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ABSTRACT
Motivation: The prediction of protein–protein interactions is currently
an important issue in bioinformatics. The mirror tree method uses evol-
utionary information to predict protein–protein interactions. However,
it has been recognized that predictions by the mirror tree method lead
to many false positives. The incentive of our study was to solve this
problem by improving the method of extracting the co-evolutionary
information regarding the protein pairs.
Results: We developed a novel method to predict protein–protein
interactions from co-evolutionary information in the framework of the
mirror tree method. The originality is the use of the projection oper-
ator to exclude the information about the phylogenetic relationships
among the source organisms from the distance matrix. Each distance
matrix was transformed into a vector for the operation. The vector is
referred to as a ‘phylogenetic vector’. We have proposed three ways
to extract the phylogenetic information: (1) using the 16S rRNA from
the same source organisms as the proteins under consideration, (2)
averaging the phylogenetic vectors and (3) analyzing the principal
components of the phylogenetic vectors. We examined the perform-
ance of the proposed methods to predict interacting protein pairs from
Escherichia coli, using experimentally verified data. Our method was
successful, and it drastically reduced the number of false positives in
the prediction.
Availability: The R script for the prediction of protein–protein inter-
actions reported in this manuscript is available at http://timpani.
genome.ad.jp/∼proj/
Contact: sato@kuicr.kyoto-u.ac.jp
Supplementary information: The information is also available at the
same site as the R script.

1 INTRODUCTION
Information about protein–protein interactions in living cells
provides deep insight into the biological functions of proteins and
the behavior of cells. Genome-wide experimental analyses, such as
the yeast 2-hybrid system (Itoet al., 2001; Uetzet al., 2000) and
mass spectrometry (Gavinet al., 2002; Hoet al., 2002), have facilit-
ated exhaustive investigations of protein–protein interactions in cells.

∗To whom correspondence should be addressed.

However, such experimental methods have coverage and accuracy
problems (Sprinzaket al., 2003; von Meringet al., 2002). Currently,
the prediction of protein–protein interactions has become one of the
major issues in bioinformatics. The predicted protein–protein inter-
actions can provide complementary or supporting evidence to the
genome-wide experimental studies on protein–protein interactions
eventhough computational analyses also suffer from the same prob-
lems as experimental studies, such as low coverage and low accuracy.

Various methods to predict protein–protein interactions have been
developed. One of these methods is the prediction through gen-
ome comparisons, which includes phylogenetic profile (Pellegrini
et al., 1999), Rosetta stone (Enrightet al., 1999) and conserved gene
neighborhood analyses (Dandekaret al., 1998). Prediction by using
information about the co-occurrence of domains in protein–protein
interactions is another approach. Co-evolutionary behavior between
interacting proteins is also useful information for predictions. There
are two representative prediction methods that utilize co-evolutionary
information, the mirror tree method (Pazos and Valencia, 2001) and
thein silico 2-hybrid system method (Pazos and Valencia, 2002). In
this paper, we focus on the mirror tree method.

Although there are several preceding works, such as Gohet al.
(2000), the mirror tree method was developed by Pazos and Valencia
(2001). The mirror tree method predicts protein–protein interactions
under the assumption that the interacting proteins show similarity in
the molecular phylogenetic tree because of the co-evolution through
the interaction. However, it is difficult to evaluate the similarity dir-
ectly between a pair of molecular phylogenetic trees. Instead, the
mirror tree method compares a pair of distance matrices in order
to evaluate the extent of co-evolutionary behavior between two pro-
teins. We will explain the method briefly. Consider two proteins,
say, proteins A and B. The orthologues of protein A are collected
from n species. Then sequences of protein A are aligned and the
distance matrix,DA, is calculated. The size ofDA is n×n, and each
row or column of the matrix corresponds to a species under consid-
eration. An element of the matrix,DA(i, j), represents the genetic
distance between speciesi andj , which is calculated by comparing
the amino acid sequences of protein A between the two species. A
distance matrix is symmetric, and only the upper or lower half of the
matrix includes sufficient information for the prediction. Likewise,
the orthologues of protein B are collected from the samen species,
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The inference of protein–protein interactions

Fig. 1. A schematic representation of the procedures for predicting interaction partners from four types of correlation coefficients,ρMIRROR, ρ16S, ρAVE and
ρPC1. |ν〉 represents a phylogenetic vector.|u〉 indicates a unit vector representing the phylogenetic relationship among source organisms.|ε〉 is a residual
vector after excluding the phylogenetic relationship from|ν〉, which is supposed to represent the co-evolutionary vector.

and the distance matrix,DB, is calculated. The intensity of the co-
evolutionary constraint between proteins A and B is evaluated as
Pearson’s correlation coefficient,ρ, between the distance matrices
DA andDB, which is calculated as follows:

ρAB =
∑n−1

i=1

∑n
j=i+1(DA(i, j) − Ave(DA))(DB(i, j) − Ave(DB))√

Var(DA)Var(DB)
,

(1)

where Ave and Var represent the average and the variance of the upper
(or lower) half elements of a distance matrix, respectively. When a
pair of proteins shows a high correlation coefficient the proteins are
regarded as interacting with each other. The mirror tree method evalu-
ates the extent of the interaction between a pair of proteins. However,
as seen in several ligand–receptor systems, such interactions are
not always one-to-one. There are cases in which many homolog-
ous ligands interact with many homologous receptors. Gertzet al.
(2003) and Ramani and Marcotte (2003) independently improved
the mirror tree method in similar ways to allow the consideration of
such multiple interaction cases. Tanet al. (2004) recently launched a
web server, ADVICE, which automatically predicts protein–protein
interactions by the mirror tree method upon client request.

One of the problems of the mirror tree method is the large num-
ber of false positives in the prediction. Even protein pairs that are
known not to interact often show high correlation coefficients. The
abundance of false positives in the mirror tree prediction reduces the
reliability of the method in actual applications. The distance matrices
of orthologous proteins from the same set ofn source organisms are
compared in the mirror tree method. Therefore, all of the distance
matrices of the proteins are considered to include the information
about the phylogenetic relationships among the samen sources, to
some extent. The phylogenetic relationships among the identical set
of sources behind the distance matrices would be the cause for such a
high correlation between non-interacting proteins. If we can exclude

the information about the phylogenetic relationships from the dis-
tance matrices then the performance of the mirror tree method may
be improved.

In our method, we used a projection operator to exclude the inform-
ation about the phylogenetic relationships of the sources, and then the
residual information after this operation was used for the calculation
of the correlation coefficient between proteins. The projection oper-
ator is a linear transformation in a vector space. A point in the vector
space is projected to a subspace so that the difference vector between
the original point and the image in the subspace is orthogonal to the
subspace. The projection operator is widely used in various fields,
such as multivariate analysis and quantum mechanics. One of the
well-known examples of the use of the projection operator is spectral
resolution. We applied our method to physically contacting proteins,
to evaluate its performance. That is, in this manuscript a protein–
protein interaction means physical contact. As discussed below, our
method succeeded in drastically reducing the number of false posit-
ives in the predicted protein–protein interactions. The quality of the
data needed to realize a correct prediction was also examined. We
also found that the inclusion of distantly related orthologues in the
data improves the performance. The benefits and limitations of our
approach are discussed based on our observations.

2 METHODS
The method developed by us is outlined in Figure 1.

2.1 Data preparation
We selected 13 pairs ofEscherichia coli proteins that are physically in con-
tact, from the Database of Interacting Proteins (DIP) Version 01/02/2005
(Salwinskiet al., 2004). The selected pairs are described in the legend for
Table 1. Each pair was selected so that neither of the interacting proteins
participated in the remaining 12 pairs of interacting proteins. Then, putat-
ive orthologues corresponding to the 26 proteins derived fromE.coli were
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Table 1. Comparison of the top 30 predicted interactive pairs on among the four methods

Rank ρMIRROR ρ16S ρAVE ρPC1

1 dnaN–rpoB 0.97680 sucD–sucC 0.92440* sucD–sucC 0.90956* sucD–sucC 0.91527*
2 dnaK–secY 0.96324 atpA–atpD 0.80301* trpA–trpB 0.79218* trpA–trpB 0.75387*
3 dnaK–rpoB 0.96269 carA–carB 0.80290* rpoA–rpoB 0.65370* carA–carB 0.64862*
4 sucD–sucC 0.96222* dnaK–secY 0.80050 carA–carB 0.64216* atpA–atpD 0.63991*
5 dnaN–dnaK 0.96019 trpA–trpB 0.79732* dnaN–rpoB 0.63433 dnaN–rpoB 0.58736
6 atpA–atpD 0.95876* dnaE–secA 0.78250 atpA–atpD 0.61494* dnaK–atpD 0.55995
7 rpoA–rpoB 0.95755* dnaK–atpD 0.77360 iscS–iscU 0.60684* dnaK–secY 0.55993
8 rpoB–secY 0.95463 dnaN–rpoB 0.77236 grpE–clpP 0.55301 iscS–iscU 0.55503*
9 secY–secA 0.95449* rpoA–rpoB 0.76777* dnaK–carB 0.54073 grpE–clpP 0.54494

10 dnaK–atpD 0.95335 dnaN–carA 0.76090 grpE–tsf 0.54054 dnaK–carB 0.54207
11 dnaN–secY 0.95330 dnaN–dnaK 0.76043 dnaK–secY 0.51635 secY–carB 0.53090
12 dnaK–atpA 0.95193 dnaK–carB 0.75795 dnaK–atpD 0.51435 dnaK–rpoB 0.50026
13 dnaE–secA 0.94503 dnaN–secY 0.75778 ruvA–ruvB 0.51116* rpoA–rpoB 0.49776*
14 dnaN–rpoA 0.94477 dnaE–secY 0.75508 secY–carB 0.50080 grpE–tsf 0.49741
15 dnaK–secA 0.94419 rpoB–secY 0.75349 rpoB–secY 0.49806 dnaK–atpA 0.49643
16 dnaE–secY 0.94359 dnaK–atpA 0.74688 tsf–trpB 0.47641 ruvA–ruvB 0.48901*
17 dnaN–clpX 0.94332 dnaE–dnaK 0.74302 dnaA–ruvB 0.46877 dnaE–secA 0.48040
18 dnaN–secA 0.93959 secY–carB 0.72709 secA–trpB 0.45282 dnaE–secY 0.47679
19 clpX–rpoB 0.93729 iscS–iscU 0.71725* tufB–tsf 0.44526* dnaA–ruvB 0.45486
20 dnaN–carA 0.93667 dnaK–carA 0.71550 dnaK–atpA 0.43830 secY–secA 0.43071*
21 carA–carB 0.93589* secY–carA 0.71236 dnaA–ruvA 0.43710 grpE–sucC 0.42376
22 rpoB–atpA 0.93213 dnaK–rpoB 0.69761 dnaK–rpoB 0.42311 dnaE–carB 0.41792
23 dnaE–dnaK 0.93159 iscS–carA 0.69327 dnaE–secY 0.42211 dnaN–dnaK 0.41372
24 rpoB–secA 0.92895 dnaE–carB 0.68726 dnaE–carB 0.41183 tufB–tsf 0.40691*
25 rpoB–atpD 0.92884 dnaE–carA 0.66878 dnaN–rpoA 0.40868 dnaA–ruvA 0.40445
26 secY–carA 0.92852 dnaN–carB 0.65973 iscS–carA 0.40738 grpE–sucD 0.39991
27 dnaN–atpA 0.92801 dnaK–secA 0.65575 dnaE–secA 0.38987 rpoB–secY 0.38340
28 dnaK–carA 0.92795 grpE–clpP 0.65379 dnaN–secY 0.38495 dnaN–clpX 0.37297
29 clpX–secY 0.92630 rpoB–carA 0.63704 dnaN–dnaK 0.37687 tsf–trpB 0.36841
30 ruvA–ruvB 0.92608* secA–carB 0.63347 iscU–atpD 0.35675 dnaE–dnaK 0.36360

The abbreviated names of the interacting proteins are as follows: sucC–sucD, succinyl–CoA synthetases alpha–beta; atpA–atpD, ATP synthases alpha–beta; rpoA–rpoB, DNA-
directed RNA polymerases alpha–beta; secA–secY, preprotein translocase secA–secY; carA–carB, carbamoyl-phosphate synthases small–large; ruvA–ruvB, Holliday junction DNA
helicases ruvA–ruvB; iscS–iscU, putative aminotransferase–NifU-like protein; dnaE–dnaN, DNA polymerases III alpha–beta; trpA–trpB, tryptophan synthases alpha–beta; tufB–tsf,
elongation factors EF-Tu–EF-Ts; dnaA–dnaB, DNA helicase–dnaA; grpE–dnaK, heat shock protein grpE–dnaK protein; and clpX–clpP, ATP-dependent clp proteases ATP-binding
subunit–protease proteolytic subunit.

collected from 40 different bacterial species, according to the description
in the KEGG/KO database (Kanehisaet al., 2004). The sources are shown in
the Supplemental Figure S1. Hereafter, the set of putative orthologues from
the 41 bacterial sources is simply referred to as the orthologues. One of the
important assumptions in this study is that a pair of proteins, which are ortho-
logous to the interacting proteins ofE.coli, are also physically in contact.
The other assumption is that the interaction affects the co-evolution of the
orthologues.

A multiple alignment of each set of orthologous proteins was made with
the alignment software MAFFT (Katohet al., 2005). A distance matrix for the
orthologues was calculated from the multiple alignment. Then, a genetic dis-
tance between every pair of aligned sequences was calculated as a maximum
likelihood estimate using the PROTDIST module in the PHYLIP package
(Felsenstein, 2004). The score table by Joneset al. (1992) was used for the
maximum likelihood estimation. A distance matrix for a set of orthologues
was constructed with the genetic distances.

2.2 Transformation from distance matrix to
phylogenetic vector

The distance matrix was transformed into a vector for easier formulation.
The upper or lower half of the non-diagonal elements of the distance matrix
was arranged as an array of the numerical values in a certain order. All of the

matrices were transformed into vectors with the same order of the elements.
When the matrix has a size ofn×n the dimension of the vector isn(n−1)/2.
The vector is hereafter referred to as a ‘phylogenetic vector’. In this study,
n is equal to 41. Therefore, the dimension of the phylogenetic vector is
820. Let us consider a pair of phylogenetic vectors|νi〉 and|νj 〉, which are
transformed from distance matricesDi andDj , where the subscriptsi and
j indicate different sets of orthologues. Then, we apply the normalization of
the elements of each vector with the average and the standard deviation of
the elements as follows:

|ν�
i 〉 = |νi〉 − |µ〉√

Var(νi )
,

where |µ〉 is a vector with the same dimension as|νi〉. All the elements
of |µ〉 are constant, and are equivalent to the arithmetic average over the
elements of|νi〉. Var(νi ) indicates the variance over all the elements of
|νi〉. The superscript� in |ν�

i 〉 indicates that the vector is normalized.
Then, the inner product of a pair of normalized vectors is reduced to the
Pearson’s correlation coefficient used for the mirror tree method, which is
defined by formula (1). Hereafter, the correlation coefficient will be denoted
asρMIRROR

ij .

ρMIRROR
ij = 〈ν�

i |ν�
j 〉.
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2.3 Projection operator
Consider a unit vector|u〉, which represents the phylogenetic relationship
of the species under consideration. If such a vector is obtained, then the
following projection operatorP can be defined as

P = I − |u〉〈u|, (2)

where|u〉〈u| is also a projection operator onto the direction of the unit vector
|u〉. The projection operator is a matrix with the size ofn(n−1)/2×n(n−1)/2.
The method to obtain|u〉 is explained below.I represents an identity matrix
with the same size as|u〉〈u|. By applying the projection operator (2) to a
phylogenetic vector, say,|νi〉, the component within|νi〉, which is orthogonal
to |u〉, is obtained as follows:

|εi〉 = P |νi〉 = |νi〉 − |u〉〈u|νi〉. (3)

That is, the projection operator can exclude the phylogenetic relationship
from a phylogenetic vector. The same projection operator was applied to all
of the phylogenetic vectors under consideration. Each of the residual vectors
defined by formula (3) was normalized with the average and the standard
deviation of the elements. Consider a pair of normalized vectors|ε�

i 〉 and
|ε�

j 〉. Then, the inner product of the two vectors

ρPRJ
ij = 〈ε�

i |ε�
j 〉

represents Pearson’s correlation coefficient between the residues, after
excluding the phylogenetic relationship from the original phylogenetic vec-
tors.ρPRJ

ij is a new measure to evaluate the co-evolutionary behavior between
proteinsi andj .

2.4 Unit vector in the projection operator
The remaining problem is how to obtain the unit vector|u〉 representing the
phylogenetic relationship of the source organisms. We developed three dif-
ferent methods to design such a unit vector: (1) transformation of the distance
matrix of 16S ribosomal RNA (rRNA) from the same source organisms as
the proteins under consideration, (2) averaging the phylogenetic vectors and
(3) analyzing the principal components of the phylogenetic vectors.

In the first method, 16S rRNA was used for the calculation. Basically, each
organism has at least one copy of the 16S rRNA gene. Therefore, the distance
matrix or the phylogenetic vector of the 16S rRNAs is considered to repres-
ent the phylogenetic relationship among the source organisms. The rRNA
sequences from the same sources as the proteins under consideration were
collected from the KEGG/GENES database (Kanehisaet al., 2004) and the
Ribosomal Database Project-II Release 9 (Gustafsonet al., 2005). The rRNA
sequences thus collected were aligned, and the distance between every pair
of the aligned RNA sequences was calculated by using the F84 scoring table
(Kishino and Hasegawa, 1989) and the DNADIST module in the PHYLIP
package (Felsenstein, 2004). The distance matrix was then transformed into
a phylogenetic vector|ν16S〉. ‖ν16S‖ = √〈ν16S|ν16S〉 indicates the size of the
vector. Then, a unit vector|u16S〉 was obtained as|ν16S〉/‖ν16S‖.

In the second method, all of the phylogenetic vectors under consideration
were normalized so that the standard deviation of the elements in each protein
was ‘1’ at first. Then, they were averaged as

|νAVE 〉 = 1

m

m∑

i=1

|νi〉
‖νi‖ ,

where m is the number of proteins. In this study,m was equal to 26,
as described above. The second unit vector|uAVE 〉, was obtained as
|νAVE 〉/‖νAVE‖.

In the third method, the phylogenetic vectors were used again. LetX be
a matrix in which thei-th column corresponds to a phylogenetic vector of
proteini, normalized with the average and the standard deviation. The size of
X isn(n−1)/2×m. Then, a correlation coefficient matrixY was calculated as
XTX. The superscript T indicates the transpose of a matrix. Therefore, the size
of Y ism×m. The principal component analysis for the data corresponding to
X was carried out by solving the eigenvalue problem ofY . Then,|νPC1〉 was
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Fig. 2. The index plot of the sorted correlation coefficients of 325 possible
pairs of proteins (x-axis). They-axis indicatesρMIRROR (crosses),ρ16S(open
triangles),ρAVE (closed circles) andρPC1 (open squares).

obtained as|νPC1〉 = X|z1〉, where|z1〉 is the first principal component axis
associated with the largest eigenvalue for the correlation coefficient matrix.
|νPC1〉 thus obtained is expected to represent the most common features of the
m phylogenetic vectors. Then,|νPC1〉/‖νPC1‖ generated the third unit vector,
|uPC1〉.

In the second and third methods it is assumed that the information, except
for the phylogenetic relationship of the sources, can be approximately can-
celed out by the average operation or principal component analysis. The first
method requires the presence of 16S rRNA from the same sources as the pro-
teins under consideration, whereas the latter two methods are feasible with
only the phylogenetic vectors. The Pearson’s correlation coefficients between
the residues for two sets of orthologuesi andj , which were projected out
by the operators constructed with|u16S〉, |uAVE 〉 and |uPC1〉, were repres-
ented byρ16S

ij , ρAVE
ij andρPC1

ij . When the subscripts,i andj , are omitted,
ρ∗ collectively represents the type of correlation coefficient indicated by the
superscript.

3 RESULTS AND DISCUSSION

3.1 Prediction of protein–protein interactions by
using ρMIRROR, ρ16S, ρAVE and ρPC1

We calculated four types of correlation coefficients,ρMIRROR, ρ16S,
ρAVE andρPC1, for all of the possible pairs of 26 proteins, that is, 325
pairs of proteins. The performance of each correlation coefficient was
evaluated with the number of false positives. The correlation coeffi-
cients, sorted in decreasing order, are listed in the Supplemental Table
S1, and only the top 30 members of the lists are shown in Table 1.
Out of the 325 pairs, the interactions of 13 pairs have been exper-
imentally identified and are highlighted with asterisks in the table.
The top ranks ofρ16S, ρAVE andρPC1were occupied by pairs of actu-
ally interacting proteins. In contrast, non-interacting proteins were
present within the top ranks ofρMIRROR. The decreasing patterns of
the four correlation coefficients are shown in Figure 2, which shows
that ρMIRROR decreased slowly, whereasρAVE andρPC1 decreased
rapidly. The rate of theρ16S decrease was rather moderate. Both
Table 1 and Figure 2 clearly demonstrate the problem of the original
mirror tree method. Even if a high value, say 0.9, is used as a threshold
for the correlation coefficient to predict a protein–protein interaction,
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Table 2. Prediction accuracy in terms of sensitivity and specificity

Method 0.9 0.8 0.7 0.6
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

ρMIRROR 61.54 13.79 84.62 6.21 100.00 4.96 100.00 4.17
ρ16S 7.14 100.00 21.43 75.00 42.86 28.57 64.29 24.32
ρAVE 7.14 100.00 7.14 100.00 14.29 100.00 42.86 85.71
ρPC1 7.14 100.00 7.14 100.00 7.14 100.00 28.57 100.00

Sensitivity =
True positive

(True positive+ false negative)
× 100%; Specificity =

True positive

(True positive+ false positive)
× 100%

ρMIRROR produces many pairs with high correlation, including non-
interacting partners, and is likely to lead to many false positives in the
prediction. However, the occupation of the top ranks by interacting
proteins and the rapid decreases ofρ16S, ρAVE andρPC1 guarantee
the accuracy of prediction by the three correlation coefficients, if the
threshold is set at a sufficiently high value.

The unit vector|u〉 seems to be a crucial factor for the prediction of
a protein–protein interaction in the methods with a projection oper-
ator. Therefore, we examined the association among|u16S〉, |uAVE〉
and |uPC1〉 by calculating Pearson’s correlation coefficients, which
is denoted asr as given below. We considered the absolute value
of r because the sign ofr does not make sense in this context.|r|
between|u16S〉 and|uAVE〉 was 0.94697, whereas|r| between|u16S〉
and|uPC1〉 was 0.94597. The highest correlation,|r| = 0.99805, was
observed between|uAVE〉 and|uPC1〉. The high correlation between
|u16S〉 and the other unit vectors suggests that one of our assumptions
described above is correct. The information except for the phylogen-
etic relationship of sources can be approximately canceled out by
the average operation or principal component analysis. The simil-
arity in the patterns of the decreases in the correlation coefficients
roughly corresponded to the similarity in the unit vectors. As shown
in Figure 2, the two sets of plots ofρAVE andρPC1, which were cal-
culated with|uAVE〉 and|uPC1〉, overlapped each other. On the other
hand, the plots ofρ16S, which was related to|u16S〉, slightly deviated
from the plots ofρAVE andρPC1.

Theρ16S, ρAVE andρPC1analyses seem to outperform theρMIRROR

analysis to a large extent. That is, the exclusion of the informa-
tion about the phylogenetic relation among the source organisms
from the distance matrices is effective to remove the false posit-
ives from the prediction by the mirror tree method. To investigate
how different threshold values affect the accuracy of the prediction
we introduced four thresholds for correlation coefficients, 0.9, 0.8,
0.7 and 0.6 (Table 2). The performances of the original mirror tree
method and our proposed methods were evaluated with regard to
sensitivity and specificity. When a pair of proteins had a correlation
coefficient greater than the threshold the proteins were predicted to
interact with each other. The advantage ofρAVE andρPC1 was the
high specificity for any threshold.ρ16S showed high specificity only
for thresholds 0.9 and 0.8. In contrast,ρMIRROR showed high sens-
itivity in all of the cases, except for the threshold= 0.9. The high
specificities ofρ16S, ρAVE andρPC1 mean the drastic reduction of
false positives, as compared withρMIRROR. We will demonstrate
how the number of false positives was reduced by our methods using
a concrete example. For instance, we take proteins RpoB and SecY,
which do not interact with each other. However, theρMIRROR value

of the pair was 0.95463, which occupies the 8th position of the list in
Table 1. The same pair is presented at the 15th position in the sorted
list of ρ16S. As for ρAVE andρPC1, the corresponding coefficients
between the pair were 0.49806 and 0.38340, which are present at the
15th and 27th positions of the lists in Table 1.

Despite the improvement described above, the sensitivities ofρ16S,
ρAVE andρPC1 were lower than that ofρMIRROR. This means that
a pair of proteinsi andj , which interact with each other, will not
always show highρ16S

ij , ρAVE
ij orρPC1

ij coefficients. In other words, the
number of false negatives increased when our methods were used, as
compared with the original mirror tree method. In this study, we cal-
culated the intensity of co-evolution between a pair of proteins as the
correlation coefficient after the projection operation. However, the
pairs may also interact with other proteins. If such proteins exist,
the interaction with the pair would be difficult to detect, because the
co-evolution with the other partners would interfere with the detec-
tion. To examine this hypothesis, we investigated the relationship
between the multiplicity of the interaction and the correlation coef-
ficient. The correlation coefficients, the multiplicities of interacting
partners and the ranks in the sorted lists of the 13 pairs of interacting
proteins are shown in Table 3. The multiplicity of interacting partners
for proteins was evaluated with a modified Jaccard coefficient. The
interacting partners were searched from the DIP database (Salwinski
et al., 2004). Consider an interacting pair of proteins A and B. Let
M and N be the sets of interacting partners of proteins A and B.
Therefore, protein B belongs toM, whereasN includes protein A.
The Jaccard coefficient is defined as|M ∩ N|/|M ∪ N|, where|M|
is the size of the setM or the number of elements in the set. When
the proteins A and B share many interacting partners the coefficient
shows a value close to 1. However, it takes a low value close to 0
when protein A has many interacting partners which do not interact
with protein B andvice versa. The deficiency of the original defin-
ition is that the coefficient is 0 when protein A interacts only with
protein B. We modified the coefficient so that the coefficient between
proteins A and B takes the value 1 when no other proteins interact
with the pair. The modified Jaccard coefficient is defined as follows:

Modified Jaccard coefficient= |M ∩ N| + 1

|M ∪ N| − 1
.

Table 3 clearly demonstrates the problem of the false negatives. At
the same time, the table provides evidence to support our hypothesis.
Roughly speaking, the correlation coefficient obtained after the pro-
jection operation, or the intensity of co-evolution, shows positive
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Table 3. Ranking and correlation coefficient of protein pairs with experi-
mentally identified interactions

Rank Correlation
coefficient

Interacting
pair

Multiplicity of
interacting partner

ρMIRROR

4 0.96221 sucD–sucC 1.00 (1/1)
6 0.95876 atpA–atpD 0.80 (4/5)
7 0.95755 rpoA–rpoB 0.64 (9/14)
9 0.95449 secY–secA 0.67 (4/6)

21 0.93589 carA–carB 1.00 (1/1)
30 0.92608 ruvA–ruvB 1.00 (1/1)
46 0.91010 iscS–iscU 0.25 (1/4)
47 0.90963 dnaN–dnaE 0.57 (4/7)
69 0.88984 trpA–trpB 1.00 (1/1)
75 0.88481 tufB–tsf 0.50 (1/2)

156 0.81752 dnaA–dnaB 0.20 (1/5)
195 0.77738 grpE–dnaK 0.50 (3/6)
217 0.75471 clpX–clpP 0.33 (1/3)

ρ16S

1 0.92439 sucD–sucC 1.00 (1/1)
2 0.80301 atpA–atpD 0.80 (4/5)
3 0.80290 carA–carB 1.00 (1/1)
5 0.79732 trpA–trpB 1.00 (1/1)
9 0.76777 rpoA–rpoB 0.64 (9/14)

19 0.71725 iscS–iscU 0.25 (1/4)
31 0.62588 secY–secA 0.67 (4/6)
32 0.62529 ruvA–ruvB 1.00 (1/1)
35 0.61821 dnaN–dnaE 0.57 (4/7)
62 0.53630 tufB–tsf 0.50 (1/2)

194 0.22533 grpE–dnaK 0.50 (3/6)
205 0.20446 dnaA–dnaB 0.20 (1/5)
218 0.17215 clpX–clpP 0.33 (1/3)

ρAVE

1 0.90956 sucD–sucC 1.00 (1/1)
2 0.79218 trpA–trpB 1.00 (1/1)
3 0.65370 rpoA–rpoB 0.64 (9/14)
4 0.64216 carA–carB 1.00 (1/1)
6 0.61494 atpA–atpD 0.80 (4/5)
7 0.60684 iscS–iscU 0.25 (1/4)

13 0.51116 ruvA–ruvB 1.00 (1/1)
19 0.44526 tufB–tsf 0.50 (1/2)
71 0.17446 dnaA–dnaB 0.20 (1/5)
94 0.11203 secY–secA 0.67 (4/6)

149 −0.03236 dnaN–dnaE 0.57 (4/7)
218 −0.18071 clpX–clpP 0.33 (1/3)
223 −0.18909 grpE–dnaK 0.50 (3/6)

ρPC1

1 0.91527 sucD–sucC 1.00 (1/1)
2 0.75387 trpA–trpB 1.00 (1/1)
3 0.64862 carA–carB 1.00 (1/1)
4 0.63991 atpA–atpD 0.80 (4/5)
8 0.55503 iscS–iscU 0.25 (1/4)

13 0.49776 rpoA–rpoB 0.64 (9/14)
16 0.48901 ruvA–ruvB 1.00 (1/1)
20 0.43071 secY–secA 0.67 (4/6)
24 0.40691 tufB–tsf 0.50 (1/2)
82 0.15353 dnaA–dnaB 0.20 (1/5)

151 −0.02804 dnaN–dnaE 0.57 (4/7)
162 −0.04645 grpE–dnaK 0.50 (3/6)
255 −0.20189 clpX–clpP 0.33 (1/3)
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Fig. 3. The prediction accuracies ofρMIRROR, ρ16S, ρAVE andρPC1 were
evaluated by the receiver operating characteristic (ROC) curves. They-axis
indicates the rate of the true positives and thex-axis indicates the rate of
false positives. In the figure, crosses, open triangles, closed circles and open
squares correspond to plots ofρMIRROR, ρ16S, ρAVE andρPC1, respectively.
The measure of the ROC curve shows that a curve in the upper area of the
figure has higher accuracy, and the diagonal line corresponds to a random
prediction accuracy.

correlation with the modified Jaccard coefficient. That is, the correla-
tion coefficient obtained after the projection operation was high when
proteins A and B formed a complex and no other proteins interacted
with them. When the number of interacting partners increased, the
intensity of co-evolution tended to be weak. However, when proteins
A and B shared the interacting partners the intensity of co-evolution
was high, in spite of the increase of the interacting partners. In such
cases, all the interacting proteins may co-evolve each other. As shown
in the table, there were several outliers from the tendency. One of
the reasons for the deviation may be the lack of the experimental
information. That is, all the protein–protein interactions have not
been experimentally measured yet. In addition, it is suggested that
some interaction have no functional meanings (Nooren and Thornton,
2003). Further accumulation of experimental knowledge is required
to ascertain our hypothesis.

3.2 Assessment based on the ROC curve
The relationships between the true and false positives for the four
correlation coefficients were also examined by drawing ROC curves
(Fig. 3). As described above, proteins from 41 sources were used in
this study. There is a possibility that the selection of source organ-
isms may affect the accuracy of the prediction. In order to make the
evaluation robust to the selection of source organisms, we took the
following approach. Out of the 41 sources, 20 organisms were ran-
domly selected. Then,ρMIRROR, ρ16S, ρAVE andρPC1 for every pair
of 26 proteins were calculated using the randomly selected 20 organ-
isms. The procedure was repeated 1000 times. The rates of true and
false positives were calculated in each iteration step with 20 different
threshold values. Based on the true and false positive rates averaged at
each threshold value, ROC curves forρMIRROR, ρ16S, ρAVE andρPC1

were drawn by connecting the points with 2D coordinates consisting
of the two averaged rates. As shown in the figure, the ROC curves
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Fig. 4. Relationship between the prediction accuracy and the phylogenetic distance. The ROC curves forρMIRROR, ρ16S, ρAVE andρPC1are respectively shown
in (A)–(D). Open squares, closed circles and open triangles indicate the ROC curves of the first, second and third groups, respectively.

for ρ16S, ρAVE andρPC1 deviated upward to that ofρMIRROR when
the rates of false positives were small. However, when the rates of
false positives increased the relationship was inverted and the curve
of ρMIRROR was above those ofρ16S, ρAVE andρPC1. Considering
actual applications, we are supposed to select pairs of proteins with
high correlation coefficients as candidates for interacting partners.
The result of the analysis with the ROC curve, together with the
observation of the decreases in the patterns of correlation coeffi-
cients, suggests that our method realizes a high true positive rate and
a low false positive rate for pairs of proteins showing high correla-
tion. This would be a benefit of our prediction method, even when
considering the deficiency of the higher ratio of false negatives than
the original mirror tree method.

3.3 Prediction accuracy and distance between species
We finally examined how much the prediction accuracy is influenced
by the closeness among the source organisms to be used in the data.
Following is the procedure for the analysis.

(1) Randomly select 20 organisms from the 41 source organisms.

(2) Compute the average of the distances over all possible pairs
of 20 organisms, based on the 16S rRNAs.

(3) Repeat (1) and (2) 10 000 times and generate the distribution
of 10 000 average distances.

(4) Classify the sets into three groups based on the distribution:
the first group (upper 5% of the distribution), the second group
(lower 5% of the distribution) and the third group (the rest).

Note that the first group consisted of the sets of distantly related
organisms, whereas the closely related organisms constituted the
second group.

For each group,ρMIRROR, ρ16S, ρAVE andρPC1 were calculated,
and the corresponding ROC curves were drawn for the three groups
from 20 different threshold values (Fig. 4). The rates of the false
and true positives calculated at each threshold value were averaged
and were then used to draw the ROC curve, as described above. As
shown in the figure, the performance of the first group was better
than those of the second and third groups, in terms of the false pos-
itive rates. This observation suggests that the inclusion of proteins
from distantly related sources increases the reliability of the correl-
ation coefficients for the detection of co-evolutionary behavior. The
inclusion of distantly related sources would be required to accurately
estimate the unit vector|u〉 used to construct the projection operator.

4 CONCLUSION
The mirror tree method is an outstanding approach for the prediction
of protein–protein interactions. The approach with co-evolutionary
information has introduced new perspectives into the computational
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analyses of protein–protein interactions, which were mainly investig-
ated by comparisons of genomic contexts. In this paper we presented
several methods to improve the performance of the original mirror
tree method by controlling for the phylogenetic relationships among
the sources with the projection operator. In the experiment, we con-
firmed that our methods could drastically reduce the number of false
positives in the prediction. We also showed that the inclusion of
proteins from distantly related sources could improve the prediction
accuracy.

Our method generated more false negatives than the original mirror
tree method. As described above, we speculated that the number of
interacting partners could be the reason for the increased number
of false negatives. However, if we select protein pairs with a high
correlation coefficient, say>0.8, by using our method, then we can
predict with high reliability that the protein pair is interacting or is
physically in contact.

ACKNOWLEDGEMENTS
This work was supported by grants from the Ministry of Educa-
tion, Culture, Sports, Science and Technology, the Japan Society
for the Promotion of Science and the Japan Science and Technology
Corporation. The computational resource was provided by the Bioin-
formatics Center, Institute for Chemical Research, Kyoto University.

Conflict of Interest: none declared.

REFERENCES
Dandekar,T.et al. (1998) Conservation of gene order: a fingerprint of proteins that

physically interact.Trends Biochem. Sci., 23, 324–328.
Enright,A.et al. (1999) Protein interaction maps for complete genomes based on gene

fusion events.Nature, 402, 86–90.
Felsenstein,J. (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed

by the author. Department of Genome Sciences, University of Washington, Seattle.

Gavin,A. et al. (2002) Functional organization of the yeast proteome by systematic
analysis of protein complexes.Nature, 415, 141–147.

Gertz,J.et al. (2003) Inferring protein interactions from phylogenetic distance matrices.
Bioinformatics, 19, 2039–2045.

Goh,C.et al. (2000) Co-evolution of proteins with their interaction partners.J. Mol.
Biol., 299, 283–293.

Gustafson,A.et al. (2005) ASRP: the Arabidopsis Small RNA Project Database.Nucleic
Acids Res., 33, D637–D640.

Ho,Y. et al. (2002) Systematic identification of protein complexes inSaccharomyces
cerevisiae by mass spectrometry.Nature, 415, 180–183.

Ito,T. et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein
interactome.Proc. Natl Acad. Sci. USA, 98, 4569–4574.

Jones,D.et al. (1992) The rapid generation of mutation data matrices from protein
sequences.Comput. Appl. Biosci., 8, 275–282.

Kanehisa,M.et al. (2004) The KEGG resource for deciphering the genome.Nucleic
Acids Res., 32, D277–D280.

Katoh,K.et al. (2005) MAFFT version 5: improvement in accuracy of multiple sequence
alignment.Nucleic Acids Res., 33, 511–518.

Kishino,H. and Hasegawa,M. (1989) Evaluation of the maximum likelihood estimate of
the evolutionary tree topologies from DNA sequence data, and the branching order
in hominoidea.J. Mol. Evol., 29, 170–179.

Nooren,I.M. and Thornton,J.M. (2003) Diversity of protein–protein interactions.EMBO
J., 22, 3486–3492.

Pazos,F. and Valencia,A. (2001) Similarity of phylogenetic trees as indicator of protein–
protein interaction.Protein Eng., 14, 609–614.

Pazos,F. and Valencia,A. (2002)In silico two-hybrid system for the selection of
physically interacting protein pairs.Proteins, 47, 219–227.

Pellegrini,M.et al. (1999) Assigning protein functions by comparative genome analysis:
protein phylogenetic profiles.Proc. Natl Acad. Sci. USA, 96, 4285–4288.

Ramani,A. and Marcotte,E.M. (2003) Exploiting the co-evolution of interacting proteins
to discover interaction specificity.J. Mol. Biol., 327, 273–284.

Salwinski,L.et al. (2004) The Database of Interacting Proteins: 2004 update.Nucleic
Acids Res., 32, D449–D451.

Sprinzak,E.et al. (2003) How reliable are experimental protein–protein interaction data?
J. Mol. Biol., 327, 919–923.

Tan,S.et al. (2004) ADVICE: Automated Detection and Validation of Interaction by
Co-Evolution.Nucleic Acids Res., 32, W69–W72.

Uetz,P. et al. (2000) A comprehensive analysis of protein–protein interactions in
Saccharomyces cerevisiae. Nature, 403, 623–627.

von Mering,C.et al. (2002) Comparative assessment of large-scale data sets of protein–
protein interactions.Nature, 417, 399–403.

3489

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/17/3482/212654 by guest on 21 August 2022


