
THE INFERENCE PROBLEM AND UPDATES IN

RELATIONAL DATABASES

Csilla Farkas

Department 0/ Computer Science and Engineering

University 0/ South Carolina, Columbia, SC 29208

farkas@cse.sc.edu

Tyrone S. Toland

Department 0/ Computer Science and Engineering

University 0/ South Carolina, Columbia, SC 29208

toland@cse.sc.edu

Carotine M. Eastman

Department 0/ Computer Science and Engineering

University 0/ South Carolina, Columbia, SC 29208

eastman@cse.sc.edu

Abstract In this paper, we extend the Disclosure Monitor (DiMon) security mechanism

(Brodsky et al. [I]) to prevent illegal inferences via database constraints in dy

namic databases. We study updates from two perspectives: 1) updates on tuples

that were previously released to a user may cause that tuple to be "outdated", tbus

providing greater freedom for releasing new tupies; 2) observation of changes in

released tuples may create cardinality based inferences, which are not indicated

by database dependencies. We present a mechanism, called Update Consolida

tor (UpCon) that propagates updates to the user's history file to ensure that no

query is rejected based on outdated data. We also propose a Cardinality Infer

ence Detection (CID) module, that generates all data that can be disclosed via

cardinality based attacks. We show that UpCon and CID, when integrated into

the DiMon architecture, guarantee conjidentiality (completeness property ofthe

data-dependent disclosure inference aIgorithm) and maximal availability (sound

ness property of the data-dependent disclosure inference algorithm) even in the

presence of updates.

Keywords: disclosure inference, confidentiality, availability, updates, access contro!.

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002

M. S. Olivier et al. (eds.), Database and Application Security XV

10.1007/978-0-387-35587-0_24

http://dx.doi.org/10.1007/978-0-387-35587-0_24

182 DA TA BA SE AND APPLICATION SECURITY XV

1. INTRODUCTION

During the last couple of decades, our society became increasingly depen

dent on computerized infonnation resources. Electronic databases contain in

fonnation with sensitivity levels ranging from public (e.g., airIine schedules,

phone numbers, and addresses) to highly sensitive (e.g., financial and medical

information, military research). The aim of information security policies is to

protect the confidentiality (secrecy) and integrity of data, while ensuring data

tivailability. Access control mechanisms, such as discretionary and mandatory

access control, prevent unauthorized, direct accesses to data. However, they are

unable to protect against indirect data accesses, when unauthorized infonnation

is obtained via inference channels.

Most of the inference channels in relational databases are created by combin

ing meta-data (e.g., database constraints) with non-sensitive data to obtain sen

sitive information. Techniques to detect and remove inference channels can be

organized into two categories. The first category includes techniques that detect

inferencechannelsduringdatabasedesign time [2, 3, 7, 8,11,14,15,17,18,20].

Inference channels are removed by modifying the database design andlor by

increasing the classification levels of some of the data items. The techniques of

the second category seek to eliminate inference channel violations during query

processing time [5, 10, 12, 13, 16, 19]. If an inference channel is detected, the

query is either refused or modified to avoid security violations. While, in gen

eral, database design time approaches are computationally less expensive and

may provide hetter onIine perfonnance than query processing time approaches,

database design time approaches often result in over-classification of data items,

thus reducing data availability. Query processing time approaches allow greater

availability by analyzing the data released to the user to detennine whether a

security violation is present or not.

Updates in multilevel secure databases have been studied from the perspec

tive of how to perfonn updates safely, creating the problem of polyinstantia

tion [6, 9]. The main problem is that users with different security levels see

different versions of a multilevel secure database. Updates may create incon

sistencies among these versions (e.g., inserting a new tuple with an existing but

invisible primary key) or create downward signaling channels (e.g., rejection

of an update because of the existence of a high security data item).

In this paper we study updates from a different perspective. Instead of ad

dressing the problem of how to ensure secure updates, we focus on how updates

can increase data availability due to outdated data. Our work extends the Dis

closure Monitor (DiMon) model presented by Brodsky et al.[I]. DiMon detects

and eliminates inference channels created by database constraints by using a

Disc10sure Inference Engine(DiIE) that generates all infonnation that can be

disc10sed based on a user's previous queries (results), the current query (result)

Farkas. Toland & Eastman 183

and a set of Hom-Clause constraints. The disclosure inference algorithms by

the properties of soundness and completeness. Intuitively, soundness means

that only existing disclosure inferences are generated by the algorithm (data

availability); completeness means that all existing disclosure inferences are
generated (secrecy).

However, Brodsky et al. do not consider dynamic databases where updates
may lead to cardinality based inferences or may violate the soundness property

of the data-dependent disclosure inference algorithm. The following two ex
amples show a proper execution ofDiMon (first example) and an execution that

violates the soundness property (second example). Consider the original Em

ployee relation in Table 1, containing information about the name, rank, salary,

and department of employees. The relation satisfies the functional dependency

(FD) RANK -+ SALARY. The security requirement is that the employees'

salaries should be kept confidential; that is, partial tuples over attributes NAME

and SAIARY can only be accessed by authorized users. However, to increase

data availability, unauthorized users are allowed to access values for NAME and

SAIARY separately.

Suppose an unauthorized user submits the following two queries:

Query 1: "List the name and rank of the employees working in the Toy depart

ment." (IINAME,RANKuDEPARTMENT=Toy)

Query 2: "List the salaries of all clerks." (IISALARyURANK='Clerk)

The answers to these queries are:

Query 1: {< John,Clerk >,< Mary,Secretary >}
Query 2: {< Clerk, 38, 000 >}
Since the Employee relation satisfies the FD RANK -+ SALARY, these

answers reveal that John's salary is $38,000. These kinds of inferences are

correctly detected by DiIE.

Now, consider the following series of events when the Employee relation is

updated between the queries. Time 1: User submits Query I, Time 2: Salaries

of all clerks are raised by 4%, Time 3: Employee John is promoted to the rank

"Manager", and Time 4: User submits Query 2. The answers of the two queries

are:
Query 1: {< John, Clerk >, < Mary, Secretary >}, (same as in the first

scenario)

Query 2: {< Clerk, 39, 520 >}
The second relation ofTable 1 shows the updated Employee relation (Query 2).

In this case, DiIE would indicate that subtuple < John, 39, 520 > is disclosed
and, since it is confidential, Query 2 should be rejected. However, this subtuple

is not contained in the updated relation and has never been present in any of

the earlier versions. Therefore, the second query could be safely answered.

The reason for this is that the FD was applied on data values that have been

modified. We call inferences that were established on outdated (i.e., modified)

184 DATABASE AND APPLICATION SECURITY XV

Table 1. Employee relation

I lD I NAME I RANK I SALARY I DEPT.

1 lohn Clerk 38,000 Toy

2 Mary Secretary 28,000 Toy

3 Chris Secretary 28,000 Marketing

4 loe Manager 45,000 Appliance

5 Sam Clerk 38,000 Appliances

6 Eve Manager 45,000 Marketing Original

I lD I NAME I RANK I SALARY I DEPT

1 lohn Manager 45,000 Toy

2 Mary Secretary 28,000 Toy

3 Chris Secretary 28,000 Marketing

4 loe Manager 45,000 Appliances

5 Sam Clerk 39,520 Appliances

6 Eve Manager 45,000 Marketing Updated

data values "wrong" inferences. We will pennit queries that generate "wrong"

inferences to increase availability.

In this paper we propose a conceptual framework, called Dynamic Disclosure

Monitor (D2Mon), that guarantees data confidentiality and maximal availability

even in the presence of inferences and updates. Our work extends the DiMon [1]

model by taking into consideration that the data items received by a user may

have been updated and are not valid any longer. To the authors' best knowledge,

this is the first work that considers updates from the perspective of increased data

availability. We propose fonnal characterizations of the effects of updates. We

also study the cardinality inference problem that is created by observing changes

in query answers over aperiod of time. Our model addresses both inferences

via generalized database dependencies (represented as Hom-Clause constraints)

and cardinality based (statistical) inferences within the same framework.

We develop a security mechanism, called Update Consolidator (UpCon)

that, given a user's history file, updates on the base relation, and the database

constraints, generates a new history file that marks outdated data values and

indicates only valid inferences. All updates on the base relation are recorded

in an update log. The history file of a user contains all data that the user

previously received or can be discIosed from the received answers. When a

new query is submitted by auser, the his tory file is modified according to

the updates that have happened since the history file was last created. Each

modified data value in the history file is stamped with the new, modified value.

Intuitively, a stamped value means that the value is no langer valid, and the

Farkas, Toland & Eastman 185

new value, that is unknown to the user, is the stamp. Stamping will prevent the

disclosure inference algorithm from indicating a disclosure based on outdated

values (soundness) while maintaining maximal equalities among modified data

values, thus allowing maximal dependency application (completeness). We

show that with the use of UpCon the Data-Dependent Disclosure Inference

Algorithm [1] is sound and complete even in the presence of updates.

Moreover, we recommend a Cardinality Inference Detection (CID) mecha

nism. This module can detect illegal inferences based on small query set size,

query overlap, complementary attacks and aggregation based attacks. Since

CID may detect a disclosure of a partial secret which, when combined with

database dependencies, discloses a secret (DiIE) and vice verse; CID and DiIE

work together until no more changes occur.

The paper is organized as follows. In the next section we describe our Dy

namic Disclosure Monitor architecture. Section 3 contains the preliminaries

and our notations. In Section 4 we present our Update Consolidator and Cardi

nality Inference Detection mechanisms. Finally, we conclude our research in

Section 5 and recommend future extensions.

2. SECURITY ARCHITECTURE

2.1. Dynamic Disclosure Monitor

Our model is built upon the Disclosure Monitor (DiMon) security architec

ture, developed by Brodsky et al. [1], to protect data confidentiality against

illegal inferences in Multilevel Secure (MLS) relational databases. However,

DiMon addresses the inference problem in static databases, and thus may over

protect information due to some already modified data values (see the second

example in the Introduction). Our extended architecture, called Dynamic Dis

closure Monitor (D2Mon), incorporates this liberating effect of updates, while

still guaranteeing that no unauthorized disclosure is possible via data requests.

Note, that we assume that updates are performed in a secure way, Le., we do

not consider covert channels created by updates. We propose two extensions

to DiMon: 1) an Update Consolidator (UpCon) module that incorporates the

effects of the updates on the history files maintained for each user; and 2) a

Cardinality Inference Detection (CID) module that detects illegal inferences

based on the cardinality of the released answers. The functionality of D2Mon

is shown in Figure 1. The shaded modules represent the components of DiMon.

The actual algorithm of D2Mon is given in Figure 2. The additional features of

D2Mon over DiMon are used when Disclosure Inference Engine (DiIE) works

in data-dependent mode. Clearly, in data-independent mode when the actual

data items received by a user are not known by DiIE, updates made on the base

relation will not effect the processing of DiIE.

186

Dynamic

Disclosure

Monitor

DATABASE AND APPLICATION SECURITY XV

User's query

ConstraiJilS

PermlsslonIRerusal

ofanswer

Figure 1. Dynamic DiscJosure Monitor

3. PRELIMINARIES AND NOTATIONS

Before explaining the functionality of the Update Consolidator (UpCon) we

need to modify the concept of data-dependent discIosure in dynamic databases

and introduce some related concepts. We require that each tuple within the

database has a unique tuple identifier I D that is maintained internally and not

released to the user. Table 1 shows the original Employee relation with tuple

identifiers. When a new record is added to the database, a unique I Dis assigned

to it. Modifications to the database are stored in the update log, which we will

now define.

Definition 3.1 (Update)

Given a schema Rand a relation r over R, an update U P on r is a 5-tuple of the

form (t, id, att, Vold, vn ew), where t is the time ofthe update, id is the identifier

of the tuple in r that is being updated, att is the attribute name that is being

updated such that att E R, and Vold, Vnew are the old and the new (updated)

values of att, respectively such that Vold, Vnew E dom(att) u {-}. The special

symbol - is used to represent new values of the attributes when the update is a

deletion.

Consider the examples presented in the Introduction. The updates at times

t2 and t3 are recorded as follows: UP = (t2 , 1, SALARY, 38, 000, 39, 520),

(t2 , 5, SALARY, 38, 000, 39, 520) , (t3 , 1, RANK, Clerk , Manager) ,

Farkas, Toland & Eastman

Algorithm 1: Dynamic Disclosure Monitor

INPUT

1. User's query (object) Qi

2. User's id U

3. Security classification < 0, U, >. >

4. User's history-file Uhi.tory: data which were previously retrieved by the user

5. V, a set of database constraints

OUTPUT

Answer to Qi and update of the user's history-file or refusal of Qi

METHOD

MAC evaluates direct security violations:

IF direct security violation is detected THEN Qi is rejected

(D2 Mon functions as the basic MAC mechanism)

ELSE (no direct security violation was detected)

BEGIN

1 Use Update Consolidator (UpCon) to modify Uhi.torll according to the rele

vant updates to create U updated-hi8tory

2 Let Uall-di8closed = Uupdated-historll U Qi(answers)

begin

Repeat until no change occurs:

(a) Use Disclosure Inference Engine (DiIE) to generate all data that can be

disclosed from the U a ll-di.clo8ed and the database constraints V

Uall-di.clo.ed = Uall-diacloBed U U newly -di8clo8ed

(b) Use Cardinality Inference Detection (CID) to find all data that can be

disclosed by cardinality inferences

U all-di.clo8.d = U a ll-di.clo8ed U U newlll -di.clo8ed

end

3 MAC reevaluates security violations in Uall-diBclosed:

IF illegal disclosure is detected THEN reject Qi and

Uhiltory = U updated-hi8tory

4 ELSE (security is not violated) answer Qi and

Uhi8torll = Uall-diBclo8ed

END

Figure 2. Algorithm for Dynamic Disclosure Monitoring

187

(t3, 1, SALARY, 39, 520, 45, 000). Werepresentupdateson tuples which were

previously released to a user by "stamping" these values with the new value.

For this, we need the notion of a stamped attribute value.

Definition 3.2 (Stamped Attribute)

Let A be an attribute name and dom(A) = al, ... , al the domain of A. A

stamped attribute SA is an attribute such that its value sa is of the fonn

188 DATABASE AND APPUCATJON SECURITY XV

aiaj (i, j = 1, ... , I). We call ai the value of S A and aj is the stamp or

updated value of the stamped attribute S A.

For example, assurne that the user has received the tuple < Clerk, 38, 000 >
over the attributes RANK and SALARY. If at a later time the salaries of the clerks
are modified, e.g, increased to $39,520, the corresponding tuples in the history
file are stamped as folIows< Clerk, 38, 00039,520 >.

Definition 3.3. (Equalities of Stamped Attributes)

Given two stamped attributes sa = aiaj and sb = bibj , we say that sa = sb iff

ai = bi and aj = bj. Given a stamped attribute sa = aiaj and a non-stamped

attribute b, we say that sa = b iff ai = b and ai = aj.

Next, we need the notion of projection facts and stamped projection facts

which are manipulated by the Dirn.

Definition 3.4 (Projection Fact)

A projection fact (P F) of type Al, ... , Ak, where Al, ... , Ak are attributes in

R, is amappingm from {Al,'" ,Ak} to UJ=1 dom(Aj) U UJ=1 dom(SAj)

such that m(Aj) E dom(Aj) U dom (SAj) for all j = 1, ... ,k. A projection

fact is denoted by an expression of the form R[AI = Vb . .. ,Ak = Vk] where

R is the relation name, and VI, .•. , Vk are values of attributes Al,"" Ak,

respectively.

A stamped projectionfact (SP F) is a projection fact R[AI = VI, ••. , Ak =
Vk], where at least one of Vj (j = 1, ... , k) is a stamped attribute.

A non-stamped projection fact, or simply a projection fact, is a projection

fact R[AI = VI, .•• ,Ak = Vk], where a11 VjS are constants in dom(Aj).

For example, Employee[NAME = John,Rank = Clerk] is a projection
fact, and Employee[N AME = John, Rank = Clerk Manager] is a stamped

projection fact.

Definition 3.5 (Un-Stamping a Stamped Projection Fact)
. b

Given a SP F of the form R[A I = ... ,Ak = aklo], where some of the

bi (i = 1, ... , k) may not exist. The un-stamped projection fact PF is gener

ated from SPF by simply removing the stamps of SPF, i.e., PF = R[AI =

al, ... ,Ak = ak]

Definition 3.6 (Query-answer pair)

An atomic query-answer pair (QA-pair) is an expression ofthe form (P, II y u c),

where P is a projection fact over Y that satisfies C or P is a stamped projection

fact, such that the un-stamped projection fact generated from P satisfies C.
A query-answer pair is either an atomic QA-pair or an expression of the form

('P, IIyuc), where 'P is a set of (stamped) projection facts {Pb"" 11} such
that every Pi, (i = 1, ... ,I) is over Y and satisfies C.

Farkas. Toland & Eastman 189

Definition 3.7 (Dynamic data-dependent disclosure)

Let V be a set of database constraints, UP= {U Pl, ... , U Pm} be a set of up

dates, Pl, ... , Pn be sets of projection facts over attribute sets X I, ... , X n, P F

be a projection fact over Y, and tl S ... :S tn :S t are times. We say that the set

P={[(Pl, I1X10'Cl)' td, ... , [(Pn, I1xn O'Cn), tn]} discloses [(PF, I1yac) , t]
under database constraints V and in the presence of updates UP, if

1) there is no update recorded on PiS (i = 1, ... ,n) between tn and t, and

2) for every ro, rl, ... ,rn, r over R, that all satisfy D, Pi I1Xiaci (ri)[ti]
(i = 1, ... ,n) implies PF E I1yO'c{r)[t), where ro is the original rela

tion and ri (i = 1, ... , n), r are the relations generated from TO by the up

dates in Up, respectively. Dynamic data-dependent disclosure is denoted as

PFU'P,'D[(PF, IIyac), t].

We denote by [(PF,I1yac),td FU'P [(PF',I1Y'O'C,),t2] the disclosure

{[(PF,I1YO'C),tl]} FU'P,'D [(PF',I1Y'O'C/),t2]' where D is empty. In this

case, we say that [(PF, I1yO'C) , tl] dominates [(P F', IIy,ac/), t2]'

The above definition requires that all updates are performed according to the

database constraints; that is, if a relation r satisfies the set of constraints V

before an update, it will also satisfy D after the update. Furthermore, disclosure

is established based on updated tuples rather than the originally released tupIes.

Intuitively, this may allow auser, who is unaware of the update, to generate a

fact that may have never existed in the base relation or is not valid any longer.

In either case, we allow such "wrong" inferences, since our goal is to prevent

disclosure of valid sensitive data.

By extending the concepts of projection fact and query-answer pairs to in

corporate stamped attributes, DiIE can operate on relations containing regular

attribute values (constants), stamped attribute values, and null-values. In the

following section we develop the Update Consolidator (UpCon) module that

creates a new input history file for DiIE by stamping those attribute values that

have been modified by an update operation.

4. UPDATE AND CARDINALITY INFERENCES

In this section we introduce our remaining extensions, the Update Consol

idator (UpCon) and the Cardinality Inference Detection (CID) modules.

4.1. Update Consolidator

As we illustrated in the Introduction, in dynamic databases it may happen

that answers received by a user may not be valid any longer after an update.

Clearly, if we refuse a new request of the user based on some outdated data value

we unnecessarily limit data access. Update Consolidator (UpCon) propagates

updates that happened between the current and the last answered query to the

user's history file. For this we require that every tuple of the relation has a unique

190 DATABASE AND APPUCATJON SECURITY XV

Table 2. The User's history file after Query 2

I ID I NAME I RANK I SALARY I DEPARTMENT I
1 lohn ClerkMOtlogcr /h Toy

2 Mary Secretary 62 Toy

5 63 Clerk 39,520 Toy

identifier and all original answers (after the application of selection conditions

on the answers) are kept pennanently. Also, we keep track of the database

dependencies D that were previously applied on the history-file. Figure 4

shows the algorithm of UpCon. Table 2 shows the stamped history file (tupies

1 and 2) and the incorporated answer of Query 2. Clearly, in this case the FD

RANK -t SALARY cannot be applied, since =/:Clerk.

Theorem 1 (Oynamic Oata Oecidability)

The following problem is decidable: Given a set 'D of database constraints, a

set of updates U1', and a set l' of QA-pairs with the time when the QA-pairs

have been generated, whether 1'Fu'P,vS for a given set S of atomic QA-pairs.

Theorem 1 will be a corollary to Theorem 2 that states correctness (i.e., sound

ness and completeness) of DiIE inthe presence of updates.

Proposition 4.1 Given a set D = dl, ... , dk dependencies that can be applied

by DilE on a set of projection facts S, i.e., projection facts without stamped

attributes. Then at most D = dl, ... , dk can be applied on S', a set of stamped

projection facts generated from S by stamping some of the attribute values.

Proofsketch 4.1 Assurne by contradiction that a dependency dm can be applied

on S' but not on S and that dm (/. D. Since a dependency can be applied only

if we can find a valuation from the body of the dependency to the (stamped)

projection facts, such valuation must exist from the body of dm to S'. Since

stamping cannot introduce new equalities (Definition 3.3) there must also exist

a valuation from the body of dm to S, thus dm is applicable on S, which

contradicts our original assumption.

Theorem 2 The data-dependent disclosure inference algorithm is sound and

complete when used with UpCon.

Proofsketch 4.2 To prove Theorem 2 we use that the Data-Dependent Disclo

sure Aigorithm is sound and compiete in static databases. This is a special case

of dynamic data-dependent disclosure (Definition 3.7), when U P = 0, thus

T = Tl = ... = Tn . Then, we need only to show that stamping a released

data value will not incorrectly modify a history file, i.e., all valid equalities

Farkas, Toland & Eastman

Algorithm 2: Update Consolidator (UpCon)

INPUT

1. Time of last query time'".t

2. Time of current query timecurrent

3. Update log U'P= {Upl, UP2, ... , UPm}

4. User's history-file Uhi.torl/

5. DA, a set of database constraints previously applied on Uhi.torl/

OUTPUT

Updated history-file of the user Uupd"ted-hbtorl/

METHOD

Construct TUP = {UP1, Up2, ... , up,} (temporary update file) fromU'P such that

• time'".t::5 Upi[tj ::5 timecurrent. where Upi[tj is the time of the update, and

191

• there exists a tuple tj in U"'dorl/ such that upi[id] = tj lid], up.[id] is the identifier

of the tuple that has been updated and tj[id] is the identifier of the tuple tj in

U",.torl/'

IF TUP"" 0 (i.e., updates occurred on the tuples of the base relations from which some of

the released tuples originated) THEN

BEGIN

1 Uhbtor1l = Uhidorl/ - {t il t[id] =" 999" (drop inferred tupies)

2 Forevery UPi = (t,id,att,old,new) e TUPDO

• Find tuple t in Uhidorl/ such that tid = id

• Stamp value old of attribute att in t with value new

3 U u pd"ted-hiltor1l = Uhi.tor1l

4 ehase U updated-hidor1l with DA.

END

Figure 3. Update Consolidator

exploited by the inference algorithrn to apply a database dependency remain

intact (cornpleteness) and only the valid equalities are present (soundness).

Since starnping an attribute value only reduces possible equalities, and there

fore, possible application of the dependencies, the proof of preserving the

soundness property is straight forward.

The proof of cornpleteness is constructed as folIows: assume by contradiction

that a tuple t is correctly disclosed frorn the originally released tupies, the

current query answer, the database dependencies and the updates but t was

not generated by DiIE applied on the stamped history file. Since the Data

Dependent Inference Aigorithrn, used by DiIE is compiete and t is disclosed,

DiIE must generate a tuple that dominates t if the originally released tupies,

the current query answer and the database dependencies are given as input. t

192 DATABASE AND APPLICATION SECURITY XV

clearly cannot be one of the originally released tupies, because those are stored

in the stamped history and stamps are only added according to the updates. But

then, t must have been generated by a sequence of dependency applications

d1, ..• ,d,. But since the updates satisfied the database dependencies and t is

correctly disclosed based on valid inferences then d1, ..• , d, must be applicable

on the stamped history file. But then, dl, ... ,d, would have been applicable

on the stamped history file, and DiIE would have created a tuple that coincides

with t on the non-stamped attributes. This is a contradiction of our original

assumption.

4.2. Cardinality Inference Detection (CID)

In this section we present an additional module to detect inferences based on

the cardinalities of the query answers. Similar inferences have been considered

in statistical databases (see Denning [4] for an overview) and protection tech

niques have been recommended. CID protects against illegal inferences due to

small query set size, query overlap, complementary inferences, and data aggre

gation. CID and DiIE share their output repeatedly, until all possible inferences

are detected. Due to space limitations, CID is not described in details in this

paper.

5. CONCLUSIONS AND FUTURE WORK

In this paper we present a Dynamic Disclosure Monitor architecture that

guarantees data confidentiality and maximal data availability in the presence of

inferences based on database constraint and updates. We propose two exten

sions of DiMon to incorporate the effects of updates in order to increase data

availability and decrease the risk of cardinality inferences: 1) UpCon uses the

user's existing history file, updates that occurred, and the database constraints

to generate a new history file that does not contain any outdated data values; 2)

CID checks for cardinality based inferences, such as small query set size, query

overlap, complementary inferences, and data aggregation. CID and DiIE share

their output repeatedly, until all possible inferences are detected. We show that

using UpCon with DiIE will guarantee data secrecy (completeness property

of inference algorithm) and data availability (soundness property of inference

algorithm) in the presence of inferences via database constraints.

We conclude with suggestions for further work. Currently we are developing

a prototype of DiMon and its extensions to D2Mon. We use Java to express

the security requirements and implement the disclosure inference algorithms.

Completion of the prototype will allow us to provide experimental results in

addition to theoretical evaluation of the model. In addition, we recommend the

following improvements: Currently the model allows all "wrong" inferences,

regardless of whether they reveal data items that had previously existed in the

Farkas, Toland cl Eastman 193

relation or not. However, in certain applications even outdated data might be

sensitive, i.e., that John, as a clerk, eamed $38,000. Our update-log based
model can be extended to allow distinction of the different kind of inferences.

Also, this paper focuses on multiple attacks of a single user. However in a
real-life situation, malicious users can share information, thus obtaining data for
which they do not have the proper authorization. Users likely to share infonna
tion could be grouped together to prevent security violations via collaborating
users.

References

[1J A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: Constraints, inference channels,
and monitoring disclosure. IEEE Trans. Knowledge anti Data Eng., November, 2000.

[2J LJ. Buczkowski. Database inference controller. In D.L. Spooner and C. Landwehr, editors,
Database Security 111: Status anti Prospects, pages 311-322. North-Holland, Amsterdam,
1990.

[3) S. Dawson, S.De Capitani di Vimercati, and P. Samarati. Specification and enforcement of
classification and inference constraints. In Proc. 0/ the 20th IEEE Symposium on Security

and Privacy, Oakland, CA, May 9-121999.

[4] D.E. Denning. Cryptography anti Data Security. Addison-Wesley, Mass., 1982.

[5] D.E. Denning. Commutative filters for reducing inference threats in multilevel database
systems. In Proc.IEEE Symp. on Security anti Privacy, pages 134-146, 1985.

[6J D.E. Denning and T.F. Lunt. A multilevel relational data model. In Proc. IEEE Symp. on

Security anti Privacy, pages 220-233, 1987.

[7] J.A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. IEEE Symp. on
Security anti Privacy, pages 75-86, 1984.

[8] T.H. Hinke. Inference aggregation detection in database management systems. In Proc.

IEEE Symp. on Security anti Privacy, pages 96-106, 1988.

[9J S. Jajodia, R. Sandhu, and B. T. Blaustein. Solution to the polyinstantiation problem. In
M. Abrams et al., editor, Information Security: An Integra,ed Collection 0/ Essays. IEEE
Computer Society Press, 1995.

[10] T. F. Keefe, M. B. Thuraisingham, and W. T. Tsai. Secure query-processing strategies.
IEEE Computer, pages 63-70, March 1989.

[li) D.G. Marks. Inference in MLS database systems. IEEE Trans. Knowledge and Data Eng.,

8(1):46-55, February 1996.

[12) D.G. Marks, A. Motro, and S. Jajodia. Enhancing the controlled disclosure of sensitive
information. In Proc. European Symp. on Research in Computer Security. Springer-Verlag

Lecture Notes in Computer Science, Vol. 1146, pages 290-303, 1996.

[13J S. Mazumdar, D. Stemple, and T. Sheard. Resolving the tension between integrity and

security using a theorem prover. In Proc. ACM Int'l Conf. Management 0/ Data, pages

233-242, 1988.

(14) M. Morgenstern. Controlling logical inference in multilevel database systems. In Proc.

IEEE Symp. on Security anti Privacy, pages 245-255, 1988.

[15) G.W. Smith. Modeling security-relevant data semantics. In Proc. IEEE Symp. Research

in Security and Privacy, pages 384-391,1990.

194 DATABASE AND APPUCATION SECURITY XV

[16] P.D. Stachour and B. Thuraisingham. Design of LDV: A multilevel secure relational

database management system. IEEE Trans. Knowledge and Data Eng., 2(2):190-209,

June 1990.

[17] T. Su and G. Ozsoyoglu. Inference in MLS database systems. IEEE Trans. Knowledge

and Data Eng., 3(4):474-485, December 1991.

[18] T.H.Hinke, Harry S. Delugach, and Asha Chandrasekhar. A fast algorithm for detecting

second paths in database inference analysis. Jour. o/Computer Security, 3(2,3):147-168,

1995.

[19] B.M. Thuraisingham. Security checking in relational database management systems aug

mented with inference engines. Computers and Security, 6:479-492, 1987.

[20] R. W. Vip and K. N. Levitt. Data level inference detection in database systems. In Proc. 0/
the 11th IEEE Computer Security Foundation Workshop, Rockport, MA, pages 179-189,

June 1998.

	THE INFERENCE PROBLEM AND UPDATES IN RELATIONAL DATABASES
	1. INTRODUCTION
	2. SECURITY ARCHITECTURE
	2.1. Dynamic Disclosure Monitor

	3. PRELIMINARIES AND NOTATIONS
	4. UPDATE AND CARDINALITY INFERENCES
	4.1. Update Consolidator
	4.2. Cardinality Inference Detection (CID)

	5. CONCLUSIONS AND FUTURE WORK
	References

