) so sequencing type nor batch effect was
not considered as a covariate in regression models. A secondary quality control measure was assessed
by rerunning a 6-week, single-end sample through the sequencing and downstream analysis pipeline.
Upon re-analysis, ShortBRED and MetaPhlAn2 results were nearly identical (Additional File 1: Figure S6c
and Figure S6d).
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Figure 1

Composition of the resistome and microbiome in 420 infant gut samples. All samples are ordered by
increasing sample age at collection. (a) Overall relative abundance (in RPKM) of the 10 antimicrobial
resistance genes with the greatest mean abundance across all samples. (b) Compositional relative
abundance of the 10 antimicrobial resistance genes with the greatest mean compositional abundance
across all samples. (c) Compositional relative abundance of Proteobacteria. For (a) and (b), antimicrobial
resistance genes colored in blue are found predominantly or exclusively in E. coli, light blue if they are
hypothesized to be predominantly associated with E. coli, red if they confer resistance to tetracycline, and
light brown or beige if they confer resistance to multiple antibiotics.
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Figure 2

The relative abundance of antimicrobial resistance genes is different at 6 weeks and 1 year. MaAsLin2
was used to test if the compositional relative abundance of ARGs varied by postnatal age of the infant,
delivery mode, feeding mode, gestational age at birth, infant sex, and antibiotic use during the infant’s
initial hospitalization. Using a multiple hypothesis correction [Benjamini-Hochberg q < 0.01], 81
antimicrobial resistance genes were differentially abundant between the 6-week and 1-year time points.
Antimicrobial resistance genes are colored by mechanism of antibiotic resistance (antibiotic e�ux or not)
with a greater proportion of genes that work through antibiotic e�ux at 6 weeks (chi-square test p < 0.01).
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Figure 3

Scatterplots show the association between highly correlated taxa and overall resistome outcomes. Plots
(a) and (b) depict the overall relative abundance of the resistome in RPKM versus the relative abundance
of E. coli and Proteobacteria with high correlation. The number of unique antimicrobial resistance genes
was most correlated with the relative abundance of E. coli (c) and less correlated with Proteobacteria
relative abundance (d).
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Figure 4

Infant gut sample resistomes are correlated with E. coli relative abundance. Principal component analysis
(PCA) of centered log-ratio transformed relative abundance of infant gut resistomes by sample colored by
(a) the number of unique antimicrobial resistance genes and (b) centered log-ratio transformed E. coli
relative abundance.
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Figure 5

Heat map showing the most abundant antimicrobial resistance genes (ARGs) by overall relative
abundance. ARGs (x-axis) have been log-10 transformed and clustered by speci�c features of the
samples (y-axis) including sample age, E. coli relative abundance, delivery mode, and the number of
ARGs per sample. ARGs are clustered by the Canberra distance matrix and samples are clustered using
the Euclidean distance.
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