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SUMMARY 
A formal inverse theory for mantle viscosity is here applied to a relaxation spectrum 
derived from the post-glacial uplift of Fennoscandia. The spectrum represents the 
set of eigenfrequencies (or inverse decay times) for the fundamental mode of viscous 
gravitational relaxation between the spherical harmonic degrees 14 to 45 and 65 to 
80. Theoretical predictions of the eigenfrequencies are based upon the determina- 
tion of the zeroes of the secular determinant function derived for a spherically 
symmetric, self-gravitating, visco-elastic planet. Differential kernels relating shifts in 
the eigenfrequencies to arbitrary perturbations in the radial viscosity profile (i.e. 
Frkchet kernels) are computed using the variational principle derived by Peltier 
( 1976). The inversions are performed within the framework of non-linear Bayesian 
inference, and the problem has been parameterized in terms of the logarithm of 
viscosity. 

The inversions have yielded a set of robust constraints which all models for the 
radial viscosity profile below Fennoscandia must satisfy. The a posteriori estimates 
and variance reduction are found to be insensitive to the a priori variance ascribed 
to the model layers. The constraints have, furthermore, been summarized into a set 
of a posteriori estimates of the average model viscosity value in radial regions 
consistent with the resolving power of the data (which decreases from a radiaI length 
scale of approximately 120 km at the base of the lithosphere to 1200 km at 1000 km 
depth: the data provide essentially no information regarding the mantle rheology 
below 1200 km depth). For example, for Earth models with a lithospheric thickness 
(LT) of 100 km, the volumetric average logarithm of viscosity in regions in the depth 
ranges 1040-400 km, 670-210 km and 235-200 km is constrained to be, respectively, 
21.03 + 0.09, 20.70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0.08 and 20.37 f 0.19. We have repeated the inversions for a 
number of assumed lithospheric thicknesses and have found that a relatively 
low-viscosity layer in the sublithospheric region (with respect to the underlying 
upper mantle) is required for LT 5 120 km. In this respect we have quantified the 
previously described trade-off between a decrease in the viscosity of this region and 
a decrease in LT (Cathles 1975). 

In forward analyses of the glacial isostatic adjustment data set it is common to use 
Earth models with isoviscous upper and lower mantle regions. To investigate this 
'two-layer' case we have also performed inversions which assume perfect correlation 
amongst the model layers in the upper and, separately, the lower mantle. Under 
this strict model space limitation, the inversions yield models with upper and 
lower mantle viscosities in the range 3.7 X 102"-4.5 X lo2" Pas and 2.2 x lo2'- 
1.9 X 10" Pa s, respectively. (The ranges are obtained from a suite of inversions 
using lithospheric thickness from 70 km to 145 km.) 

The a posteriori constraints generated from the Bayesian inversions are used 
together with a statistic based on the computed misfit to the Fennoscandian 
relaxation spectrum, to rule out a number of previously published viscosity models. 
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The constraints have also been used to construct a set of models which illustrate the 
non-uniqueness inherent to the a posteriori model space. We show, for example, that 
a model with a weak asthenosphere (down to 400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm depth) overlying an isoviscous 
10'' Pa s deep mantle provides a good f i t to the relaxation spectrum. This is also true 
of models with a thin sublithospheric low-viscosity zone overlying a two-layer deep 
mantle with a moderate (factor of about three) jump in viscosity across 670km 
depth, and models (as described in the preceding paragraph) with a viscosity jump of 
between four and six across isoviscous upper and lower mantle regions. In a 
companion paper the a posteriori constraints derived herein are used as a priori 
constraints in the direct inversion of RSL observations from Fennoscandia in order 
to examine whether this imprecision in the inference is a manifestation of the 
nun-uniqueness inherent to the totality of the Fennoscandian data. 

Key words: Fennoscandia, inversion, mantle viscosity, relaxation spectrum. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 INTRODUCTION 

The inference of mantle viscosity from observations of the 
isostatic adjustment of the planet following the last major 
deglaciation event of the current ice age is a problem of 
continuing interest in geophysics. Historically (see Cathles 
1975; Peltier 1982; Ekman 1991, for detailed reviews), the 
first quantitative estimates of mantle viscosity were based on 
the observed uplift of Fennoscandia. For example, Haskell 
(1935, 1936), using a Newtonian viscous half-space earth 
model with a constant density and viscosity, inferred an  
'effective' (and now classic) viscosity value near 10" Pa s 
(10" poise in cgs units). In contrast, Van Bemmelen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Berlage (1935), following a suggestion by Daly (1934), 
argued for a model in which flow is confined to a thin 
(-100 km) low viscosity (-1.3 X 10'"Pa s) asthenospheric 
channel. 

Many similar analyses followed (e.g. Vening-Meinesz 
1937; Niskannen 1939; Gutenberg 1941). however, the next 
fundamental step arose from the studies of McConnell (e.g. 
1968). McConnell used the same planar Earth geometry as 
his predecessors but incorporated an elastic layer overlying 
the viscous half-space (in order to model the effect of a 
lithosphere), and a depth dependent density and viscosity. 
Furthermore, he computed a relaxation spectrum from the 
observed Fennoscandian uplift by Hankel transforming the 
strandline (i.e. ancient shoreline) data collected by Sauramo 
(1958). In this procedure McConnell assumed that the 
Fennoscandian region had been in free decay (that is, load 
free) for approximately the last 9kyrs, that each 
wavenumber in the response spectrum had a single decay 
time associated with it (those decay times served as the 
'data' in his analysis), and that the deformation induced by 
the ancient Fennoscandian ice complex extended laterally 
no further than about 800 km from the centre of uplift. The 
latter assumption effectively ignored the dynamics of the 
peripheral bulge region, and rendered the decay times 
computed for the low harmonic degrees zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( P  < 14) suspect 
(Parsons 1972; Cathles 1975). 

McConnell (1968) argued that an elastic layer with a 
thickness of 120 km and a rigidity of 6.5 X 1 0 1 0 N m ~ 2  (or, 
equivalently, a flexural rigidity of 2.5 X Nm) could 
explain the observed systematic decrease in relaxation time 

for wavelengths less than approximately 1200 km in the 
uplift spectrum (which the simple models of Haskell could 
not reconcile). Furthermore, the viscosity model he inferred 
was characterized by the following features: below the 
elastic lithosphere the viscosity diminished from 
4.1 X 102"Pas, between 120 and 220km depth, to 
2.7 X lo2" Pa s between 220 and 400 km depth. In the next 
800 km the viscosity increased from I d '  Pa s (between 400 
and 800km depth) to 2 X  lo2' P a s  (between 800 and 
1200 km depth). Below 1200 km depth the viscosity 
increased to 6.85 X 10'' Pa s. McConnell (1968) found that 
the Fennoscandian uplift data were themselves insensitive to 
the viscosity profile below about 1500km depth, and he 
invoked independent arguments based on the apparently 
large non-hydrostatic bulge of the Earth deduced by Munk 
& MacDonald (1960) to suggest that the viscosity increased 
by several orders of magnitude in the deep mantle. 
Subsequent work by Goldreich & Toomre (1969), which 
showed that the excessive bulge was a numerical artefact, 
invalidated this argument 

Each of the analyses described above assumed that the 
approximation of a planar geometry would be adequate 
when considering the deformation due to the melting of the 
Fennoscandian ice complex. Once data connected with the 
much more massive Laurentide ice sheet, which covered all 
of Canada and much of the north eastern US, became 
available (e.g. Walcott 1972), the necessity of incorporating 
the influence of spherical geometry became unarguable. 
Indeed, spherically symmetric, self gravitating, visco-elastic 
Earth models were soon devised (Cathles 1971, 1975; Peltier 
1974). 

In his analysis Cathles (1971. 1975) argued that the purely 
viscous and elastic equations of motion could be assumed to 
decouple. In this case a solution of the resulting system of 
equations can be generated by solving, at each time step, the 
elastic and viscous equations in turn. Peltier (1974), on the 
other hand, invoked the correspondence principle to solve 
for the Laplace transform domain response of a Maxwell 
visco-elastic body, and then inverted this response into the 
time domain. Peltier (1976, 1985) showed that the 
time-domain response could be accurately represented using 
a normal mode formalism; for realistic Earth models the 
response, at each spherical harmonic degree, was shown to 
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be well approximated by a finite set of exponentially 
decaying modes of 'viscous gravitational relaxation'. 

Cathles (1975) analysed the Fennoscandian uplift 
spectrum derived by McConnell (1968) using both spherical- 
and flat-Earth geometries, and his conclusions indicated 
significant non-uniqueness in the viscosity inference from 
this region. As an  example, Cathles' (1975) preferred earth 
model consisted of a lithosphere with a flexural rigidity of 
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX Nm and a 75 km thick low viscosity zone (LVZ) in 
which the viscosity was 4 X 10'" P a s  overlying a mantle with 
a uniform viscosity of lo2' Pa s. Furthermore, he found that 
an Earth model with a sufficiently rigid lithosphere (e.g. 
5 X loz5 Nm) would require no LVZ to fit the same data set. 
Clearly, large viscosity increases below 200 km depth, as 
inferred by McConnell, were not required to fit the uplift 
spectrum. 

Cathles (1975) also analysed the actual observed uplift in 
central Fennoscandia over the last 8000yr, as well as the 
average rate of vertical deflection during the last 1000yr 
along a profile extending outward from the ancient 
Fennoscandian ice-load centre. He concluded that the model 
preferred on the basis of the uplift spectrum also provided a 
satisfactory fit to these data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA comparable f i t  was also 
possible using the channel flow model of Van Bemmelen & 
Berlage (1935) (although that model was much less 
successful in fitting the uplift spectrum). Cathles (1975) 
suggested that accurate data constraining the dynamics of 
the glacial forebulge at the periphery of the central region of 
uplift, which were not available to him, might allow one to 
distinguish between his preferred model and the channel- 
flow model. 

In a more recent analysis Fjeldskaar & Cathles (1991) 
have examined shoreline tilting histories at locations near 
the edge of the ancient Fennoscandian ice sheet as well as 
the present day uplift and subsidence pattern in the region. 
They have argued that the data is best fit by an earth model 
having a lithosphere of flexural rigidity less than Nm (or 
a 'mechanical' thickness of SOkm), a 75 km thick 
sublithospheric low-viscosity zone (1.3 X 10" Pas)  and a 
mantle of viscosity lo2' Pas.  In contrast, Lambeck, Johnston 
& Nakada (1990) have argued that Holocene sea-level 
changes in northwestern Europe require a lithosphere of 
thickness between 100-150 km, an upper mantle viscosity 
(that is, above the 670 km seismic discontinuity) of between 
3-5 X 102"Pa s and a lower mantle viscosity in the range 
2-7 X lo2' Pas. The models of Fjeldskaar & Cathles (1991) 
and Lambeck zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1990) are characterized by flow which is 
not confined to a thin channel, but rather which extends into 
the lower mantle region, the latter less so than the former. 

All of the inferences of mantle viscosity described above 
have been based upon solutions of forward or direct 
problems of glacial isostatic adjustment. That is, the 
viscosity profile in the Earth model has been discretized into 
some small number of uniform layers and the value of the 
viscosity in these layers has been varied until some 'misfit' 
criterion has been satisfied. It is of course impossible, using 
such methodology, t o  derive rigorous error bounds on any 
preferred viscosity model (that is, quantify uncertainty), or 
to assess the resolving power of the data (that is, to quantify 
the non-uniqueness of the inference). In order to address 
issues such as these one is obliged to solve a formal inverse 
problem. 

The unpublished doctoral dissertation of Parsons ( 1972) 
represents the only attempt, to date, to apply a rigorous 
inversion formalism to the glacial isostatic adjustment data 
set. In his analysis Parsons employed the forward model of 
McConnell (1968) to compute the resolving power of the 
relaxation spectrum that McConnell (1968) had inferred 
from the Fennoscandian uplift data. Since the theoretical 
decay times are non-linear functions of the viscosity profile 
their resolving power clearly depends upon the profile 
assumed. In this respect Parsons employed a viscosity profile 
similar to that deduced by McConnell (1968) (though the 
viscosity was reduced to 10'' P a s  between 800 and 1200 km 
depth, and to 4 X lo2' P a s  below this) which he found, 
through forward calculations, to f i t  the observed uplift 
spectrum. He  concluded that the radial resolution provided 
by the data set (for the assumed Earth model) varied from 
approximately 100 km near the base of the lithosphere to 
1350km at a target depth of 1800km. The data had very 
little resolving power below this depth; a fact that was 
evident to McConnell (1968) only as an 'insensitivity' to 
deep mantle viscosity in a suite of forward calculations. 

The normal mode formalism for representing the impulse 
response of a spherically symmetric, self-gravitating, 
Maxwell visco-elastic Earth developed by Peltier (1974) was 
extended by Peltier (1976) to consider the inverse problem. 
In particular Peltier (1976) derived a variational principle 
which yielded exact expressions for differential kernels 
relating arbitrary perturbations in the radial viscosity profile 
to the consequent perturbations in the model decay times 
(or eigenfrequencies). The kernels for the decay times 
derived by Peltier (1976) allow for the inversion of a 
relaxation spectrum [of which the spectrum computed by 
McConnell (1968) is an example] under much more general 
conditions (spherical, self-gravitating, visco-elastic Earth 
models) than does the theory developed by Parsons (1972). 
However, the theory has not been used previously in this 
application. 

In this paper we will adopt the theory of Peltier (1976), 
within the framework of non-linear Bayesian Inference 
(Tarantola & Valette 1982a, b), to invert the Fennoscandian 
relaxation spectra derived by McConnell (1968). Our goal, 
in this respect, moves beyond (and indeed incorporates) 
estimates of the radial resolving power of the data set, to the 
derivation of a set of rigorous constraints which all models 
for the viscosity variation beneath Fennoscandian must 
satisfy. We will use these constraints to  test the plausibility 
of a wide class of viscosity models, including those discussed 
above. 

In a companion paper (Mitrovica & Peltier 1993) we use 
the constraints derived herein as a starting point in the 
inversion of relative sea level (RSL) curves in the vicinity of 
the ancient Fennoscandian ice complex. The theory required 
to extend the analysis of Peltier (1976) in order to consider a 
full waveform (RSL curve) inversion (that is, the inversion 
of a data set dependent on the excitation of normal mode 
amplitudes, as well as on the decay times) has only recently 
been described (Mitrovica & Peltier 1991). An important 
point to note is that the inversions of RSL data are 
complicated by the need to explicitly consider errors in the 
deglaciation (i.e. surface load) chronology. The relaxation 
spectrum is independent of the surface loading history 
(theoretical predictions are based on the solution of the 
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homogeneous problem) and thus the analysis described in 
this study suffers from no such complication. Therefore, the 
inversions described here have the potential of providing 
particularly robust constraints on mantle rheology. 

2 M A T H E M A T I C A L  F O R M U L A T I O N  

2.1 The forward problem 

Following Peltier (1974) we apply the correspondence 
principle to solve for the Laplace-transform domain-impulse 
response of a radially stratified, self-gravitating, Maxwell 
visco-elastic planet. In the time domain this impulse 
response can b e  represented in terms of visco-elastic 
surface-load Love numbers of the form 

h,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= h F  S ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ C r l e x p  (-sLt) 
K 

k = l  

and 

K 

k ,  = k F  S ( t )  + C rLcexp ( - s i t )  

where h,  and k ,  represent the coefficients of degree f in the 
Legendre polynomial expansions of the Green functions for, 
respectively, the (non-dimensionalized) radial displacement, 
and the  gravitational potential perturbation on the earth's 
undeformed surface due to internal mass redistributions. At 
each spherical harmonic degree the Love numbers are 
characterized by an immediate elastic response (note the 
superscript E and the delta function time dependence) 
followed by a non-elastic response comprised of a finite set 
of normal modes of pure exponential decay (Peltier 1976). 
These modes of 'viscous gravitational relaxation', as they 
have been termed, are specified by the modal amplitudes 
(rz, r;') and inverse decay times or (imaginary) eigenfre- 
quencies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(sf), within which the dependence on the radial 
viscosity profile of the earth model is embedded. 

Given an observed response spectrum of the type 
computed by McConnell (1968) using the Fennoscandian 
strandline data (that is, decay times versus harmonic degree) 
the associated forward problem requires only the deter- 
mination of the modal decay times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,' for any assumed earth 
model. In this study we use the procedure outlined by 
Peltier (1976) for the computation of these decay times. 

k-  1 

2.2 The inverse problem 

The computed relaxation spectrum is a non-linear function 
of the radial viscosity profile of the Earth model, and, 
traditionally, inversion algorithms applied to the corres- 
ponding observational data set have proceeded by 
linearizing the foward equations about a chosen starting 
model (e.g. Backus 1988). The linearization yields a system 
defined by a 'residual' observational data set (or misfit) and 
a corresponding set of FrCchet (or sensitivity) kernels which 
relate perturbations in the response to perturbations in the 
starting model. Fully non-linear inversions have been 
described (Tarantola & Valette 1982a, b); however, these 
methods also require the evaluation of FrCchet kernels when 
a large number of forward problems cannot be solved (as is 
certainly the case in the present study). In this section we 
will very briefly outline the theory required for the 

evaluation of these kernels for the relaxation spectrum data 
set to be inverted in subsequent sections. We will 
furthermore briefly discuss the Bayesian formulation to be 
used to perform the inversions. 

2.2.1 

Peltier (1976) derived a variational principle which yielded 
the FrCchet kernels for the inverse decay times, sl, directly. 
If we define these kernels as Z,'(u, r ) ,  then they satisfy the 
relation (see Peltier 1976, for details): 

Fre'chet kernels for  the inverse decay times 

for small perturbations in the viscosity profile u( r ) .  The 
integration in eq. (2) extends from the core-mantle 
boundary (CMB) to the surface of the planet ( r  = a ) .  The 
equation can also be written in the equivalent logarithmic 
form (Peltier 1976): 

S logs: = Zi(u, r )  6 log u( r ) r2  dr. (3) LM, 
Mitrovica & Peltier (1991) found, using the logarithmic 

parameterization of eq. (3) that the kernels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ,'(u, r )  were 
capable of predicting perturbations in the logarithm of the 
decay times to within 10-20 per cent for a full order of 
magnitude change in the radial viscosity profile. As a 
consequence, and given the potentially large variations in 
viscosity in the earth's mantle, Mitrovica & Peltier (1991) 
chose to invert their synthetic RSL and gravity data for the 
logarithm of the radial viscosity profile. We adopt the same 
parameterization throughout this study, and expect that the 
inverse problem so described will be rendered weakly 
non-linear in consequence (see Tarantola & Valette 1982b; 
Jackson & Matsu'ura 1985, for a discussion of the 
implications of this point). 

The kernels Z:(u, r )  are characterized by two important 
properties (Peltier 1976): 

Z:(u, r )  5 O (4a) 

and 

jcM, Z l (u ,  r ) r2 d r  = -1. 

The relation (4a) indicates, as one might expect, that an 
arbitrary positive perturbation in the radial viscosity profile 
will necessarily lead to a decrease in the inverse decay times 
s,' of any Earth model. Furthermore, the FrCchet kernels are 
normalized (eq. 4b) such that an order of magnitude 
increase in the viscosity profile at all depths will lead to an 
order of magnitude decrease in every inverse decay time. 

2.2.2 Non-linear Bayesian inference 

Following Mitrovica & Peltier (1991) we will formulate the 
non-linear inversion of the relaxation spectrum as a problem 
in Bayesian inference. The application of Bayesian inference 
to geophysical inverse problems has been described by many 
authors (Backus 1971, 1988; Tarantola & Valette 1982a,b; 
Jackson & Matsu'ura 1985). The Bayesian philosophy 
provides an algorithm for combining defensible a priori 
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yielded ‘reduced beach levels’ over a 800km profile 
(sampled every 36 km) for each of the shoreline features 
named above (see McConnell 1968; Fig. 3). In the second 
step of the procedure McConnell Hankel transformed each 
o f  the six profiles to generate an equal number of 
transformed shoreline elevations (that is, an amplitude 
versus wavenumber plot for each of the six shorelines; see 
McConnell 1968, Fig. 4). Finally, for any particular 
wavenumber, a characteristic relaxation time could be 
inferred by fitting an exponential form through the six (or 
some subset o f  the six) amplitudes of known age. 

McConnell (1968) believed that the most accurate 
relaxation times were derived using the five youngest 
beaches (that is, excluding the 9800 year-old YOLDIA I 
beach). He argued that the derivation would thus 
incorporate almost all of the available data, and avoid 
shorelines formed at a time when the central Fennoscandian 
region might still have been covered by ice. The two spectra 
he derived using the five youngest beaches and all six 
beaches diverged above wavenumbers of 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX m-’ (or 
spherical harmonic degrees above 25) where the former 
exhibited consistently shorter relaxation times (see 
McConnell 1968, Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) .  If the time period extending from 
the formation of the YOLDIA I beach to the YOLDIA VI 
beach incorporated some melting of remnant ice cover, then 
elastic effects in the uplift should, in contrast, cause 
relaxation times inferred from all six beaches to be shorter 
than those derived excluding YOLDIA I. This implies that 
the entire period subsequent to the formation of YOLDIA I 
was probably characterized by free decay. Regardless of 
whether the five largest or all six beaches were used in the 
derivation of the relaxation spectrum, McConnell (1968) 
found that reliable relaxation times (as measured by the 
level of success obtained in the fitting of exponential forms 
through the transformed shoreline elevations) could not be 
obtained for wavenumbers between 8 X lop6 and m-’ 
(or degrees between 50 and 64). 

Sauramo’s (19.58) data set of strandline levels were not 
published with error bars, and hence it is impossible to 
ascribe a formal uncertainty to McConnell’s (1968) 
relaxation spectra (indeed, McConnell did not d o  so). This 
difficulty is reinforced by potential systematic errors 
introduced in McConnell’s beach-level reduction procedure 
(see McConnell 1968). To generate reasonable, and 
conservative, error estimates we have adopted the following 
Monte Carlo procedure. As a basic data set we begin with 
McConnell’s set of six reduced beach level profiles. Rather 
than Hankel transform this set of beaches, as McConnell 
did, we add Gaussian-distributed random noise to  each data 
point on the various profiles, and then Hankel transform the 
result. From the transformed beach levels we then best-fit 
the required exponential form to derive a relaxation time. 
These relaxation times where computed for spherical 
harmonic degrees between 14 and 80 inclusive. The full 
procedure was repeated 10’ times to generate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlos 
realizations of the relaxation spectrum, and from these the 
statistics of the relaxation spectrum was determined (as 
described below). 

The lo5 evaluations of the relaxation spectrum were 
partitioned so that half were generated using the five 
youngest beaches, and the remainder generated using all six 
beaches. Furthermore, following McConnell (1968), any 

information regarding the model parameters (in the present 
case the logarithm of viscosity in a radially discretized form) 
with the observational data to yield an a posteriori state of 
information (Backus 1988). 

In the event that a very large number of forward problems 
cannot be solved, Tarantola & Valette (1982b) have shown, 
when both the prior beliefs and observation errors are 
normally distributed, that the maximum likelihood estimate 
of the posterior distribution can be found by solving the 
following iterative equation: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is the observational data set, V, is the covariance 
matrix of  the data errors (which are assumed to have a zero 
mean), X,,,< and V,,, are the prior model and covariance 
matrices, 2, is the kth model iterate (2,) is the starting 
model), F, is a matrix whose rows are the FrCchet kernels 
(in their discrztized form and scaled by r’dr in accord with 
eq. 3), and f(X,) yepresents a non-linear forward prediction 
using the model X,. Since the errors are assumed to be 
normally distributed, the iteration will be considered to have 
converged when the statistic Q, defined by 

is within the 95 per cent confidence interval of the xL 
distribution (where N is the number of data points). 

In weakly non-linear inverse problems Tarantola & 
Valette (1982b) and Jackson & Matsu’ura (1985) have 
argued that the posterior covariance matrix of the model 
parameters can be approximated by 

v,,,, = [F~v;’F + v;;)-’ (7) 

where the matrix of FrCchet kernels is evaluated at  the 
posterior model. Following the arguments of Tarantola & 
Valette (1982b), the resolving power of the data at the ith 
target will be assessed by examining the pattern of 
covariances along the ith row of V,,,. 

3 RESULTS AND DISCUSSION 

The data to be inverted in this section are the logarithms of 
the inverse decay times (see the left hand side of eq. 3) ,  at 
various spherical harmonic degrees, inferred from the 
isostatic adjustment pattern in Fennoscandia. As discussed 
in the introduction, McConnell (1968) derived a relaxation 
spectrum (that is, a spectrum of decay times as a function of 
wavelength) for Fennoscandia using a large set of strandline 
data collected by Sauramo (1958) along a profile extending 
from Angermanland. Sweden, to near Izhora in Russia. In 
particular, McConnell (1968) focused on six sets of shoreline 
features of different ages (YOLDIA I ,  YOLDIA VI, 
Echineis Sea, Ancylus Lake, Mastogloia Sea and Litorina 
Sea, of ages, respectively, 9800, 9200, 8800, 8000, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8000 and 
6000 yr). The derivation of the relaxation spectrum from the 
sea shoreline features proceeded in three main steps (see 
McConnell 1968, for details). First, Sauramo’s (1958) 
shoreline levels were corrected for the effects of sea-level 
fluctuations by ‘subtracting the elevation of the untilled 
portion from the elevation o f  all other portions of the same 
shoreline’. This procedure, with suitable extrapolation, 
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50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA’. Mitrouica zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W .  R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
estimated relaxation time was considered acceptable only if 
it yielded an RMS deviation between the observed (that is, 
transformed shoreline elevations) and theoretical (that is, 
exponential form) uplift of less than 20 per cent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the 
transformed present-day height of the oldest shoreline used 
(either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYOLDIA I or VI). In accord with McConnell’s 
(1968) results, we have found that few, if any, relaxation 
times for spherical harmonic degrees between 46 and 64 
satisfied this criterion, and hence relaxation times in this 
degree range are left unconstrained. 

In the absence of direct guidelines, the statistics of the 
random errors added to  McConnell’s (1968) reduced beach 
levels were chosen on the basis of characteristic error levels 
associated with land-based surveys. Tushingham (1989), in 
his analysis of relative sea-level histories in Hudson Bay, has 
estimated an uncertainty in elevation to be *IS per cent 
(representing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf two standard deviations of error) with a 
minimum error of * I  m due to instrument error and tides. 
To be even more conservative we have chosen to add 
random errors with a standard deviation equal to 10 per cent 
of the reduced beach level. 

Let us say that at spherical harmonic degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt‘? there are 
N ( t )  estimates of the logarithm of the inverse relaxation 
time “ ( a ‘ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 lo5] which satisfy the acceptance criterion 
discussed above. The mean, standard deviation, and 
covariance of these estimates can be computed in a 
straightforward manner using the usual formulii of sampling 
theory. The vector y and the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, appearing in eqs (5) 
through (7) are thus determined. 

The  shaded region on Fig. 1 represents the *lv error 
bounds on the relaxation spectrum generated from our 
Monte Carlo procedure. Notice that in spite of the 
substantial errors we have ascribed to McConnell’s set of 
reduced beach levels, the relaxation spectrum remains 

h 

Q) 

H 

_- 
I- 

Degree 1 
Figure 1. Shaded region: relaxation spectrum (including a *la 

uncertainty) inferred from the post-glacial uplift of central 
Fennoscandia (after McConnell 1968) for spherical harmonic 
degrees ranging from 14 to 45 and 65 to 80 (see text). The solid line 
is the relaxation spectrum computed for the isoviscous model A 
specified in Table 1 (with a 120 krn elastic lithosphere), while the 
dashed line is the spectrum computed for the a posteriori model of 
inversion no. 1 (Fig. 3a, solid line; see also Table 2). 

significantly constrained. For spherical harmonic degrees 14 
through 30 the decay time is approximately 3 to 4 kyr. In 
contrast, at the largest degrees (smallest wavelengths), the 
decay time ranges from 1-2 kyr. As discussed, there are no 
relaxation time estimates between degrees 46 and 64. 

Although McConnell’s (1968) derivation of decay times 
extended to degrees as low as 10 we concur with both 
Parsons (1972) and Cathles (1975) who have argued that the 
data for the lowest degrees ( f  < 14) may be inaccurate due 
to McConnell’s assumption that the post-glacial deformation 
extended no further than 800km from the centre of uplift 
(the Angermanland region of Sweden). We have assumed, 
as did McConnell (1968), that the response at each spherical 
harmonic degree was characterized by a single decay time 
( i t .  K = 1 in the summations of eq. 1). Fortunately, for  the 
degree range considered in this section ( f  2 14) the 
fundamental mode of relaxation (termed the MO mode; see, 
for example, Peltier 1976, Mitrovica & Peltier 1991) 
generally carries appreciably more than 90 per cent of the 
total modal strength. 

The earth models used in this study have an inviscid core 
and an elastic lithosphere (whose thickness may be varied). 
The radial distance from the earth’s centre to its surface is 
discretized using 161 layers in our numerical formulation, 66 
of which define the core and 65 the lower mantle. The term 
‘model’ used in this section (and section 2.2.2) refers to the 
logarithm of viscosity in each of the approximately 90 layers 
within the lower mantle and upper mantle below the 
lithosphere (the exact number of layers depends on the 
lithospheric thickness). We will examine inversions using 
three different prior (XpR in eq. 5) and starting (8,=, in eq. 
5 )  models chosen from the models A, B, and C summarized 
in Table 1. In this section the individual elements of the 
prior model vector will be assumed to be totally 
uncorrelated (that is, no  a priori assumption of smoothness 
in the model will be made except on the order of the 
individual layer thickness). Furthermore, with only a single 
exception (inversion no. 2 below) these parameters will dl 
have a variance of 1.0 assigned to them. Thus the matrix 
V,, will generally be the identity matrix. As a consequence, 
and as an example, this yields 95 per cent confidence 
intervals of (19.845, 23.845) in the lower mantle and (19.0, 
23.0) in the upper mantle for prior model B. Finally, 
inversions will be performed for models with lithospheric 
thicknesses ranging from 70 t o  145 km. 

Prior to discussing the inversions performed on the 
relaxation spectrum of Fig. 1 it will be instructive to examine 
the FrCchet kernels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zl, in eq. 3, for  the fundamental mode 
of relaxation) for the data set. As an example, the kernels 
for spherical harmonic degrees f = 14, 30, 45, and 70, 
computed using the mantie model A (Table 1) and a 120 km 

Table 1. Mantle models. 

Lower Mantle 

Upper Mantle’ 

below elastic lithosphere 

A 

21 .o 

21.0 

B 

21.845 

21 .o 

C 

21.0 

20.7 
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Inverse theory for  mantle viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0 

0.5 

0.5 ,I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

lr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6!7E+02 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 
-- 
-- 

t :  I I ti 1 

D ee 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs i.191E42 

0.0 

0.5 \I 

-'*'-/- D ee 45 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg= i.298E42 

0.5 ,I 

Figure 2. FrCchet kernels, Z: (eq. 3), for the inverse decay times of 
the fundamental (MO) mode of viscous gravitational relaxation, 
computed using the isoviseous Earth model A (Table 1) with a 
120 km lithosphere. The kernels for four different spherical 
harmonic degrees (as labelled) are shown o n  the figure, and each is 
normalized (by the factor NF) to yield a peak value of -1.0. The 
abscissa scale is non-dimensionalized using the earth's radius, and 
the arrows at left and right on the bottom frame refer to the value 
at the CMB and at 670 km depth, respectively. 

lithosphere, are plotted on Fig. 2. Not surprisingly, as the 
spherical harmonic degree is increased, the peak in the 
kernels (and thus the region of peak sensitivity for the 
computed inverse decay time) sweeps to  shallower depths; 
so that while at  degree 14 it occurs at a depth of 600 km, by 
degree 45 it has reached near the base of the lithosphere. Of 
course this has fundamental implications for any inference 
of mantle viscosity based on the data set. It implies that the 
relaxation spectrum data set of Fig. 1 provides little 
information regarding mantle rheology below about 1300 km 
depth in the earth. 

A total of 9 different inversions were performed on the 
relaxation spectrum described above and illustrated in Fig. 
1. Table 2 summarizes the inputs defining these inversions 
(the prior model and its variance, the starting model and the 
lithospheric thickness) as well as a few summary statistics 
which will be defined and discussed below. All nine 
inversions were found to satisfy the convergence criteria (6) 

in a single iteration, indicating that an assumption of 
quasi-linearity is extremely accurate in these cases (Peltier 
1976: Mitrovica & Peltier 1991). 

To begin let us consider inversion no. 1, for which the 
isoviscous mantle model A (Table 1) was chosen as both the 
prior and starting model, the prior model covariance matrix 
was the identity matrix, and the lithosphere was constrained 
to have a thickness of 120km (for this inversion, and 
inversion no. 2. the FrCchet kernels shown on Fig. 2 are 
those used in the initial application of eq. 5 ) .  The a 
posteriori model for inversion no. 1 (that is the solution o f  
eq. 5 which satisfies the convergence criterion on eq. 6) is 
given by the solid line on Fig. 3. (The relaxation spectra 
computed using the a priori and a posteriori models are 
given by, respectively, the solid and dashed lines on Fig. 1; 
the latter clearly satisfies the observational constraint). The 
prior (and starting) model for inversion no. 1 is specified by 
the horizontal dashed line on Fig. 3. An important 
characteristic of the inversion, and one shared with all 
subsequent inversions to be discussed in this section, is that 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa posteriori model tends toward the prior model in the 
deep mantle. This is a reflection of the fact that the 
relaxation-spectrum data set provides little information 
regarding the viscosity of the earth's mantle below 1300 km 
depth (see Fig. 2) and hence the a posteriori state of 
knowledge is dominated by the prior state. In contrast, in 
the top half of the mantle the a posteriori state of knowledge 
seems, apparently, to be fundamentally altered from the 
prior state of knowledge by the inclusion of the information 
provided by the observational data set. Of course, the 
significance of the variations apparent in the a posferiori 
model need to be assessed by considering both the errors 
and resolving power associated with the inference. 

O n  Fig. 4 we have plotted the a posteriori value of the 
variance of the individual model parameters (that is the 
diagonal elements of the matrix V,,, given by eq. 7, 
computed at the a posteriori model X,,,) versus depth in the 
mantle. Recall (see Table 2), the prior variances are all 1.0, 
and thus the curve on Fig. 4 may also be interpreted as the 
ratio of the a posteriori to a priori variances. We will 
emphasize the latter interpretation of Fig. 4. Following 
Tarantola & Valette (1982b) and Backus (1988), a model 
parameter is said to be 'resolved' by the data when the a 
posferiori variances are substantially smaller than the a 
priori variances (that is when the ratio is small). Clearly 
none of the model parameters below about 1300 km depth 
(0.8 dimensionless radius units) are resolved by the data, 
which is not surprising given that the relaxation spectrum 
data are not sensitive to the rheology in this region of the 
mantle (Fig. 2). In contrast, at shallower depths the ratio 
generally, though not monotonically, tends toward smaller 
values. It is interesting to note, however, that the ratio is 
never substantially smaller than 1.0 (its minimum value is 
near 0.6 in the sublithospheric region: however, it generally 
exceeds 0.8), which indicates that the data are not able to 
resolve rheological structure on a radial length scale 
comparable to the layer widths. In this case it is more 
interesting to consider the ratio of the a posteriori to a priori 
variances of the average value of the model parameters in 
some more extensive region of the mantle (Jackson 1979; 
Mitrovica & Peltier 1991). We will show below that when 
the regions are chosen to be consistent with the resolving 
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52 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  X .  Mitrovica zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInversions. 

INPVTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X, 

I V m L  

L 
LT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOon) 

SUMMARY 
STAllSTKS 

1 

A 

1 .O 

A 

120 

PR 21 .OO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 2 3  
Po 21.02 f .08 

PR 21.00 f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.25 
Po 20.69 f .08 

PR 21.00 f .42 
Po 20.58 f .21 

PR 0.50 
Po 0.06 

PR 0.0 
Po -0.04 

PR 0.11 
Po 0.10 

2 

A 

2.0 

A 

120 

21.00 f .33 
21.01 i .I2 

21.00 f 3 5  
20.66 i .12 

21.00 f 5 8  
20.55 f .30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

050 
-0.17 

0.0 
-0.03 

0.1 1 
0.11 

Prior modcl (see 'fable I ) .  

3 

A 

1.0 

B 

120 

21.00 f 2 3  
20.88 * .08 

21.00 f .25 
20.65 f .08 

21.00 f .42 
20.58 f 2 1  

050 
0.10 

0.0 
0.10 

0.1 1 
0.06 

A 

A 

1 .o 

C 

120 

21.00 f .23 
20.92 i .08 

21.00 f 3 5  
20.60 i .08 

21.00 f .42 
20.50 f 2 2  

0.50 
0.06 

0.0 

-0.04 

0.11 
0.10 

5 

B 

I .o 

R 

120 

21.48 k 2 3  
20.93 f .13 

21.00 f 2 5  
20.60 * .08 

21.00 f .42 
20.54 f .26 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.50 
0.06 

0.0 

0.04 

0.11 
0.09 

6 7 

C A 

1 .O I .o 

C A 

120 70 

20.87 f .23 
20.93 i .08 

20.70 i 2 5  
20.58 f .08 

20.70 i .42 

0.50 
-0.05 

20.50 f 2 1  

0.0 
-0.02 

0.1 1 
0.10 

21 .OO f .23 
21.03 i .I0 

21.00 i 2 5  
20.74 i .08 

21.00 f .36 
20.15 f .16 

0.50 
-0.19 

0.0 

0.01 

0.09 
-0.03 

8 

A 

1 .o 

A 

100 

21.00 k .23 
21.03 i .09 

21.00 f .25 
20.70 k .08 

21.00 k .38 
20.39 i .19 

0.50 
0.14 

0.0 

-0.09 

0.10 
0.08 

9 

A 

1 .o 
A 

145 

21.00 k 2 3  
20.99 f .08 

21.00 i .25 
20.66 f .08 

21.00 k .46 
20.73 k 2 3  

0.50 
0.06 

0.0 

0.02 

0.13 
0.09 

{V,;;,],, 
X, 
LT Lithosphcrie thickness. 
( i)  
PV 

Iliagonal clcmciits of prior Covariance matrix. Non-diagonal elements are zero. V,,,, = {V,,,},,l ( I  is thc identity matrix). 
Starting modcl (scc Table 1 )  

Volumetric average of model parameters in region i (see eq. 9). The regions arc defined on Table 3. 
Cross-correlation of the averages (i) and (j) (see eq. 10). 

power of the data an order of magnitude reduction in the 
prior variance can result (see also Mitrovica & Peltier 1991). 

The resolving power of the relaxation-spectrum data can 
be assessed from the posterior covariance matrix (Tarantola 
& Valette 1982b). For example, the radial extent of 
non-negligible off-diagonal covariances on the ith row of the 
covariance matrix is a measure of the resolving power of the 
data at the depth corresponding to that row. We have 
plotted on Fig. 5,  12 different rows (or target depths, TD, as 
labelled on each frame of the figure) of the posterior 
covariance matrix for inversion no. 1. In each case the 
curves a re  normalized by the amplitude of the largest 
off-diagonal covariance (specified by the parameter NF). In 
this case the diagonal element (the variance) has a (positive) 
value which is off the scale of the plot (it is, however, 
specified on Fig. 4). 

The target depths sampled on Fig. 5 extend from the very 
deep (2885km depth) to very shallow (195km depth) 
mantle. Significantly, for target depths below 1000 km depth 
(the first four frames on Fig. 5) the curves peak at a layer 
whose depth is appreciably shallower than the target depth. 
Once again, this is a reflection of the very limited resolving 
power of the data in this deep mantle region. In contrast, at 
target depths shallower than lOOOkm, the pattern of 
off-diagonal covariances is centred approximately on the 
target layer. In this respect it is clear that the radial extent of 
the non-negligible covariances diminishes (that is, the 

resolving power of the relaxation spectrum data set 
improves) monotonically as one considers targets at depths 
from 982 km through to 195 km. 

Any quoted value of the resolving power will depend 
somewhat on the measure used to define a 'non-negligible' 
covariance. On Fig. 6 we have plotted the resolving power 
computed as the radial distance between layers in which the 
normalized covariance falls below an amplitude of 0.1 (that 
is less than 10 per cent of the peak off-diagonal covariance), 
as a function of target depth in the top 1200km of the 
mantle. Using this measure, the radial resolving power of 
the relaxation spectrum data set improves from approxim- 
ately 1200 km at a depth of 1000 km to better than 125 km at 
the base of the lithosphere. The a posteriori model for 
inversion no. 1 (solid line on Fig. 3) exhibits a noticeable 
variation across 670 km depth (the boundary between the 
upper and lower mantle regions) that extends approximately 
350 km from peak (at 850 km depth) to trough (at 500 km 
depth). The results of Fig. 6 indicate that the variation 
should have no significance ascribed to it. In contrast, the 
same a posteriori model exhibits a low-viscosity region at the 
base of the lithosphere which the relaxation spectrum data 
set is just capable of resolving (see Fig. 6). 

As discussed in the introduction, Parsons (1972) 
computed the resolving power of the same relaxation 
spectrum data set using an earth model with an elastic layer 
overriding a viscous half-space, and a depth-dependent 
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log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Viscosity (Pa s) ) 

z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 
m 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

P 
W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c 

(3, 
1--J 

0 

t 4  

0 
r 

Figure 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResults for inversion nos. 1 and 2 (see Table 2 for details) 
of the relaxation spectrum data set. The horizontal dashed line 
represents the isoviscous prior and starting model A used in the 
inversions, while the solid and dotted lines give the u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAposteriori 
models (that is the maximum likelihood estimates) o f  inversion nos. 
1 and 2, respectively. The abscissa scale is non-dimensionalized as in 
Fig. 2, with the location of the CMB and the seismic discontinuity at 
670 km depth specified by labelled arrows. 

viscosity profile very similar to that inferred by McConnell 
(1968). The resolving kernels plotted by Parsons (1972) have 
a depth extent which is comparable to that exhibited by the 
(associated) row of the posterior covariance matrix derived 
in this study (Fig. 5). The measure of ‘spread’ adopted by 
Parsons (1972) (as defined in the technique of Backus & 
Gilbert 1968) tends to reflect the width of the resolving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Inverse theory for mantle viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA53 

Posterior Variances 

U 

0 

I 

Figure 4. The u posteriori variances of the individual model 
parameters for inversion no. 1 (see Table 2 for details) as a function 
o f  dimensionless radius. The u priori variances of the model 
parameters in inversion no. 1 arc all 1.0, and they would therefore 
lie on the top edge of the plot. 

kernels at a much higher normalized amplitude than the 
value adopted here (10 per cent of the maximum value), and 
therefore the values quoted by Parsons (1972) are 
considerably smaller than those plotted on Fig. 6. 

Let us consider a general linear combination of the model 
parameters g r x .  The a posferiori  variance of the 
combination (which we denote by S’,,) must be smaller than 
or equal to the u priori  variance (denoted S&; Tarantola & 
Valette 1982a), and the ratio of the two is given by 

where V,, and V,,, are the u priori and a posteriori model 
covariance matrices. One possible choice for g is a vector 
which is zero in all but one element corresponding to a 
particular target depth. In this case we have found, from 
inversion no. I ,  that the value of Sz is not appreciably 
smaller than 1.0 (see Fig. 4) and have concluded that the 
relaxation spectrum data d o  not ‘resolve’ rheological 
structure on the radial length scale of the individual model 
layers (that is certainly also clear from the results of Figs 5 
and 6). A logical choice for the g vector is therefore one 
which reflects the true resolving power of the data, and in 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 different rows (or target depths, TD, as labelled on each frame) of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa posteriori model covariance matrix Vp, (eq. 7 )  for 
inversion no. 1 (see Table 2 for details). In each case the rows are normalized by the amplitude of the largest off-diagonal covariance on the 
row (specified by the parameter NF). The diagonal element o n  the row (or the variance of the model parameter associated with the target 
depth) is off the scale of the plot (note the sharp dip at the curves in each frame which Serves to locate the target depth), however, it may be 
asccrtained from Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. The abscissa scale is non-dimensionalixd as in Fig. 2. 
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1200.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 900.0t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA900.0 

“t Mo.0 

mO.O 

300.0 1 
0.0 I 0.0 

0s 0.9 1.0 

Dimensionless Radius 

Figure 6. ‘The resolving power of the Fennoscdndian relaxatictn 
spectrum data set (in the spherical harmonic degree range 14 to 45 
and 65 to 80) as a function of dimensionless radius. For a particular 
target depth, or  model parameter, the resolving power is computed 
as the radial distance between model layers in which the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAposteriori 

covariance with the model target parameter falls to 10 per cent of 
the peak covariance. The abscissa extends zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto  a depth o f  
approximately 1300 km (a dimensionless radius of 0.8). 

this respect we may follow two courses. Backus (1988) has 
described a technique for finding a set of vectors g,, 
constrained such that g;’. are uncorrelated both in the a 
priori and a posteriori state, which yield a ratio S 2  that is 
much smaller than 1.0. The number of such vectors, or 
alternatively the number of independent estimates resolved 
by the data, is equal to the trace of the so-called resolution 
matrix (Backus 1988). In the inversions described in this 
section this value generally lies between 3.2 and 3.8. The 
drawback of the procedure is that the vectors so derived 
generally exhibit large oscillations so that the physical 
interpretation of the estimate gTx is unclear. In this respect, 
Jackson (1979) and Mitrovica & Peltier (1991) have 
advocated the use of simple ‘box-car’ functions whose width 
is comparable to the resolving power of the data. In this case 
the linear combination g7x represents the average value of 
the model parameters (the logarithm of the radial viscosity 
profile in a discretized form) in the chosen region. The 
drawback, in this choice of g,, is that the estimates g7x are 
not necessarily uncorrelated (in either an a priori or a 
posteriori sense). 

We will adopt the latter approach in this section, and in 
particular choose the vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgj which yield the volumetric 
average of the logarithm of viscosity in some region of the 
earth’s mantle. In this case, for a region extending over a 
radial depth range r, to r2, the vector gj is generated from a 
discretized version of the expression 

r2 log v ( r )  dr 

r2 dr 

(log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv )  = 

From a consideration of the results of Fig. 5 [in particular, 
for target depths 669 km, 419 km, and (not shown) 130 km], 
we have chosen to examine three regions. The depth range 
which defines each region is provided on Table 3. 

Table 3. 

Region 

1 

2 

Inverse theory f o r  mantle viscosity 55 

Depth Range (km) 

1040 - 400 

670 - 210 

3 235 - base of the lithosphere 

I t  must be emphasized that the three regions listed on 
Table 3 are chosen on the basis of the computed resolving 
power of the data. One might be tempted, for example, to 
consider the average logarithm of viscosity in the transition 
zone (400 to 670 km depth), however, the rheology in the 
region is not resolved by the data, and the results will be 
strongly correlated with the average value of the model 
parameters in the 400 km region at the top of the lower 
mantle. Hence an inference of the average logarithm of 
viscosity in this region of the mantle alone can be very 
misleading (we will return to this point below). By 
considering the average over a depth range consistent with 
the resolving power of the relaxation spectrum data set our 
goal is to generate robust inferences which all proposed 
models of the radial viscosity variation below Fennoscandia 
must satisfy. 

On Table 2 we have listed the computed average 
logarithm of viscosity in each o f  the three regions listed in 
Table 3, for inversion no. 1 (and all subsequent inversions of 
the relaxation spectrum data set to be discussed in this 
section). The symbol (i) denotes the average for the ith 
region, and the symbols PR and PO distinguish the averages 
computed using the a priori and a posteriori models and 
statistics. The quoted errors represent the associated 
standard deviation of the estimate (SpR and S,,, as defined 
in eq. 8, for the a priori and a posteriori state, respectively). 
Also listed in Table 2 are the cross correlations between the 
three estimates, defined as 

where i and j represent the ith and j th region, and P stands 
for either PR or PO. 

The errors quoted in Table 2 may be slightly misleading 
because they will depend on the number of layers of the 
numerical model which reside in the particular region of 
interest (Backus 1988). A more robust measure of the effect 
of incorporating data into the analysis, as discussed above 
(Jackson 1979; Backus 1988), is t o  consider the ratio of the a 
posteriori and a priori variances. As an example, for the 
average logarithm of viscosity in region no. 2, for inversion 
no. 1, the ratio is approximately 0.1; this represents an order 
of magnitude reduction in the variance of the estimate. 
Recall the ratio which characterized estimates of the 
individual model parameters was generally greater than 0.8 
(Fig. 6). A second important point regarding Table 2 is that 
the a posteriori cross-correlations between the estimates for 
the three regions are usually quite small, and thus the 
estimates are generally nearly independent. 

The summary statistics listed on Table 2 will serve as the 
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t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

basis for the comparison of the inversions of the relaxation 
spectrum data set to be discussed in this section. In inversion 
no. 2 (dotted line, Fig. 3b) the a priori variances of the 
model parameters were increased to 2.0. A comparison of 
inversion nos. 1 and 2, on Table 2, indicates that the 
computed a posieriori averages are essentially unaltered, 
and the error bounds only slightly increased. in inversions 
nos. 3 and 4 we examine the effect of varying the starting 
model, X,=,, on the a posteriori inferences. Inversion no. 3 
uses starting model B (Table 1) in which the lower mantle 
model parameters are increased (with respect to model A )  
to a valuc of 21.84.5. In contrast inversion no. 4 uses starting 
model C, where the upper mantle model values are reduced 
(again, with respect to model A) to a value of 20.7. The a 
posteriori models for inversions nos. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 3, and 4, are plotted 
on Figs 7a, b and c, respectively. In each frame of the figure 
the a priori model A (used in all three inversions) is given 
by the solid line, while the starting model is given by the 
dashed line. Clearly, the inversions have converged to very 
similar a posteriori models. Once again, this convergence is 
reflected in the summary statistics of Table 2, where the 
difference between the inferences hased on the inversions 
are insignificant. 

inversions nos. I through 4 have all used the same 
isoviscous a priori model A. In order to investigate the effect 
of varying the a priori beliefs inversions nos. 5 and 6 were 
performed using the a priori (and starting) models B and C, 
respectively. The a posteriori models for inversions I ,  5 and 
6 are given on Fig. 8. As discussed in the context of Fig. 3, 
the a posteriori models of Fig. 8 all tend toward their 

,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA670 T 

t 

Dimensionless Radius 

Figure 7. The results for inversions nos. I (frame a), 3 (frame b), 
and 4 (frame c) (see Table 2 for details) of the relaxation spectrum 
of Fig. 1. The solid and dashed lines on each frame represent, 
respectively, the prior and starting models used in the inversions, 
while the dotted line is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAposteriori, or invcrted. model. Thc 
three invcrsions are disttnguishcd by the adopted starting model. 

h 

h 
m 
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a, 

i 1 

t A  670 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 i 

Dimensionless Radius 

Figure 8. The results for inversion nos. 1 (frame a), 5 (framc b) and 
6 (frame c) (see Table 2 for details) of thc relaxation spectrum of 
Fig. 1. The solid line on each frame represents the prior and starting 
model use in the inversions, while the dottcd line is the ( I  posteriori, 
or inverted model. The three inversions arc distinguished by the 
adopted u priori (and starting) model. 

respective a priori models in the deep mantle reflecting the 
fact that the observational data provide no information 
regarding the rheology of this region. In the top half of the 
mantle, however, the a posteriori models are quite similar 
even though the a priori and starting models are 
fundamentally different. The only apparent discrepancy in 
this respect is evident in the a posteriori model of inversion 
no. S (Fig. 8b) which has a markedly stronger region at the 
top of the lower mantle and weaker transition zone than the 
inverted models 1 and 6. This raises a fundamentally 
important point. As discussed earlier, the relaxation 
spectrum data are not able to resolve structure in the 
transition zone independently of structure at the very top of 
the lower mantle (see Fig. 5) .  As a consequence, the a 
posteriori models may have very different values in these 
two regions. However, the a posteriori models must have 
consistent averages in the full region 1 (which extends from 
the top of the transition zone to 400 km within the lower 
mantle), since we have established that the rheology in that 
region is resolved by the relaxation spectrum data set. The 
summary statistics for inversions 1, 5 and 6 (Table 2) 
indicate that this is indeed the case. 

inversions nos. 1 through 6 have been performed using 
earth models with a 120 km lithosphere. McConnell (1968), 
Cathles (1975) and Wolf (1986) have recognized that an 
increase (decrease) in the lithospheric thickness used in their 
forward analyses could be compensated by an increase 
(decrease) in the viscosity of the sublithospheric region in 
order to fit the relaxation spectrum data set. In  order to 
investigate this relationship we have, in inversions nos. 7, 8, 
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ice sheet that lithospheric thicknesses in excess of this may 
be required for shield areas (such as Fennoscandia). 

Through a consideration of the intrinsic resolving power 
of the data the nine inversions discussed in this section have 
yielded robust constraints on the radial viscosity profile 
beneath Fennoscandia. In region I ,  between 400 and 
1040 km depth, the average logarithm of viscosity must be 
near 21.0 (or the logarithm of lo2' Pas).  In the overlapping 
region 2 extending from 210km depth to the 670km 
boundary between the upper and lower mantle the average 
is variable, but ranges between approximately 20.60 and 
20.75 with an associated standard deviation of about 0.10. 
Finally, an average logarithm of viscosity significantly less 
than 21.0 is indicated in the sublithospheric region 3 for the 
class of Earth models with a lithospheric thickness less than 
140 km. 

The constraints summarized on Table 2 can be used to 
rule out a very large class of earth models. However, they 
also permit earth models with widely varying characteristics. 
In the discussion to follow we will introduce a set of such 
models in order to illustrate the non-uniqueness inherent to 
all inferences based on McConnell's (1968) Fennoscandian 
relaxation spectrum data and to emphasize that the only 
constraints that all models must satisfy are embodied in the 
summary statistics of Table 2. 

The most direct approach to assessing the acceptability of 
a particular radial viscosity model is to compute the 
relaxation spectrum associated with the model and then 
consider whether that spectrum satisfies the observational 
constraint. Following eq. (6) we can define a statistic Q such 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q(K; )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Y - f (Xc ; ) I ' v~ ' [~  -f(&;)I (11) 

where X,,. is an arbitrary viscosity model. Since the data 
vector y is assumed to have a Gaussian distribution, Q will 
be distributed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx:, where tz is the number of spherical 
harmonic degrees included in the relaxation spectrum (in 
the case of Fig. 1, r~ = 48). Thus, a particular model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,; can 
be rejected at 99 per cent confidence if Q is greater than 
approximately 74. We will follow this procedure to assess 
the acceptability of the nine models summarized on Table 4. 

Table 4 includes three sections: the first provides details of 
the radial layering used in the models and the logarithms of 
viscosity in each, as well as the lithospheric thickness (LT); 
the second lists the volumetric average of the logarithm of 
viscosity in the three regions specified on Table 3; and the 
third summarizes the results of the hypothesis test. While 
the viscosity of the models is specified down to the CMB, 
the details below about 1200 km depth (as described above) 
are relatively unimportant in terms of the computed misfit. 
The relaxation spectra computed on the basis of these nine 
models are shown on Figs 10, 11 and 12. 

Let us consider the first model MC, which is adapted from 
the model preferred by McConnell (1968) in his analysis of 
the Fennoscandian relaxation spectrum. The model has a 
120 km lithosphere and a relatively weak asthenosphere 
(extending to 400 km) overlying a uniform viscosity lo2' Pa s 
deep mantle (we have not included any of the viscosity 
increase below 800 krn depth imposed by McConnell). 
Comparing this model to the a posteriori results from 
inversion no. 1 (which also used a 120 km lithosphere) 
indicates that it satisfies the constraints on the average value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 670 

2 0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h C MB 
h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21.0 , m I 

4:  
0.1 0.9 

20.0 I 4  , 
0s CMB 

Dimensionless Radius 

Figure 9. The results for inversion nos. 7 (framc a), 1 (frame b) and 
9 (frame c) (see Table 2 for details) of the relaxation spectrum data 
set. The solid and dotted lines are dcfincd o n  Fig. 8. Thc three 
inversions arc distinguishcd by the value o f  the lithospheric 
thickness adopted in the calculations (70, 120 and 145 km, 
respectivcly). 

and 9, considered Earth models with lithospheric thicknesses 
of 70, 100 and 145 km, respectively. The a posteriori models 
for inversions 7, 1 and 9 are shown on Figs 9(a), (b) and (c), 
respectively. Comparing the summary statistics for these 
inversions indicates that an increase in the lithospheric 
thickness leads to a small (and statistically relatively 
insignificant) decrease in the computed averages in the 
deepest regions 1 and 2. In contrast, in agreement with 
McConnell (1968) and Cathles (1975), the average logarithm 
of viscosity in region 3 (stretching from the base of the 
lithosphere to 235 km depth in all cases) is strongly 
dependent on the assumed lithospheric thickness. Indeed, 
the perturbation in the computed average increases almost 
linearly with the jump in the lithospheric thickness. Notice, 
for example, that the increase in the computed average 
between inversion nos. 8 and 9 (which have a 45 km 
difference in lithospheric thickness) is about 50 per cent 
larger than the increase between inversions nos. 7 and 8 
(which have a 30 km difference in lithospheric thickness). 
The trend apparent on Table 2 confirms the assertion of 
Cathles (1975), who argued on the basis of forward 
calculations that the necessity of invoking a weak 
sublithospheric region (or low viscosity zone with respect to 
the underlying upper mantle) in order to fit the relaxation 
spectrum data disappears for sufficiently high lithospheric 
thicknesses (or, alternatively, flexural rigidities). In this 
respect the present results indicate that a lithospheric 
thickness greater than approximately 120 km would be 
required. Peltier (1984) has argued on the basis of relative 
sea-level data from the region peripheral to the Laurentide 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Hypothesis tests-models. 

21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 

20.76 

20.56 

61 

LT (km) 

\lOdCI 

Laycr 
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RrnngC\ 

(!an) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mnd 

LOG v(r) 
In cach 

AVERAGES 

< I >  

c2> 

<3> 

21 I6 21 0 21.00 2098 21 33 21.06 21.34 21.00 

20.78 20 54 20.60 21.00 20.63 20.63 
20.78 20.70 

20 54 20.60 20.06 20.15 20.43 20.43 20 48 20.48 

295 49 295 26 470 74 449 51 

RELAXATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SPECIRCIM 

MISFlT 
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120 2061 11x1~ 20.54 IW- 2060 70- 19.30 70- 19.70 103- 2043 103. 2043 IW- 20.48 
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220- 2041  67(1- 2167 670 21.32 160- 21.00 Iho- 2070 403- 20.78 4 0 -  20.78 400- 2100 
4tx) CMB CMB CMB 670 670 670 670 

40- 2 1  on 670. 21.20 670. 21 78 670- 21.30 670- 21 62 
CMB CMB CMB CMB CMB 
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10 

10 I00 
Degree L 

Figure 10. (See Fig. t.) The line labelled MC refers to  the 
relaxation spectrum o f  the fundamental (MO) mode of decay 
computed using the rhcological model MC summarized on Tahlc 4. 

of the model parameters in the three regions specified on 
Table 3. It is not surprising, therefore, that the relaxation 
spectrum computed using model MC (Fig. 10) satisfies the 
observational constraint (note the value of Q on Table 4). 

The next model, LJN, refers to that proposed by 
Lambeck, Johnston & Nakada (1990; model 2) based upon 
sea-level variations in northwestern Europe. Lambeck, 
Johnston & Nakada (1Y90) limited their forward calculations 
to Earth models having isoviscous layers in the upper and 
lower mantle, and in this respect they preferred the model 
LJN having a 13.5-fold jump in viscosity across the 670 km 
boundary between the two regions. The statistics Q for 
model LJN (Table 4) has a value of 295, and thus the model 
is clearly unacceptable in terms of its fit to the relaxation 
spectrum constraint (see also Fig. 11). 

The cause of the poor fit for the LJN model is evident 
from the averages listed on Table 4. A comparison of these 
with the a posteriori constraints obtained from inversion no. 
8 indicates that the model is too stiff in region 1 and too 
weak in region 2. The FrCchet kernels on Fig. 2 indicate that 
the region 1 is sampled by the largest wavelengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( f  = 14) 
while region 2 is sampled by intermediate wavelengths 
( e  = 30). Accordingly, the relaxation spectrum for model 
LJN (Fig. 11) is characterized by decay times which are too 
long at the longest wavelengths and too short at 
intermediate wavelengths. 

An assumption of isoviscous layers in the upper and lower 
mantle regions is common in studies related to the inference 
of mantle viscosity from the post-glacial rebound data set. It 
is of interest, therefore, to consider which model of this class 
is preferred by the Fennoscandian relaxation spectrum data 
set. To address this issue we have repeated inversion no. 8 
on Table 2 using a prior model covariance matrix, V,,, 
constructed to reflect perfect correlations between the 
model layers within the lower mantle and, separately, the 
upper mantle (we assume no  correlations extend across the 
boundary between these two layers). Such a construction 
limits the solution space to a two-layer viscosity profile. The 
a posteriori model for this inversion, which we denote as 
model 2LAY, is specified on Table 4. 

Model 2LAY has values in the upper and lower mantle of, 
respectively, 4 X 102" P a s  and 2 X lo2' Pas. This factor of 5 
jump in viscosity across the 670 km boundary is smaller than 
that preferred by Lambeck, Johnston & Nakada (1990). This 
reduction arises as a consequence of the weaker lower 
mantle, and a slightly stiffer upper mantle which 
characterizes model 2LAY with respect to model LJN. 
Notice in this respect that model 2LAY, in contrast to 
model LJN, matches the a posteriori statistics suggested in 
Table 2. The misfit statistic Q indicates, furthermore, that 
model 2LAY produces a relaxation spectrum which fits the 
observational constraint (this is also apparent in Fig. 11). 

Model 2LAY was generated by assuming a lithospheric 
thickness of 100 km. In order to investigate the dependence 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
5 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0. I LVZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI- 

s 10 a i n 

% 

10 I00 10 I00 
Degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt Degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 

Figure 11. (See Fig. I.)  The lines labelled LJN, 2LAY, LVZ and LVZ2 refer to thc relaxation spectra of the fundamental (MO) mode of decay 
computed using the associated rheological models summarized on Table 4. 

of the a posteriori 'two layer' results on this parameter, we 
have performed analogous inversions (i.e. inversions 
performed assuming perfect correlations amongst model 
parameters in the upper and, separately, the lower mantle) 
for lithospheric thicknesses of 70, 120 and 145 km. The a 
posteriori model values in the upper and lower mantle for all 
four of these two layer versions (including LT = 100 km) are 
given on Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. The a posteriori standard deviations for 
the model values are all less than 0.001, indicating that if 
one were able to rigorously justify such a strong constraint 

n 
a 
U 

f 
0 1  
t 
U 

10 I00 

on the model space, the a posteriori results would be 
exceedingly well determined. 

The results on Table 5 indicate that the u posteriori model 
value in the upper mantle increases as the lithospheric 
thickness increases. Recall, in inversions which assumed no 
correlation amongst the model layers (Table 2) an increase 
in lithospheric thickness was associated with an increase in 
the viscosity at the top of the upper mantle in region 3 (in 
order that the model fit the short relaxation times which 
characterize the relaxation spectrum at high degrees). 

n 

Ic 
ZI 
Y 
v 

t 
I- 
.- 

Degree I Degree t 
Figure 12. (See Fig. 1). The lines labelled HAC, HAC2, FP and FP2 refer to the relaxation spectra of the fundamental mode (MO) of decay 
computed using the associated rheological models summarized on Table 4. 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Results: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo-laycr (UM,  LM) inversions. 

LLTHOSPHERIC 
THICKNESS (KM) 70 100 120 145 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
< L O ( ~ ~ M >  21.34 21.32 21.30 21.27 

<LOG V U M >  20.57 20.60 20.62 20.65 

Limiting the model space to a single layer in the upper 
mantle tends to dampen this trend since the model must 
simultanesouly satisfy constraints on the average value in 
both regions 2 and 3. As a final point, the increase in the 
upper mantle model value, as the lithospheric thickness is 
increased, is matched by a decrease in the lower mantle 
model value on Table 5. This is necessary in order that the 
average value in region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (which extends across the 670 km 
boundary) remains near 21. As a consequence, thc a 
posteriori results for a ‘two-layer’ viscosity model with a 
lithospheric thickness of 145 km, has a preferred viscosity 
jump of approximately 4 across the 670 km boundary. 

Returning to Table 4, let us consider model LVZ. in 
which a region of weakness is constrained to occur in a very 
thin (90 km) low-viscosity zone (LVZ) overlaying a mantle 
of uniform viscosity. This type of model, in slightly altered 
forms, has been proposed by Cathles (1975) and Fjeldskaar 
& Cathles (1991) on the basis of their analysis of the glacial 
isostatic adjustment of Fennoscandia. In particular, Fjeld- 
skaar & Cathles (199 1 )  considered both the present day 
adjustment of the region and tilt data at  selected geographic 
locations. 

A comparison of the average value of model LVZ in the 
three regions specified on Table 3 (see Table 4) with the a 
posteriori results of inversion no. 7 on Table 2 indicates that 
the average value of the viscosity in region 2 is too stiff to fit 
the relaxation spectrum. This is verified on Fig. 11 where the 
relaxation spectrum computed using model LVZ exhibits 
decay times which are too long at  intermediate degrees 
(which, as described earlier, are sensitive to the viscosity in 
region 2), and on Tahle 4 where the misfit statistic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ is 
unacceptably large. 

Using the a posteriori constraints of inversion no. 7 as a 
guideline we have modified model LVZ to construct a 
model, which we denote as LVZ2, which includes a low 
viscosity zone and which fits the relaxation spectrum (see 
Fig. 11 and the statistic Q on Table 4). Model LVZ2 is 
characterized by a thin sublithospheric region with a 
viscosity one order of magnitude less than that of the 
underlying mantle. Furthermore, the model has constant 
viscosities in the upper mantle (below 160 km depth) and 
lower mantle of, respectively, 5 X 10’” Pa s and 
1.5 X lo2’ Pas. The average value of model LVZ2, in the 
three regions specified on Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, differs most significantly 
from model LVZ in region 2. In contrast to model LVZ, the 
average value for model LVZ2 in that region (20.7) matches 
the a posteriori constraint generated from inversion no. 7, 
and this leads to the excellent fit evident on Fig. 11. 

A comparison of models LVZ2 and 2LAY raises an 
interesting point. In model LVZ2 the upper mantle is 
discretized into two layers of constant viscosity. The a 
posteriori constraints on the average value of the model in 
regions 1 and 2 (see inversion no. 7 on Table 2) can 

therefore be satisfied by varying the viscosity in both these 
regions. As a consequence, the requirement for a weak 
sublithospheric region impacts much less on the viscosity 
below 160 km depth in model LVZ2 than it does on model 
2LAY which limits the model space to a single layer in the 
upper mantle. The result, evident on Table 4, is that model 
LVZ2 is permitted a stiffer region below 160 km depth, and 
a weaker region below 670 km depth in order to satisfy the a 
posteriori constraint on the average model value in region 1, 
leading to a very moderate factor of three jump in viscosity 
across 670 km depth. 

To conclude this section consider thc models HAC and 
FP on Table 4, both of which were derived from analyses of 
the earth’s long wavelength geoid and plate motions driven 
by the convective circulation in the planetary interior. As  an 
example, Forte, Peltier & Dziewonski (1991) considered a 
formal five-layer inversion of  the data sets and found that 
the model FP satisfied the a posteriori statistics o f  their 
analysis. In a forward analysis of the data sets, Hager (1991) 
preferred a model similar to HAC, except with an 
asthenospheric viscosity of 2.5 X 10” Pa s (or 19.43 in 
logarithm space; let us call this model HA). [lager (1991) 
has, however, argued that the model H A  may not be 
characteristic of regions below continental environments, 
and has suggested that an increase of the asthenospheric 
viscosity of less than or equal t o  a factor of 10 would be 
required to fit uplift data over regions such as Fennoscandia. 
Accordingly, model HAC is constructed to have an order of 
magnitude larger viscosity in the asthenosphere 
(2.5 X 10*” Pa s) than model HA.  

Table 4 indicates that both model H A C  and FP have 
average values in region 1 which are substantially stiffer than 
are allowed by the a posteriori constraints provided by 
inversion no. 8 on Table 2. Not surprisingly, both models 
have misfit statistics Q which are unacceptably large. This 
misfit is also apparent on Fig. 12 which shows the relaxation 
spectra computed using the two models (note the large 
misfits at  the longest wavelengths). 

The source of the misfit is clearly the rather stiff lower 
mantle viscosities which characterize both models HAC and 
FP. Accordingly, we have constructed two alternate models, 
HAC2 and FP2, by simply reducing the lower mantle 
viscosities in, respectively, models H A C  and FP, until the a 
posteriori constraint on the average model value in region 1 
was satisfied. In the case of model HAC2, the lower mantle 
viscosity has been reduced to  approximately 2 X 10” P a s  
(from 6 X lo2’ Pas),  while in the case of model FP2 the 
reduction is to lo2’ P a s  (from 4.2 X 10” Pa s). Neither 
model HAC2 or FP2 can be rejected at 99 per cent 
confidence on the basis of the misfit statistic Q, although 
model HAC2 represents a borderline model in this respect. 
[Note, from Fig. 12, that model HAC2 produces decay times 
for degrees near 30 which are slightly too short compared to 
the observational constraint; this indicates that the average 
value of the model in region 2 (20.63), which these 
intermediate degrees are most sensitive to, is slightly too 
weak. This can be corrected by increasing the asthenos- 
pheric viscosity of the ‘continental’ model HAC (and 
HAC2) by slightly more than a factor of 10 over the value of 
model HA.] 

The result of our modifications (HAC2. FP2) is to 
produce models with markedly smaller viscosity contrasts 
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from the base of the lithosphere to the deep mantle. Notice, 
in this respect, that the modifications have yielded models 
which are somewhat similar to McConnell’s (1968) model 
MC on Table 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a final point, we emphasize that the 
modifications to models H A C  and FP are only required at 
the top of the lower mantle (above approximately 1200 km 
depth) and the viscosity profiles of these models below this 
depth will be of little consequence to their fit t o  the 
Fennoscandian relaxation spectrum. 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC O N C L U S I O N S  

The large data base of geophysical observables which reflect 
the glacial isostatic adjustment process serves as a primary 
source for inferences of mantle rheology. In this paper we 
have examined a now-classic subset of this data base; the 
relaxation spectrum of Fennoscandia originally derived by 
McConnell (1968) from his analysis of the uplift pattern of 
that region. In this regard, we have used a Monte Carlo 
approach, with conservative random-error perturbations, to 
rederive the spectrum together with its associated 
uncertainties and cross-correlations. Our inversions o f  the 
data base, formulated using the theory o f  non-linear 
Bayesian inference, have yielded a set of robust constraints 
which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall models for the radial viscosity variation below 
Fennoscandia must satisfy (Table 2). The constraints are 
consistent with the resolving power of the relaxation 
spectrum data set and incorporate estimates of uncertainty. 

The relaxation spectrum discussed in this study represents 
the set of eigenfrequencies for the fundamental modes of 
viscous gravitational relaxation between spherical harmonic 
degrees 14 and 45 as well as 65 to 80. Theoretical predictions 
of the spectrum are based on the solution of the 
homogeneous problem (Peltier 1976) and therefore the 
constraints provided by the observational data set are, in 
theory, independent of the surface loading history (that is, 
independent of the excitation of the normal modes), and 
therefore any uncertainties associated with that history. We 
have used these constraints t o  construct a set o f  models 
which illustrate the non-uniqueness inherent to the 
acceptable model solution space. The constraints have also 
been applied, together with a statistic (eq. 11) based upon 
the computed misfit to the ‘observed’ relaxation spectrum, 
to rule out a number of  published viscosity models. 

An assumption o f  isoviscous upper and lower mantle 
regions is common in inferences of mantle viscosity based 
upon the glacial isostatic adjustment data set. As an 
example, on the basis of their forward analysis of sea-level 
variations in northwestern Europe, Lambeck, Johnston zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Nakada (lY90) have proposed a model (LJN-Table 4) with 
a lithospheric thickness of lOOkm and upper and lower 
mantle viscosities of, respectively, 3.5 X 10’” Pa s and 
4.7 X 10” Pas. We have found that the model does not 
satisfy the relaxation spectrum data set (nor does it satisfy 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa posteriori statistics generated from the inversion of 
that spectrum). Wc have, furthermore, performed inversions 
which assume perfect correlation amongst the model 
parameters in the upper, and, separately, the lower mantle, 
and those inversions suggest upper mantle viscosities in the 
range 3.7 X 10’”-4.5 X 102” Pa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs and lower mantle viscosities 
in the range 2.2 X lo2’ Pa s-1.9 X lo2’ Pas. The ranges arise 
from the variation in the assumed lithospheric thickness, 

with the first number in each range associated with 
L T = 7 0 k m  and the second with L T =  145km. In the 
context of two-layer models, the misfit computed for model 
LJN arises, primarily, from the overly stiff lower mantle of 
the model. If one were justified in assuming isoviscous upper 
and lower mantle regions. our two-layer inversions suggest a 
viscosity contrast across the 670 km boundary of between 
four and six (for the range of lithospheric thicknesses 
considered on Table 5 ) .  

The u posteriori constraints arising from the inversion of 
the relaxation spectrum also rule o u t  a rheological profile 
consisting of a thin low-viscosity zone overlying a constant 
viscosity (lo2’ Pa s) deep mantle (model LVZ on Table 4). 
Such a model, in slightly altered form, has been proposed by 
Cathles (1975) and Fjeldskaar & Cathles (1991) on the basis 
of their analysis of the glacial isostatic adjustment of 
Fennoscandia. Nevertheless, we have constructed a similar 
model (LVZ2 on Table 4), consisting of a low-viscosity zone 
overlying a deep mantle characterized by a moderate (factor 
of 3) viscosity increase across 670 km depth, which fits the 
relaxation spectrum. 

We have also used the Fennoscandian relaxation spectrum 
to tcst the acceptability of various viscosity models derived 
on the basis of long-wavelength geoid and plate-motion 
observations associated with the mantle convective circula- 
tion (Forte et al. 1991; Hager 1991). The model FP (Table 
4), which was found by Forte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAci a!. (1991) to be acceptable 
in terms o f  the N posteriori constraints from a five-layer 
inversion of the data sets, as well as model HAC (Table 4), 
which Hager (1991) has proposed as characteristic of regions 
below continental environments, have both been found to 
provide unsatisfactory fits to the relaxation spectrum. In this 
regard, our a posteriori constraints derived from the 
inversion of the relaxation spectrum, indicate that the source 
of the misfit is an overly stiff rheology in the shallowest part 
of the lower mantle (above about 1200km depth) which 
characterizes these models. We have shown that modifica- 
tions to the models, based on the reduction of viscosity in 
this part of the lower mantle, can produce models which fit 
the relaxation spectrum data set. 

The non-uniqueness associated with the a posteriori 
constraints is evident in the number of models discussed 
herein which fit the Fennoscandian relaxation spectrum 
rederived in this paper. We have shown, for example, that a 
model (MC on Table 4) with a weak asthenosphere (down 
to 400km depth) overlying an isoviscous 10” P a s  deeper 
mantle provides an excellent fit to the spectrum. This fit is 
also possible (as discussed above) using models with a factor 
o f  roughly five jump in viscosity across the 670 km boundary 
between isoviscous upper and lower mantle regions (with 
the latter having a viscosity near 2 X 102’ Pa s), and models 
with a low viscosity zone overlying a two-layer deep mantle 
with a moderate (factor of three) viscosity contrast across 
670 km depth. 

Given the many uncertainties and complications as- 
sociated with the derivation of the Fennoscancian relaxation 
spectrum (see McConnell 1968) a significant reduction in the 
associated observational uncertainty is difficult if not 
impossible. The non-uniqueness associated with the 
inferences described in this study can, however, be reduced 
by considering other obervational constraints associated 
with the region. In particular, in a companion paper 
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(Mitrovica zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Peltier 1993) we use the  u posteriori 
constraints derived in this study as the u priori constraints in 
an inversion of the observed RSL variations at the  centre, 
edge and periphery of the ancient Fennoscandian ice 
complex. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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