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ABSTRACT

Motivation: The prediction of protein—protein interactions is currently
an importantissue in bioinformatics. The mirror tree method uses evol-
utionary information to predict protein—protein interactions. However,
it has been recognized that predictions by the mirror tree method lead
to many false positives. The incentive of our study was to solve this
problem by improving the method of extracting the co-evolutionary
information regarding the protein pairs.

Results: We developed a novel method to predict protein—protein
interactions from co-evolutionary information in the framework of the
mirror tree method. The originality is the use of the projection oper-
ator to exclude the information about the phylogenetic relationships
among the source organisms from the distance matrix. Each distance
matrix was transformed into a vector for the operation. The vector is
referred to as a ‘phylogenetic vector’. We have proposed three ways
to extract the phylogenetic information: (1) using the 16S rRNA from
the same source organisms as the proteins under consideration, (2)
averaging the phylogenetic vectors and (3) analyzing the principal
components of the phylogenetic vectors. We examined the perform-
ance of the proposed methods to predict interacting protein pairs from
Escherichia coli, using experimentally verified data. Our method was
successful, and it drastically reduced the number of false positives in
the prediction.

Availability: The R script for the prediction of protein—protein inter-
actions reported in this manuscript is available at http://timpani.
genome.ad.jp/~proj/

Contact: sato@kuicr.kyoto-u.ac.jp

Supplementary information: The information is also available at the
same site as the R script.

1 INTRODUCTION

Infor_matlon ab_ou_t pr(_)teln—prot_eln _mteractlo_ns in I|V|ng_ cells distance matrixDs,
provides deep insight into the biological functions of proteins and

sdny wouj papeojumo(

However, such experimental methods have coverage and accuracy
problems (Sprinzakt al., 2003; von Meringet al., 2002). Currently, 9
the prediction of protein—protein interactions has become one of theS
major issues in bioinformatics. The predicted protein—protein inter- g
actions can provide complementary or supporting evidence to thes
genome-wide experimental studies on protein—protein interactionsg
eventhough computational analyses also suffer from the same prob3.
lems as experimental studies, such as low coverage and low accuracg;

Various methods to predict protein—protein interactions have been=-
developed. One of these methods is the prediction through gen3
ome comparisons, which includes phylogenetic profile (Pellegrini
etal., 1999), Rosetta stone (Enrigittal., 1999) and conserved gene
neighborhood analyses (Dandekhal., 1998). Prediction by using
information about the co-occurrence of domains in protein—protein &
interactions is another approach. Co-evolutionary behavior between=
interacting proteins is also useful information for predictions. There
are two representative prediction methods that utilize co-evolutionary 3
information, the mirror tree method (Pazos and Valencia, 2001) andE
thein silico 2-hybrid system method (Pazos and Valencia, 2002). In
this paper, we focus on the mirror tree method.

Although there are several preceding works, such as &aeh
(2000), the mirror tree method was developed by Pazos and Valenci&
(2001). The mirror tree method predicts protein—protein interactions &
under the assumption that the interacting proteins show similarity in S
the molecular phylogenetic tree because of the co-evolution through™
the interaction. However, it is difficult to evaluate the similarity dir- 2
ectly between a pair of molecular phylogenetic trees. Instead, theg
mirror tree method compares a pair of distance matrices in order%
to evaluate the extent of co-evolutionary behavior between two pro-
teins. We will explain the method briefly. Consider two proteins, >
say, proteins A and B. The orthologues of protein A are collected
from n species. The sequences of protein A are aligned and the
is calculated. The size @, isn x n, and each
row or column of the matrix corresponds to a species under consid-

/

[onJe/sone

Ag 69

the behavior of cells. Genome-wide experimental analyses, such 8§,40n An element of the matrixa (i, j), represents the genetic

the yeast 2-hybrid system (It al., 2001; Uetzet al., 2000) and
mass spectrometry (Gavbal., 2002; Hoet al., 2002), have facilit-

distance between specieand j, which is calculated by comparing
the amino acid sequences of protein A between the two species. A

ated exhaustive investigations of protein—protein interactionsin Ce”sdistance matrix is symmetric, and only the upper or lower half of the

*To whom correspondence should be addressed.

matrix includes sufficient information for the prediction. Likewise,
the orthologues of protein B are collected from the sanspecies,
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Fig. 1. A schematic representation of the procedures for predicting interaction partners from four types of correlation coeffitféig, o165, pAVE and
pPCL |v) represents a phylogenetic vectpr) indicates a unit vector representing the phylogenetic relationship among source orgasjisma.residual
vector after excluding the phylogenetic relationship frietn which is supposed to represent the co-evolutionary vector.

and the distance matrixDg, is calculated. The intensity of the co- the information about the phylogenetic relationships from the dis-
evolutionary constraint between proteins A and B is evaluated atance matrices then the performance of the mirror tree method may =
Pearson’s correlation coefficierd, between the distance matrices be improved.

llew.oyuIolq/woo dnoolwepeose//:sdiy woly papeojumod

Da and Dg, which is calculated as follows: Inour method, we used a projection operator to exclude the inform-
el o o ation about the phylogenetic relationships of the sources, and then the}

ons 2i=1 2 j=i+1(Pa (i, J) — Ave(Da)) (D (i, j) — Ave(Dg)) residual information after this operation was used for the calculation %
/Var(Dp)Var(Dg) ’ of the correlation coefficient between proteins. The projection oper- %

1) ator is a linear transformation in a vector space. A pointin the vector

not glways qne-to-ong. There are cases in which many homoIo%rotein interaction means physical contact. As discussed below, our G
ous ligands interact with many homologous receptors. Gt ethog succeeded in drastically reducing the number of false posit-g*
(2003) and Ramani and Marcotte (2003) independently improveq,qs i, the predicted protein—protein interactions. The quality of the
the mlrror.tree. methoq in similar ways to allow the consideration Ofdata needed to realize a correct prediction was also examined. We__
such multiple interaction cases. Tanaj_. (2004) re_cently Iau_nched @ also found that the inclusion of distantly related orthologues in the
web server, ADVICE, which automatically predicts protein—protein improves the performance. The benefits and limitations of our

interactions by the mirror tree mfethod upon client .request. approach are discussed based on our observations.
One of the problems of the mirror tree method is the large num-

ber of false positives in the prediction. Even protein pairs that are

known not to interact often show high correlation coefficients. The2 METHODS

abundance of false positives in the mirror tree prediction reduces thgne method developed by us is outlined in Figure 1.
reliability of the method in actual applications. The distance matrices

of orthologous proteins from the same set@urce organismsare 21 Data preparation

compared in the mirror tree method. Therefore, all of the dlstanche selected 13 pairs @&scherichia coli proteins that are physically in con-

matrices of the proteins are considered to include the Informatlor?act' from the Database of Interacting Proteins (DIP) Version 01/02/2005

about the phylogenetic relationships among the sarseurces, 10 (gajyinskiet al., 2004). The selected pairs are described in the legend for
some extent. The phylogenetic relationships among the identical sghble 1. Each pair was selected so that neither of the interacting proteins
of sources behind the distance matrices would be the cause for suclparticipated in the remaining 12 pairs of interacting proteins. Then, putat-
high correlation between non-interacting proteins. If we can excludeéve orthologues corresponding to the 26 proteins derived fEorali were

cu

v

220z 1snbn

3483



T.Sato et al.

Table 1. Comparison of the top 30 predicted interactive pairs on among the four methods

Rank pMIRROR o168 pAVE pPCl
1 dnaN-rpoB 0.97680 sucD-sucC 0.92440* sucD-sucC 0.90956* sucD-sucC 0.91527*
2 dnaK-secY 0.96324 atpA—atpD 0.80301* trpA—trpB 0.79218* trpA—trpB 0.75387*

3 dnaK-rpoB 0.96269 carA—carB 0.80290* rpoA-rpoB 0.65370* carA—carB 0.64862*

4 sucD-sucC 0.96222* dnaK—secY 0.80050 carA—carB 0.64216* atpA-atpD 0.63991*
5 dnaN-dnaK 0.96019 trpA-trpB 0.79732* dnaN-rpoB 0.63433 dnaN-rpoB 0.58736

6 atpA-atpD 0.95876* dnaE—secA 0.78250 atpA-atpD 0.61494* dnaK-atpD 0.55995

7 rpoA-rpoB 0.95755* dnaK-atpD 0.77360 iscS—iscU 0.60684* dnaK-secY 0.55993

8 rpoB-secY 0.95463 dnaN-rpoB 0.77236 grpE—clpP 0.55301 iscS—iscU 0.55503’g
9 secY-secA 0.95449* rpoA-rpoB 0.76777* dnaK—carB 0.54073 grpE—clpP 0.54494 g

10 dnaK-atpD 0.95335 dnaN—carA 0.76090 grpE—tsf 0.54054 dnaK-carB 0.54207 &

11 dnaN-secY 0.95330 dnaN-dnaK 0.76043 dnaK-secY 0.51635 secY-carB 0.53090%3.

12 dnaK-atpA 0.95193 dnaK—carB 0.75795 dnaK-atpD 0.51435 dnaK-rpoB 0.50026 =

13 dnaE-secA 0.94503 dnaN-secY 0.75778 ruvA-ruvB 0.51116* rpoA-rpoB 0.49776*c

14 dnaN-rpoA 0.94477 dnaE-secY 0.75508 secY—carB 0.50080 grpE—tsf 0.497413

15 dnaK—secA 0.94419 rpoB—secY 0.75349 rpoB—secY 0.49806 dnaK—-atpA 0.496435

16 dnaE-secY 0.94359 dnaK-atpA 0.74688 tsf—trpB 0.47641 ruvA-ruvB 0.48901* i

17 dnaN-clpX 0.94332 dnaE—dnak 0.74302 dnaA-ruvB 0.46877 dnaE—secA 0.480408

18 dnaN-secA 0.93959 secY-carB 0.72709 secA-trpB 0.45282 dnaE—secY 0.47679?%J

19 clpX-rpoB 0.93729 iscS—iscU 0.71725* tufB—tsf 0.44526* dnaA-ruvB 0.45486 3

20 dnaN—carA 0.93667 dnaK—carA 0.71550 dnaK—-atpA 0.43830 secY-secA 0.43071’.‘2

21 carA—carB 0.93589* secY-carA 0.71236 dnaA-ruvA 0.43710 grpE—sucC 0.42376 5

22 rpoB—atpA 0.93213 dnaK-rpoB 0.69761 dnaK-rpoB 0.42311 dnaE—carB 0.41792 '8

23 dnaE-dnaK 0.93159 iscS—carA 0.69327 dnaE-secY 0.42211 dnaN-dnaK 0.413723

24 rpoB—secA 0.92895 dnaE—carB 0.68726 dnaE—carB 0.41183 tufB—tsf 0.40691*%'-

25 rpoB-atpD 0.92884 dnaE—carA 0.66878 dnaN-rpoA 0.40868 dnaA-ruvA 0.40445 5

26 secY-carA 0.92852 dnaN-carB 0.65973 iscS—carA 0.40738 grpE—sucD 0.39991%

27 dnaN—-atpA 0.92801 dnaK—secA 0.65575 dnaE—secA 0.38987 rpoB—secY 0.383400

28 dnaK—carA 0.92795 grpE—clpP 0.65379 dnaN-secY 0.38495 dnaN-clpX 0.37297 &

29 clpX-secY 0.92630 rpoB—carA 0.63704 dnaN—dnaK 0.37687 tsf—trpB 0.36841

30 ruvA—ruvB 0.92608* secA—carB 0.63347 iscU—atpD 0.35675 dnaE—dnak 0.36360

The abbreviated names of the interacting proteins are as follows: sucC—sucD, succinyl-CoA synthetases alpha—beta; atpA—atpD, ATP syriietses@iphapoB, DNA-
directed RNA polymerases alpha—beta; secA—secY, preprotein translocase secA—secY; carA—carB, carbamoyl-phosphate synthases sralitldBgetailiday junction DNA
helicases ruvA-ruvB; iscS—iscU, putative aminotransferase—NifU-like protein; dnaE—dnaN, DNA polymerases |l alpha—beta; trpA-trpBrirgyrtipdses alpha—beta; tufB—tsf,
elongation factors EF-Tu-EF-Ts; dnaA—-dnaB, DNA helicase—dnaA; grpE—-dnakK, heat shock protein grpE—dnaK protein; and clpX—clpP, ATP-dpmeotiated ATP-binding
subunit—protease proteolytic subunit.

¥G9¢C12/28vE/LLILZ/10E/Sdlew

collected from 40 different bacterial species, according to the descriptiomatrices were transformed into vectors with the same order of the elements:

in the KEGG/KO database (Kanehigzal., 2004). The sources are shown in  When the matrix has a size ofx n the dimension of the vectorign — 1) /2.

the Supplemental Figure S1. Hereafter, the set of putative orthologues frofiihe vector is hereafter referred to as a ‘phylogenetic vector'. In this study,

the 41 bacterial sources is simply referred to as the orthologues. One of the is equal to 41. Therefore, the dimension of the phylogenetic vector is

important assumptions in this study is that a pair of proteins, which are ortho820. Let us consider a pair of phylogenetic vector$ and|v;), which are

logous to the interacting proteins &icoli, are also physically in contact. transformed from distance matricés and D, where the subscriptsand

The other assumption is that the interaction affects the co-evolution of thg indicate different sets of orthologues. Then, we apply the normalization of

orthologues. the elements of each vector with the average and the standard deviation
A multiple alignment of each set of orthologous proteins was made withthe elements as follows:

the alignment software MAFFT (Katahal., 2005). A distance matrix for the . [vi) — 1)

orthologues was calcula_ted frqm the multiple alignment. Then, a genetic _dls- [vi) = W’

tance between every pair of aligned sequences was calculated as a maximum

likelihood estimate using the PROTDIST module in the PHYLIP package

(Felsenstein, 2004). The score table by Josies. (1992) was used for the

maximum likelihood estimation. A distance matrix for a set of orthologues

was constructed with the genetic distances.

V 12 uoisanb Aq

220z 1snBn

where |u) is a vector with the same dimension jag). All the elements

of |u) are constant, and are equivalent to the arithmetic average over the
elements of{v;). Var(v;) indicates the variance over all the elements of
lv;). The superscripk in |v) indicates that the vector is normalized.
Then, the inner product of a pair of normalized vectors is reduced to the

2.2 Transformation from distance matrix to Pearson’s correlation coefficient used for the mirror tree method, which is
phylogenetic vector defined by formula (1). Hereatter, the correlation coefficient will be denoted

. . . . . asp.MlRROR_
The distance matrix was transformed into a vector for easier formulation.>"ij

The upper or lower half of the non-diagonal elements of the distance matrix MIRROR
={

was arranged as an array of the numerical values in a certain order. All of the Oij V7 [v3).
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2.3 Projection operator 1
Consider a unit vectoju), which represents the phylogenetic relationship 08 f, ,
of the species under consideration. If such a vector is obtained, then the N
following projection operatoP can be defined as £ 0.6 .
-7 o]
P =1 |u)ul, @ 2o 7
where|u)(u| is also a projection operator onto the direction of the unit vector 3
|u). The projection operator is amatrix withthe siza6f—1) /2xn(n—1) /2. g 02 1
The method to obtaifu) is explained below! represents an identity matrix g
with the same size aw)(u|. By applying the projection operator (2) to a 'g 0 ]
phylogenetic vector, sajy; ), the component withify; ), which is orthogonal 3
to |u), is obtained as follows: -0.2 1
lei) = Plvi) = [vi) — |u)(ulvi). (3) 0.4 1
That is, the projection operator can exclude the phylogenetic relationship 06 . . . . . N
from a phylogenetic vector. The same projection operator was appliedto all g 50 100 150 200 250 300 350

of the phylogenetic vectors under consideration. Each of the residual vectors Possible Pairs of Protein
defined by formula (3) was normalized with the average and the standard
deviation of the elements. Consider a pair of normalized vedtgisand

N : Fig. 2. The index plot of the sorted correlation coefficients of 325 possible
|aj). Then, the inner product of the two vectors

pairs of proteinsx-axis). They-axis indicatep™'RROR (crosses)p6S (open
oFRI= (e71e) triangles),p”VE (closed circles) ang@"C! (open squares).

represents Pearson’s correlation coefficient between the residues, after

excludpigjg_ the phylogenetic relationship from the original phylogenetic VeC-htained asvpcy) = X|z1), where|z1) is the first principal component axis

tors"?ii . Isa r?ew measure to evaluate the co-evolutionary behavior bem“:"efslssociated with the largest eigenvalue for the correlation coefficient matrix.
proteinsi and. |vpcy) thus obtained is expected to represent the most common features of the;
m phylogenetic vectors. Thefypci)/||vpcill generated the third unit vector,
2.4 Unit vector in the projection operator lupcy).
. . . . . In the second and third methods it is assumed that the information, except 5
The remaining problem is how to obtain the unit vedigrrepresenting the . . ) .
) } . ; for the phylogenetic relationship of the sources, can be approximately can-
phylogenetic relationship of the source organisms. We developed three dI{Eeled out by the average operation or principal component analysis. The first 3
ferent methods to design such a unit vector: (1) transformation of the distance Y ge op P P P ySIS. 2

matrix of 16 ribosomal RNA (rRNA) from the same source organisms asmethod requires the presence of 16S rRNA from the same sources as the pro

) . ) : R
. . . . . teins under consideration, whereas the latter two methods are feasible with o

the proteins under consideration, (2) averaging the phylogenetic vectors an - , . - 3
. S ; only the phylogenetic vectors. The Pearson’s correlation coefficients between 5

(3) analyzing the principal components of the phylogenetic vectors. =

) . . he resi for f orthologueand j, which were proj
In the first method, 16S rRNA was used for the calculation. Basically, eacri) € th?esg::;tgrsw(\:lgnss?zcct]eg \:vi;ncgei dj ') V:lnl((j:mwf J)e v?/eorJ:Cr:ee;?r;sm
16S), |UAVE PC1), -

organism has at least one copy of the 16S rRNA gene. Therefore, the dlstan%%ted by,o”les, pi,?\,E and,oﬁ’m. When the subscripts, and ;, are omitted,

matrix or the phylogenetlc_vecto_r ofthe 16S rRNAs is cons@ered to repres. , collectively represents the type of correlation coefficient indicated by the
ent the phylogenetic relationship among the source organisms. The rRNsugerscript

sequences from the same sources as the proteins under consideration wer

collected from the KEGG/GENES database (Kanekisa., 2004) and the

Ribosomal Database Project-1l Release 9 (Gustadsaln, 2005). The rRNA

sequences thus collected were aligned, and the distance between every pair RESULTS AND DISCUSSION

of the aligned RNA sequences was calculated by using the F84 scoring tab® 1 Prediction of protei n—protein inter actions by

(Kishino and Hasegawa, 1989) and the DNADIST module in the PHYLIP using pMIRROR, ples, pAVE and pPC1

package (Felsenstein, 2004). The distance matrix was then transformed into ] L

a phylogenetic vectdpie). |viss] = «/(viegvies indicates the size of the  We calculated four types of correlation coefficient¥!RROR ;165

vector. Then, a unit vectdnyss) was obtained as16s)/ || vies- p™VE andpPC, for all of the possible pairs of 26 proteins, thatis, 325
In the second method, all of the phylogenetic vectors under consideratiopairs of proteins. The performance of each correlation coefficient was

dno-oiwepeoe//:sdiy wo.ly pepeojumod
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were normalized so that the standard deviation of the elements in each protegvaluated with the number of false positives. The correlation coeffi- ¢
was ‘1’ at first. Then, they were averaged as cients, sorted in decreasing order, are listed in the Supplemental Tablel
18 v S1, and only the top 30 members of the lists are shown in Table 1. E
lvave) = P Z il Out of the 325 pairs, the interactions of 13 pairs have been exper-
i=1

imentally identified and are highlighted with asterisks in the table.
wherem is the number of proteins. In this study; was equal to 26,  The top ranks 0p6S, p”VE andpP“*were occupied by pairs of actu-
as described above. The second unit vedigie), was obtained as  g|ly jnteracting proteins. In contrast, non-interacting proteins were
vave)/llvave |- present within the top ranks f""RROR The decreasing patterns of

In th.e Fh'rd r.nEthOd_’ the phylogenetic vectors were used aggmxum the four correlation coefficients are shown in Figure 2, which shows
a matrix in which the-th column corresponds to a phylogenetic vector of t pMIRROR d slowly, wheread"E and pPC d d
proteini, normalized with the average and the standard deviation. The size otlha p ecreased slowly, where andp ecrease

X isn(n—1)/2xm. Then, a correlation coefficient matixwas calculatedas  aPidly. The rate of the'°S decrease was rather moderate. Both
X7 Xx. The superscript Tindicates the transpose of a matrix. Therefore, the sizEable 1 and Figure 2 clearly demonstrate the problem of the original
of Y ism x m. The principal component analysis for the data corresponding tomirror tree method. Evenifahigh value, say 0.9, isused as athreshold
X was carried out by solving the eigenvalue probleny oThen,|vpcy) was for the correlation coefficient to predict a protein—protein interaction,

3485



T.Sato et al.

Table 2. Prediction accuracy in terms of sensitivity and specificity

Method 0.9 0.8 0.7 0.6

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
pMIRROR 61.54 13.79 84.62 6.21 100.00 4.96 100.00 417
p16s 7.14 100.00 21.43 75.00 42.86 28.57 64.29 24.32
pPVE 7.14 100.00 7.14 100.00 14.29 100.00 42.86 85.71
pPCt 7.14 100.00 7.14 100.00 7.14 100.00 28.57 100.00
Sensitivity = True positive « 100%; Specificity = True positive x 100%

(True positive+ false negative) (True positive+ false positive)

PpMIRROR produces many pairs with high correlation, including non- of the pair was 0.95463, which occupies the 8th position of the list in
interacting partners, and is likely to lead to many false positives in th&able 1. The same pair is presented at the 15th position in the sorte

JPpapeojumo(

prediction. However, the occupation of the top ranks by interactingdist of p1S. As for p”VE and pPCY, the corresponding coefficients S
proteins and the rapid decreasesdS, pVE and pPC! guarantee  between the pair were 0.49806 and 0.38340, which are present at the,
the accuracy of prediction by the three correlation coefficients, if thel5th and 27th positions of the lists in Table 1. @3
threshold is set at a sufficiently high value. Despite the improvement described above, the sensitivitje$8f §

The unit vectoru) seems to be a crucial factor for the prediction of p”VE and pPC! were lower than that opMRROR, This means that £
a protein—protein interaction in the methods with a projection oper-a pair of proteins and j, which interact with each other, will not S
ator. Therefore, we examined the association amopg), |1ave) always show higip}°5, p”VE or p “*coefficients. In otherwords, the &
and|upcy) by calculating Pearson’s correlation coefficients, which number of false negatives increased when our methods were used, &
is denoted as as given below. We considered the absolute valuecompared with the original mirror tree method. In this study, we cal- 3

of r because the sign efdoes not make sense in this contgxt.  culated the intensity of co-evolution between a pair of proteins as theg
betweenuigs) and|uave) was 0.94697, whereds| betweenugs) correlation coefficient after the projection operation. However, the S
and|upci) was 0.94597. The highest correlatidr],= 0.99805, was pairs may also interact with other proteins. If such proteins exist,
observed betweeave ) and|upcy). The high correlation between the interaction with the pair would be difficult to detect, because the 3
lu1ss) and the other unit vectors suggests that one of our assumptior-evolution with the other partners would interfere with the detec-
described above is correct. The information except for the phylogerntion. To examine this hypothesis, we investigated the relatlonshlp
etic relationship of sources can be approximately canceled out bigetween the multiplicity of the interaction and the correlation coef-
the average operation or principal component analysis. The similficient. The correlation coefficients, the multiplicities of interacting
arity in the patterns of the decreases in the correlation coefficientpartners and the ranks in the sorted lists of the 13 pairs of |nteract|ng
roughly corresponded to the similarity in the unit vectors. As shownproteins are shown in Table 3. The multiplicity of interacting partners 3
in Figure 2, the two sets of plots pfVE andpPCL, which were cal-  for proteins was evaluated with a modified Jaccard coefficient. The & &
culated withjuave) and|upci), overlapped each other. On the other interacting partners were searched from the DIP database (Salwmskm
hand, the plots 0665 which was related tpe16s), slightly deviated et al., 2004). Consider an interacting pair of proteins A and B. Let
from the plots ofp”VE andpPCL M andN be the sets of interacting partners of proteins A and B. £
Thep8S, p”E andpPClanalyses seem to outperform i@RROR  Therefore, protein B belongs td, whereasN includes protein A.
analysis to a large extent. That is, the exclusion of the informa-The Jaccard coefficient is defined |d N N|/|M U N|, where|M |
tion about the phylogenetic relation among the source organismss the size of the sé¥l or the number of elements in the set. When
from the distance matrices is effective to remove the false positthe proteins A and B share many interacting partners the coefficientS
ives from the prediction by the mirror tree method. To investigateshows a value close to 1. However, it takes a low value close to 0
how different threshold values affect the accuracy of the predictiorwhen protein A has many interacting partners which do not interact Z
we introduced four thresholds for correlation coefficients, 0.9, 0.8with protein B andvice versa. The deficiency of the original defin-
0.7 and 0.6 (Table 2). The performances of the original mirror tredtion is that the coefficient is 0 when protein A interacts only with
method and our proposed methods were evaluated with regard farotein B. We modified the coefficient so that the coefficient between 13
sensitivity and specificity. When a pair of proteins had a correlationproteins A and B takes the value 1 when no other proteins |nteract
coefficient greater than the threshold the proteins were predicted taith the pair. The modified Jaccard coefficient is defined as follows:
interact with each other. The advantageo8f® and p”C! was the
high specificity for any thresholgh6S showed high specificity only
for thresholds 0.9 and 0.8. In contragt!'RROR showed high sens- - . IMNN[+1
itivity in all of the cases, except for the threshatd 0.9. The high Modified Jaccard coefficiert IMUN| -1
specificities ofp8S, pVE and pPC! mean the drastic reduction of
false positives, as compared wigh"'RROR e will demonstrate  Table 3 clearly demonstrates the problem of the false negatives. At
how the number of false positives was reduced by our methods usingye same time, the table provides evidence to support our hypothesis.
a concrete example. For instance, we take proteins RpoB and SecKRoughly speaking, the correlation coefficient obtained after the pro-
which do not interact with each other. However, jH#RROR value  jection operation, or the intensity of co-evolution, shows positive
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The inference of protein—protein interactions

Table 3. Ranking and correlation coefficient of protein pairs with experi-
mentally identified interactions

Rank Correlation Interacting Multiplicity of
coefficient pair interacting partner
pMIRROR
4 0.96221 sucD—sucC 1.00 (1/1)
6 0.95876 atpA-atpD 0.80 (4/5)
7 0.95755 rpoA-rpoB 0.64 (9/14)
9 0.95449 secY-secA 0.67 (4/6)
21 0.93589 carA—carB 1.00 (1/1)
30 0.92608 ruvA-ruvB 1.00 (1/1)
46 0.91010 iscS—iscU 0.25 (1/4)
47 0.90963 dnaN-dnaE 0.57 (4/7)
69 0.88984 trpA-trpB 1.00 (1/1)
75 0.88481 tufB—tsf 0.50 (1/2)
156 0.81752 dnaA-dnaB 0.20 (1/5)
195 0.77738 grpE—dnaK 0.50 (3/6)
217 0.75471 clpX—clpP 0.33 (1/3)
168
1 0.92439 sucD-sucC 1.00 (1/1)
2 0.80301 atpA-atpD 0.80 (4/5)
3 0.80290 carA—carB 1.00 (1/1)
5 0.79732 trpA—trpB 1.00 (1/1)
9 0.76777 rpoA-rpoB 0.64 (9/14)
19 0.71725 iscS—iscU 0.25 (1/4)
31 0.62588 secY-secA 0.67 (4/6)
32 0.62529 ruvA-ruvB 1.00 (1/1)
35 0.61821 dnaN-dnaE 0.57 (4I7)
62 0.53630 tufB—tsf 0.50 (1/2)
194 0.22533 grpE—dnaK 0.50 (3/6)
205 0.20446 dnaA-dnaB 0.20 (1/5)
218 0.17215 clpX—clpP 0.33(1/3)
PAVE
1 0.90956 sucD—sucC 1.00 (1/1)
2 0.79218 trpA—trpB 1.00 (1/1)
3 0.65370 rpoA-rpoB 0.64 (9/14)
4 0.64216 carA—carB 1.00 (1/1)
6 0.61494 atpA-atpD 0.80 (4/5)
7 0.60684 iscS—iscU 0.25 (1/4)
13 0.51116 ruvA-ruvB 1.00 (1/1)
19 0.44526 tufB—tsf 0.50 (1/2)
71 0.17446 dnaA-dnaB 0.20 (1/5)
94 0.11203 secY-secA 0.67 (4/6)
149 —0.03236 dnaN-dnaE 0.57 (417)
218 —0.18071 clpX—clpP 0.33 (1/3)
223 —0.18909 grpE—dnaK 0.50 (3/6)
pPCL
1 0.91527 sucD-sucC 1.00 (1/1)
2 0.75387 trpA—trpB 1.00 (1/1)
3 0.64862 carA—carB 1.00 (1/1)
4 0.63991 atpA-atpD 0.80 (4/5)
8 0.55503 iscS—iscU 0.25 (1/4)
13 0.49776 rpoA-rpoB 0.64 (9/14)
16 0.48901 ruvA-ruvB 1.00 (1/1)
20 0.43071 secY-secA 0.67 (4/6)
24 0.40691 tufB—tsf 0.50 (1/2)
82 0.15353 dnaA—-dnaB 0.20 (1/5)
151 —0.02804 dnaN-dnaE 0.57 (417)
162 —0.04645 grpE—dnaK 0.50 (3/6)
255 —0.20189 clpX—clpP 0.33(1/3)

True Positive Rate

0.2 0.4 0.6 0.8 1
False Positive Rate

Fig. 3. The prediction accuracies @MRROR 5,165 ,AVE gnd pPCL were

evaluated by the receiver operating characteristic (ROC) curvesy-Bixés

indicates the rate of the true positives and thaxis indicates the rate of
false positives. In the figure, crosses, open triangles, closed circles and operg
squares correspond to plots @f'RROR ;165 ,AVE and pPCL respectively. 5
The measure of the ROC curve shows that a curve in the upper area of the2
figure has higher accuracy, and the diagonal line corresponds to a randomg
prediction accuracy.
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correlation with the modified Jaccard coefficient. Thatis, the correla-
tion coefficient obtained after the projection operation was high when
proteins A and B formed a complex and no other proteins interacted
with them. When the number of interacting partners increased, the
intensity of co-evolution tended to be weak. However, when proteins
A and B shared the interacting partners the intensity of co-evolution 5
was high, in spite of the increase of the interacting partners. In such =<
cases, all the interacting proteins may co-evolve each other. As shown3
in the table, there were several outliers from the tendency. One of %
the reasons for the deviation may be the lack of the experimental
information. That is, all the protein—protein interactions have not 3
been experimentally measured yet. In addition, it is suggested that &
some interaction have no functional meanings (Nooren and Thornton,2
2003). Further accumulation of experimental knowledge is required €
to ascertain our hypothesis.
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3.2 Assessment based on the ROC curve

The relationships between the true and false positives for the four Z
correlation coefficients were also examined by drawing ROC curves%
(Fig. 3). As described above, proteins from 41 sources were used inr,
this study. There is a possibility that the selection of source organ- E
isms may affect the accuracy of the prediction. In order to make the
evaluation robust to the selection of source organisms, we took the
following approach. Out of the 41 sources, 20 organisms were ran-
domly selected. ThemMIRROR 5,165 ,AVE and pPCLfor every pair

of 26 proteins were calculated using the randomly selected 20 organ-
isms. The procedure was repeated 1000 times. The rates of true and
false positives were calculated in each iteration step with 20 different
threshold values. Based onthe true and false positive rates averaged at
each threshold value, ROC curves fd'RROR 5165 ,AVE gndpPCt

were drawn by connecting the points with 2D coordinates consisting

of the two averaged rates. As shown in the figure, the ROC curves
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Fig. 4. Relationship between the prediction accuracy and the phylogenetic distance. The ROC cyEEfoR, 165, pAVE andpPClare respectively shown &
in (A)—(D). Open squares, closed circles and open triangles indicate the ROC curves of the first, second and third groups, respectively. %
o
N
for p19S, pAVE and pPCL deviated upward to that gfMRROR when (4) Classify the sets into three groups based on the distribution: >
the rates of false positives were small. However, when the rates of the first group (upper 5% of the distribution), the second group §
false positives increased the relationship was inverted and the curve (lower 5% of the distribution) and the third group (the rest). 2
of pMIRROR was above those qit6S, pAVE and pPCL Considering 3
CF)

actual applications, we are supposed to select pairs of proteins witRiote that the first group consisted of the sets of distantly related
high correlation coefficients as candidates for interacting partnerssrganisms, whereas the closely related organisms constituted thg
The result of the analysis with the ROC curve, together with thesecond group.

observation of the decreases in the patterns of correlation coeffi- For each grouppMRROR 5165 ,AVE and xPCLl\were calculated,
cients, suggests that our method realizes a high true positive rate ag@d the corresponding ROC curves were drawn for the three groupss
a low false positive rate for pairs of proteins showing high correla-from 20 different threshold values (Fig. 4). The rates of the false ™
tion. This would be a benefit of our prediction method, even whenand true positives calculated at each threshold value were averaged>
considering the deficiency of the higher ratio of false negatives thamnd were then used to draw the ROC curve, as described above. A‘g

1senb

the original mirror tree method. shown in the figure, the performance of the first group was better ;
than those of the second and third groups, in terms of the false pos{3
3.3 Prediction accuracy and distance between species itive rates. This observation suggests that the inclusion of proteins”

d‘rom distantly related sources increases the reliability of the correl-
Qon coefficients for the detection of co-evolutionary behavior. The
inClusion of distantly related sources would be required to accurately
estimate the unit vector) used to construct the projection operator.

We finally examined how much the prediction accuracy is influence
by the closeness among the source organisms to be used in the daft
Following is the procedure for the analysis.

(1) Randomly select 20 organisms from the 41 source organisms.
(2) Compute the average of the distances over all possible paid CONCLUSION

of 20 organisms, based on the 16S rRNAs. The mirror tree method is an outstanding approach for the prediction
(3) Repeat (1) and (2) 10 000 times and generate the distributionf protein—protein interactions. The approach with co-evolutionary
of 10000 average distances. information has introduced new perspectives into the computational
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analyses of protein—protein interactions, which were mainly investig-Gavin,A. et al. (2002) Functional organization of the yeast proteome by systematic
ated by comparisons of genomic contexts. In this paper we presented analysis of protein complexeNature, 415, 141-147.

several methods to improve the performance of the original mirrorGertz,Jet al. (2003) Inferring protein interactions from phylogenetic distance matrices.
Bioinformatics, 19, 2039—-2045.

tree method bY controlllng fc_)r the phylogenetic relatlo_nshlps among}oh,c.et al. (2000) Co-evolution of proteins with their interaction partnérsviol.
the sources with the projection operator. In the experiment, we con- gjol,, 299, 283-293.

firmed that our methods could drastically reduce the number of fals€ustafson,Aet al. (2005) ASRP: the Arabidopsis Small RNA Project Databbiseleic
positives in the prediction. We also showed that the inclusion of AcidsRes, 33, D637-D640.

. . . . .. Ho,Y. et al. (2002) Systematic identification of protein complexesSaccharomyces
proteins from distantly related sources could improve the prediction cerevisiae by mass spectrometriature, 415, 180183,

accuracy. Ito,T. et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein
Our method generated more false negatives than the original mirror interactomeProc. Natl Acad. Sci. USA, 98, 4569-4574.

tree method. As described abo\/el we speculated that the number ¢sfhes,Det al. (1992) The rapid generation of mutation data matrices from protein

interacting partners could be the reason for the increased number sequencesComput. Appl. Biosci., 8, 275-282. - .
 fal . if | . R ith a high anehisa,M.et al. (2004) The KEGG resource for deciphering the genoleleic

of false negatives. However, if we select protein pairs with a high a4 res. 32, D277-D280.

correlation coefficient, say 0.8, by using our method, then we can Katoh,K.etal. (2005) MAFFT version 5: improvement in accuracy of multiple sequence

predict with high reliability that the protein pair is interacting or is  alignmentNucleic Acids Res., 33, 511-518.

physically in contact. Kishino,H. aqd Hasegawa,M. (1989) Evaluation of the maximum likelihood esti.mate of
the evolutionary tree topologies from DNA sequence data, and the branching order
in hominoidead. Mal. Evol., 29, 170-179.
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