
The Infinitely Many Genes Model for the Distributed
Genome of Bacteria

Franz Baumdicker1, Wolfgang R. Hess2, and Peter Pfaffelhuber1,*
1University of Freiburg, Center for Biosystems Analysis, Habsburgerstrasse 49, Germany
2Faculty of Biology, University of Freiburg, Institute of Biology III, Schänzlestrasse 1, Germany

*Corresponding author: E-mail: p.p@stochastik.uni-freiburg.de.

Accepted: 13 February 2012

Abstract

The distributed genome hypothesis states that the gene pool of a bacterial taxon is much more complex than that found in

a single individual genome. However, the possible fitness advantage, why such genomic diversity is maintained, whether this

variation is largely adaptive or neutral, and why these distinct individuals can coexist, remains poorly understood. Here, we

present the infinitely many genes (IMG) model, which is a quantitative, evolutionary model for the distributed genome. It is

based on a genealogy of individual genomes and the possibility of gene gain (from an unbounded reservoir of novel genes,

e.g., by horizontal gene transfer from distant taxa) and gene loss, for example, by pseudogenization and deletion of genes,
during reproduction. By implementing these mechanisms, the IMG model differs from existing concepts for the distributed

genome, which cannot differentiate between neutral evolution and adaptation as drivers of the observed genomic diversity.

Using the IMG model, we tested whether the distributed genome of 22 full genomes of picocyanobacteria (Prochlorococcus
and Synechococcus) shows signs of adaptation or neutrality. We calculated the effective population size of Prochlorococcus
at 1.01 � 1011 and predicted 18 distinct clades for this population, only six of which have been isolated and cultured thus far.

We predicted that the Prochlorococcus pangenome contains 57,792 genes and found that the evolution of the distributed

genome of Prochlorococcus was possibly neutral, whereas that of Synechococcus and the combined sample shows a clear

deviation from neutrality.
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Introduction

The concept of a biological species is difficult to apply to

bacteria (Cohan 2002). Traditional species are ecologically

distinct, their divergence is irreversible, and their diversity
is limited by outcrossing. For demarcating bacterial species,

a cutoff of 3% divergence in 16S ribosomal RNA sequence

was previously recommended as a conservative and practi-

cal criterion (Goebel and Stackebrandt 1994). However,

even phenotypically identical bacteria coexisting in the same

environment that follows this criterion frequently have sig-

nificantly different gene content (Akopyants et al. 1998;

Lawrence and Hendrickson 2005). Indeed, experimental
data indicate that new genes will be discovered even after

sequencing hundreds of genomes (Koonin and Wolf 2008;

Lapierre and Gogarten 2009). Accordingly, the concept of

the pangenome was introduced to describe the global gene

repertoire of a bacterial taxon (Medini et al. 2005; Tettelin

et al. 2005). It consists of the core genome, the genes shared

by all members of this taxon, and the dispensable (or acces-
sory) genome, the genes present in some but not all the

isolates that belong to this taxon (Medini et al. 2008;

Kittichotirat et al. 2011).

An important prediction of the distributed genome hy-

pothesis is that individual cells maintain compact genomes,

whereas, at the population level, a huge number of dispens-

able genes exist. This pattern can be explained by assuming

that new genes are brought into the population, for example,

by horizontal gene transfer (HGT) from other populations or

taxa, and may subsequently be lost (Dagan and Martin 2007).

The evolutionary advantage of a distributed genome is that

new variants of the compact genomes can be generated by

HGT events between strains within the population (Coleman

and Chisholm 2010). Although the distributed genome hy-

pothesis was first validated in pathogenic bacteria (Ehrlich

et al. 2008), a wealth of data, both from the genomes of

closely related bacteria and from metagenomes, have shown
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that this hypothesis appears to be universally true (Koonin and
Wolf 2008; Lapierre and Gogarten 2009).

We have chosen data from two genera of model organ-

isms, the marine picocyanobacteria Prochlorococcus and

Synechococcus, to study a distributed genome. These gen-

era are model organisms for biodiversity in the ocean (Bragg

et al. 2010; Coleman and Chisholm 2010). Marine picocya-

nobacteria are major determinants of primary marine pro-

ductivity and biogeochemical mineral cycles (Partensky
et al. 1999) and exhibit a high degree of genomic diversity

(Kettler et al. 2007; Scanlan et al. 2009). Their genes have

contributed significantly to metagenomic analyses (Venter

et al. 2004). Homologs of picocyanobacterial genes have

also been found in the genomes of cyanophages, which

may be important players in maintaining diversity in picocya-

nobacteria (Avrani et al. 2011). Marine picocyanobacteria

can be divided into several genetically and physiologically
distinct populations. In case of Prochlorococcus, two so-

called ecotypes that are specifically adapted to low-light

(LL) or high-light (HL) conditions were recognized early on

(Moore et al. 1998). Based on the extensive genome anal-

yses of cultivated isolates (Dufresne et al. 2003; Rocap et al.

2003; Kettler et al. 2007; Scanlan et al. 2009) and fieldwork

(Johnson et al. 2006; Martiny et al. 2009; Rusch et al. 2010;

West et al. 2010), the existence of several more distinct
clades was suggested. However, it is at present not known

how many of such separate, genetically and physiologically

distinct, clades can be expected to exist, nor has the Pro-
chlorococcus effective population size or an upper bound

for the genetic diversity among them ever been estimated.

Theoretical and evolutionary concepts provide a crucial

framework for understanding the underlying reasons for

genomic diversity, the number and distribution of genes
among closely related but different cells in a bacterial taxon,

and the evolution of bacterial genomes in general. From

a well-supported model, predictions can be derived about

shared genomic variation, the total number of genes avail-

able in a population, and the percentage of genes that have

thus far been identified.

The main goal of the present paper is to present the

infinitely many genes (IMG) model for the bacterial pange-
nome. It is based on first principles of bacterial genome evo-

lution and incorporates gene gain, gene loss, and genetic

drift. Here, gene gain means that a new gene is added to

the genome of an individual, for example, through uptake

of genetic material from the environment, by HGT from

another taxon or by mutation of existing genes, which leads

to a totally new gene. Gene loss denotes the event that a

single gene present is mutated, loses its function, and
subsequently is not carried over to later generations. Such

gene gains and losses are mapped onto the genealogy of

a population sample, leading to a precise description of

its pangenome. By taking a genealogical perspective, this

model is in contrast to existing approaches for a quantitative

prediction of the pangenome (Medini et al. 2005; Tettelin
et al. 2005; Hiller et al. 2007; Hogg et al. 2007).

Using gene frequency data, the IMG model returns quan-

titative predictions for various statistics such as the average

genome size, the pangenome size, and the gene frequen-

cies in the dispensable genome. Moreover, the IMG model

provides a framework to determine whether a distributed

genome has been shaped as a consequence of neutral evo-

lution or by adaptation. In particular, we provide a statistical
test of neutrality using the IMG model. In contrast to other

population genetic tests of neutral evolution for single

nucleotide polymorphism (SNP) data (e.g., Tajima 1989;

Fu and Li 1993), the test takes into account independent

information about the underlying genealogy, such as that

provided by phylogenetic analyses of ribosomal DNA (rDNA)

or the concatenated sequences of core genes. We take this

phylogeny as a proxy for the underlying true organismal
tree. In addition, we provide a simulation tool for the IMG

model that can be applied to any group of bacteria. This

framework is rich enough to account for extensions like hor-

izontal gene flow within the bacterial population, effects of

selective events, and point mutations within genes. Resulting

statistical methods for parameter estimation and inference

leading to a deeper understanding of genome evolution in

bacteria will be the subject of future research. (See Box 1
for the most important notions and Box 2 for a brief descrip-

tion of the IMG model.)

Materials and Methods

IMG Model

Consider a single prokaryotic individual. We assume that its

genome consists of two parts: genes that are necessary for
survival (these comprise the core genome) and genes that

can be present or absent without any fitness advantage

or disadvantage to the individual (these comprise the dispens-

able genome). The number of genes in the core genome is

denoted by c. For the evolution of the dispensable genome,

we assume that new genes are gained (by mutation or from

an external source) with probability u and existing genes are

lost with probability v per generation. Because the pool of
genes that can potentially be gained by HGT or mutation

is unlimited, we refer to this mutation model as the IMG

model. Rescaling u and v by a large, constant effective pop-

ulation size, Ne, we set h52Neu and q52Nev. In these terms,

h corresponds to the average number of genes gained in 2Ne

generations along a single line of descent and q corresponds

to the rate of losing a single gene (when time is measured in

units of 2Ne generations). Precisely, if a line carries x genes, it
gains h new genes and loses x � q genes in 2Ne generations on

average. Hence, the equilibrium size of the dispensable ge-

nome is x5h=q genes. More precisely, Huson and Steel

(2004) show that the size of the dispensable genome of

a single prokaryotic individual is Poisson distributed with
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parameter h=q at equilibrium. In particular, given that the dis-

pensable genome usually comprises several hundred genes, h
will be orders of magnitudes larger than q in our applications.

For the evolution of a population of prokaryotes, we take

the standard neutral model from population genetics, in

which the genealogy of a sample of n individuals is approx-

imately given by the coalescent (for review, see Box 2 and

Wakeley 2008). Neutrality here means that all individuals
have the same chance to produce viable offspring, that

is, gene content neither confers a fitness advantage nor a fit-

ness disadvantage. The genealogy is meant to represent the

true organismal or clonal genealogy of the sample and

therefore must be ultrametric.

The evolution of the dispensable genome along the co-

alescent is modeled as follows: The number of genes in the

dispensable genome of the most recent common ancestor
of the sample is Poisson distributed with parameter h=q.
Gene gain and loss events occur along the coalescent from

the most recent common ancestor (MRCA) until the time of

sampling. New genes are gained, for example, by taking up

genetic material from the environment at rate h every 2Ne

generations. In addition, genes present are lost at rate q ev-

ery 2Ne generations. (See fig. 1 for an illustration.)

FIG. 1.—Two realizations of the IMG model. The underlying

genealogy is given by the coalescent, and gene gain (triangle up) and

loss events (triangle down) are superimposed on the coalescent.

Gene gain and loss events of the same genes are marked in the same

color.

Box 1. Glossary

Gene gain The first occurrence of a new gene in a population is a gene gain event. One way to gain a new gene is via HGT from

other populations or uptake of genetic material from the environment. Another mechanism is mutation of duplicated

genes followed by subfunctionalization. The IMG model does not distinguish the mechanism by which a gene is gained

but assumes that there is a single origin of each gene in a population.

Gene loss Mutations resulting in pseudogenization followed by deletion of genes will lead to gene loss events.

HGT between

populations

If a specific gene is absent in the focal population, but present in a different population, a HGT to the focal population

results in a gene gain. The IMG model assumes that each gained gene in the focal population is different from previously

gained genes. In other words, the reservoir of genes to be gained is infinitely large.

HGT within

populations

If genes present in some individuals of the focal population are horizontally transferred to other individuals of the

same population, we speak about HGT within populations. This mechanism is not implemented in the IMG model

presented here.

Population Here, we mean any group of bacteria under consideration, which may contain closely as well as distantly related

individuals.

True

organismal

tree

In a clonal population of prokaryotes, the genealogy given by the clonal lineages gives the true organismal tree. This

tree is ultrametric. If HGT within the population is weak, the phylogeny of most genes is in accordance with the

organismal tree. Moreover, phylogenies based on highly conserved regions or gene content may serve as a proxy for the

organismal tree. In the IMG model, the organismal tree is given by the coalescent, a standard model from population

genetics. See also Box 2.

Box 2. The IMG Model
In the IMG model, the relationship between individuals is
based on an underlying ‘‘true’’ genealogy, by which we

mean the organismal ultrametric tree. Assuming neutral

evolution, we model the true genealogy by a random tree

called the coalescent: For a population of size Ne and a sam-

ple of size n, the coalescent is a random ultrametric tree

arising from the following stochastic process: Starting in

the present with a sample of size n, two randomly chosen

ancestral lines are merged roughly after an exponentially

distributed time with rate
� n

2

�
. Restarting with the remain-

ing n� 1 lines, another exponential time with rate
� n � 1

2

�

given the next coalescent event, etc. The process is stopped

when reaching the most recent common ancestor. On this

tree, a branch of length of 1 corresponds to Ne generations.
Along the lineages of this ‘‘true clonal’’ tree, gain of any

new gene occurs at rate h/2, and each gene present is lost at

rate q/2. Each gene gain event gives, for example, by HGT

from another population, the single origin of a new gene in

the population, which is taken from an unbounded (infinite)

reservoir of genes. HGT within the population is neglected.

In particular, the case that a gene lost in a lineage will be

regained is not considered in this model. Under the above
assumptions, several statistics can be predicted, for exam-

ple, the average number of genes per genome, the average

number of genes differing in two individuals, or the gene

frequency spectrum. These predictions can be used for es-

timation of gene gain and loss rates and for statistical tests.
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The IMG model comes with various sources of random-
ness: 1) the clonal genealogy of the population sample is

random and is given by the coalescent, 2) genes are gained

by random uptake, and 3) genes present are lost randomly.

Previously, Baumdicker et al. (2010) investigated genomic

patterns arising from the IMG model based on a sample

of n individuals taken at random from the population, when

averaging over all sources of randomness. In our notation,

we use Eh;q;c½:� when averaging over all three sources of ran-
domness, whereas we write Eh;q;c½:js� when we fix the ge-

nealogical tree s and only average over random events of

gene gain and loss along s.
We review here some important features of this model.

See the Supplementary Material online for a brief derivation

of each of these quantities. We denote by Gn the number of

different genes found in n individuals and by Gn
i the number

of genes found in exactly i of n individuals. (Note that
Gn5Gn

1 þ/þ Gn
n:)

� The expected number of genes in the genome of one
individual and the expected number of differences
between the genomes of two individuals are given by

Eh;q;c½G1�5 c þ h
q

andEh;q½G2
1�5

2h
q þ 1

; ð1Þ

respectively.
� The expected number of different genes in the whole

sample is

Eh;q;c½Gn�5 c þ h
Xn� 1

i 5 0

1

i þ q
: ð2Þ

� We refer to Gn
1; . . . ;G

n
n as the gene frequency

spectrum, and for k 5 1, . . ., n � 1,

Eh;q½Gn
k �5 h

k
n/ðn� kþ 1Þ

kðn� 1þqÞ/ðn� kþ qÞ and

Eh;q;c½Gn
n�5 c þ h ðn� 1Þ!

ðn�1þ qÞ/q :
ð3Þ

� The number of new genes expected in the nth
individual, denoted as Sn, is

Eh;q½Sn�5
1

n
Eh;q½Gn

1�5
h

n � 1 þ q
: ð4Þ

Estimating u and r

Given a set of n complete genomes of prokaryotes, we use

algorithms described in the Data Source (below) to deter-
mine which genes (or gene clusters) appear jointly in sub-

samples of individuals. This analysis yields the observed

gene frequency spectrum, denoted ðgn
1; . . . ; g

n
nÞ. For exam-

ple, gn
1 is the number of genes present in a single individual

in the sample.

Our goal is to estimate h and q based on the gene fre-
quency spectrum and independent information on the ge-

nealogy of the sample, obtained from divergence data.

Because this tree must be a proxy for the true organismal

tree, we require that it is ultrametric, implying a clock-like

behavior of evolution. We use an ultrametric tree obtained

by the software ClonalFrame (Didelot and Falush 2007)

based on the sequences of all core genes present in one

copy per genome here; see figure 3 for Prochlorococcus.
For these estimators, we use 1) a calibration of the tree,

which uses coalescent theory, and 2) a feature of the IMG

model from Proposition 5.5 in Baumdicker et al. (2010). 1)

Consider an ultrametric genealogical tree s of the sample

(e.g., based on the ClonalFrame output or 23S rDNA diver-

gence). From s, we read off the intercoalescent times

T25t2; . . . ; Tn5tn. Here, because the coalescent predicts

that the random times T2; . . . ; Tn are independent and Ti

has rate
� i

2

�
, we use a timescale on the tree such that

Xn

i 5 2

� i
2

�
ti 5 n � 1: ð5Þ

2) Recall that the number of genes present in a single indi-

vidual is Poisson distributed with parameter h
q. Similarly, con-

sider a sample of n 5 2 individuals and their time of the most

recent common ancestor t from s. For the average number
of genes present in only one of the two individuals, we have

to distinguish several classes of genes: genes that were pres-

ent in the most recent common ancestor of both individuals

and were lost exactly in one of the two ancestral lines and

genes that were not present in the most recent common

ancestor of both individuals and were gained along any

of the two ancestral lines up to the most recent common

ancestor. Adding up these two cases, the average number
of genes present only in one individual is

Eh;q;c½G2
1js�5

h
q
½2e� qt=2ð1 � e� qt=2Þ þ 2ð1 � e� qt=2Þ�

5 2
h
q
ð1 � e� qtÞ5 : cð2Þ1 ðh; q; sÞ: ð6Þ

(Note that the result from equation [3] arises when aver-

aging the last expression over the exponentially distributed
coalescence time t.) More precisely, arguing as in Huson and

Steel (2004), given s, the random number G2
1 is Poisson dis-

tributed with parameter cð2Þ1 ðh; q; sÞ.
In general, we have to extend the last calculations to

a sample of size n � 2. Here, we obtain numbers

cðnÞi ðh; q; sÞ; i51; . . . ; n, such that, given s, the random

number Gn
i is Poisson distributed with parameter

cðnÞi ðh; q; sÞ. Using these parameters, it is straight forward
to obtain maximum likelihood estimators of h and q: Ob-

serve that for the likelihood function L(.), the phylogeny
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s, and the observed gene frequency spectrum gn
1; . . . ; g

n
n�1;

logLðh; qjgn
1; . . . ; g

n
n�1; sÞ

5 a þ
Pn�1

i 5 1

cðnÞi ðh; q; sÞ þ gi log½cðnÞi ðh; q; sÞ�;

where a does not depend on h and q. Maximizing this log
likelihood for h, q, we obtain the estimates ĥ; q̂. Additionally,

an estimator for c is obtained by

ĉ5 gn
n � cðnÞn ðh; q; sÞ:

In order to obtain reasonable starting values in the max-

imizing procedure, we fit the observed average number of

genes g1 and the observed average number of differences

g2
1 to the predictions from equation (1).

Test of Neutrality

Once the estimators ĥ and q̂ are given, the neutrality test

works as follows:

Based on ĥ and q̂, gene frequency spectra ðGn
1; . . . ;G

n
nÞ

are simulated using a random genealogy, the coalescent.

This gives an approximation of the distribution of

x2 : 5 x2
ĥ;q̂
ðGn

1; . . . ;G
n
nÞ : 5

Xn� 1

i 51

ðGn
i � Eĥ;q̂½Gn

i �Þ
2

Eĥ;q̂½Gn
i �

; ð7Þ

where Gn
i is the number of genes present in i individuals. (Note

that Eĥ;q̂½Gn
i � does not depend on s here.) The weight of the

distribution of v2 above x2
ĥ;q̂
ðgn

1; . . . ; g
n
nÞ gives the P value.

For the simulation of frequency spectra, we use the soft-

ware IMaGe (see http://omnibus.uni-freiburg.de/;fb6/). In

each iteration, we obtain realizations of the random varia-

bles Gn
1; . . . ;G

n
n�1, and we can compute v2 from equation

(7), where the expectations are based on the estimators ĥ
and q̂ used as input for the simulations. Having thus simu-
lated the distribution of v2, we can now decide whether we

are able to reject neutral evolution based on the observed

gene frequency spectrum.

False-Positive Rate of the Neutrality Test

In order to obtain the false-positive rate of the neutrality

test, we simulated 1,000 data sets for different values of
h and q under neutrality and computed the P value for each

with the IMaGe Software. If the P value was below 0.05, we

rejected the hypothesis of neutrality. The rejection rate in

this setting equals thus the false-positive rate and should

be at most 0.05; see figure 2.

Sampling Bias

Note that it is possible to correct the test of neutrality for sam-

pling bias (see Supplementary Material online). We assume

here that the n individuals are sampled from the source pop-
ulation so as to be as distantly related as possible. This option

allows us to assess whether a small P value is simply due to

nonrandom sampling of individuals from the population.

Estimating the Effective Population Size

We have estimated the combined parameters h5 2Neu and

q 5 2Nev. If branch lengths on the tree s can be given in

terms of numbers of generations, both the effective popu-

lation size and gene gain and loss probabilities per genera-

tion can be obtained. Here, we take a 23S rDNA distance of

1% to represent about 50 Myr divergence, as suggested in

Dufresne et al. (2005). (The maximal divergence between
strains is taken in order to obtain an upper bound for the

estimate of the time to the latest common ancestor.) For

translating numbers of years to numbers of generations,

we need an estimate for the generation time. We take

one generation per day, which might be a slight overestima-

tion as compared with table 2 in Jacquet et al. (2001).

Using the calibration of the tree and the generation time,

we obtain an ultrametric tree s where all branch lengths are
assigned a number of generations. Our procedure to obtain

the effective population size is based on the assumption that

s is in fact a realization of a coalescent tree. We use the in-

tercoalescent times Ti, that is, the number of generations

where the ultrametric tree s has i lineages. From s, we read

off the intercoalescent times T2 5 t2, . . ., Tn 5 tn, measured

in generations. Because the random times T2, . . ., Tn are in-

dependent, we obtain the unbiased estimate:

N̂e 5
1

n � 1

Xn

i 52

� i
2

�
Ti : ð8Þ

k-Clades

The bacteria within a taxon can be categorized into eco-

types. For a given phylogeny and estimators ĥ and q̂, we

re
je
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n 
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te

0 500 1000 1500 2000

0.
00
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06
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FIG. 2.—The false-positive rates of the neutrality test are shown

for different values of h. The gene loss rate was set to q 5 0.5, 1, 2, 10.

For each parameter combination, we simulated 1,000 independent data

sets, each of size n 5 7.
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define a k-clade to be any set of individuals that are ex-
pected to differ by at most k genes. Note the following

for the IMG model: given two individuals separated by a ge-

nealogical distance of 2tNe generations, the expected num-

ber of genes differing between the two is 2h(1 � e�qt)/q; see

equation (6). Thus, the expected number of differences is

smaller than k for t � log½1�qk=ð2hÞ�
�q 5 : sk. In the coalescent,

the duration for which i lines are present is expected to be
2

iði�1Þ Ne generations, so maxfj : 2 �
Pj

i52
2

iði�1Þ.skg k-
clades are expected to be present. Conversely, it has been

shown empirically that ecotypes differ by k genes on aver-

age (for some number k). Therefore, using ĥ and q̂, it is pos-

sible to estimate the number of ecotypes, that is, the

number of clades that differ by k genes or more.

Extrapolation Model

We compare the IMG model to other models of the bacterial

pangenome. To estimate the number of core genes for the

total population, the approach taken by Medini et al. (2005)

and Tettelin et al. (2005) is relevant: when sequencing n ge-

nomes, there is a number Gn
n genes common to all genomes

whose discovery rate is assumed to decay exponentially, that

is, Gn
n � a � bn þ c for parameters a . 0, 0 , b ,1, and c .

0. In a similar way, it is possible to look at the number of

genes an additional individual would add to the known gene

pool, Sn. In Tettelin et al. (2008), it is recognized that

a power-law decay based on Heaps’ law (a rule from linguis-

tics for counting new words in long texts; see Section 7.5 in

Heaps 1978) can be used, that is, Sn � d � n�a. We fitted
d and a to our observed values of Sn for random orders

of the individuals; see the Supplementary Material online

for more details.

Supragenome Model

The supragenome model from Hogg et al. (2007) posits that

genes occur in d different classes. It assumes the existence of

Gi genes, which occur at frequencies of li for i 5 1, . . ., d.

Note that G5G1 þ/þ Gn is the total number of genes in

the pangenome. Just as in the original paper, we fixed d 5 7

and the frequencies l1 5 0.01, l2 5 0.1, l3 5 0.3, l4 5 0.5,

l5 5 0.7, l6 5 0.9, and l7 5 1.0. Therefore, G7 represents
the number of genes that occur at a frequency of 1.0 or the

core genome. The genome of an individual can then be gen-

erated by adding any gene of class i with probability li for

i 5 1, . . ., 7. The parameters G1, . . ., G7 are estimated by

maximum likelihood, which maximizes the probability of

generating 11 genomes with identical gene frequency dis-

tribution to that observed in the data set; see the Supple-

mentary Material online for more details.

Data Source

Genome sequences of 11 marine Synechococcus isolates

and 11 Prochlorococcus isolates were downloaded in Fall

2007 from GenBank (for accession numbers, see supple-
mentary table S1a, Supplementary Material online). All 22

cyanobacterial genome sequences have been published

(see Dufresne et al. 2003; Rocap et al. 2003; Kettler

et al. 2007; Dufresne et al. 2008), and, except for Synecho-
coccus WH5701, all sequence information belongs to a sin-

gle scaffold (Dufresne et al. 2008). In addition, we used

a random sample of 11 genomes from aquatic bacteria

as a control for the test of neutrality (supplementary table
S1b, Supplementary Material online).

Gene Modeling

Because we noted discrepancies in the way the cyanobacte-
rial genomes were annotated (see supplementary table S2,

Supplementary Material online, for the cyanobacterial ge-

nomes), the analyses were performed by omitting all existing

annotation and remodeling genes. Therefore, genes in all 22

of the genomes were modeled by GeneMark (Borodovsky

and McIninch 1993) with the default parameters, and data-

bases of all open reading frames were generated for each

genome sequence. Note that the gene length is set to a
minimum of 45 nt in GeneMark. For the 11 aquatic strains,

we relied on the genes as given by the National Center for

Biotechnology Information database.

Clustering

The databases resulting from the gene modeling were com-

pared with each other by BlastP (BLOSUM62) within the cy-

anobacteria and the aquatic bacteria, respectively. Clusters

of homologous genes were generated by the MCL algo-

rithm (Enright et al. 2002) using BlastP scores as input.

Genes i and k from two different individuals are said to

be homologous if 1) the BlastP e value is below 10�8,
2) the percentage of identity given by b(i, k) satisfies

b(i, k) � max{maxj 6¼ 1 b(i, j) � 10,10} (where j is taken from

the same individual as k), 3) a similar requirement for the

length of i and k, and 4) MCL puts i and k in the same gene

cluster.

From these data, we calculated the number of gene clus-

ters common to all genomes (core genes) or present in a sub-

set of genomes (dispensable genes). We did not annotate
gene functions because we were exclusively interested in

the number of orthologs between genomes. An overview

of the accession numbers, genome sizes, modeled numbers

of genes, and gene clusters per genome is provided in sup-

plementary table S1a, Supplementary Material online. These

calculations yielded 1,100 ortholog gene clusters in the core

genome.

Shared Gene Content Tree

Phylogenetic relationships between genomes based on

shared gene content can be visualized as trees. Phylogenetic

trees were inferred using PHYLIP version 3.66 (Felsenstein
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1997) (Fitsch–Margoliash option). The trees were built with

the individual distances between genome A and genome B

set to the percentage of noncommon genes in these two

individuals (fig. 4).

Estimating the True Organismal Tree

In order to reconstruct the true organismal tree, we used

the software ClonalFrame (Didelot and Falush 2007),

which can handle a large set of genes as input to infer

the most probable organismal tree. Here we used the
set of core genes present in each of the sampled individ-

uals, excluding those core genes with multiple copies per

individual. For the combined sample of Prochlorococcus
and Synechococcus, 913 genes fulfilled this criterion,

whereas only 130 such core genes were found in the

11 aquatic bacteria. For each of these genes, a muscle

alignment (Edgar 2004) was constructed. The software

ClonalFrame was used to estimate the true organismal
tree using the parameters -x 17500 -y 2500 -z 50 -G -H.

ClonalFrame simulates the posterior distribution of trees

given the muscle alignments. From this posterior dis-

tribution, ClonalFrame computes an ultrametric con-

sensus tree, which was used for the presented analysis

using IMaGe.

Results

The IMG Model and the Test of Neutrality

Before we started to analyze the data set of 22 cyanobac-

terial genomes, we ran two control studies. First, we used

simulations to check whether the test has approximately the

correct rejection rate. This procedure was necessary because

we used an estimation of the gene gain and loss rate within

the test. As seen in figure 2, the rejection rate never exceeds
0.05 and thus the test is conservative. Second, we wanted to

see if the test can reject neutrality at all for a data set from

natural populations. Here, we used 11 randomly sampled

genomes from aquatic bacteria. We estimate ĥ530:301,

q̂510:8, and ĉ5302, and the P value for our statistical test

on this data set is 0.00004 and 0.00002 when correcting for

sampling bias. Because evolution of all aquatic bacteria can

hardly be assumed to have been neutral, these results are
reasonable.

The cyanobacterial data set was analyzed in two ways:

1) as a combined sample of all 22 genomes and 2) as two

samples of 11 genomes each, considering the genomes of

Prochlorococcus and of Synechococcus separately. We esti-

mated the model parameters h, q, and c using genealogical

information from a phylogeny based on 913 core genes

(fig. 3 and table 1).
The test of neutrality for the IMG model yielded signifi-

cant results for Synechococcus and the combined data set of

Synechococcus and Prochlorococcus. A nonsignificant result

FIG. 3.—The phylogeny of Prochlorococcus based on 913 core

genes. Sequences were aligned using muscle, and the tree was inferred

by the software ClonalFrame using the parameters -x 17500 -y 2500 -z

50 -G -H. Numbers indicate the probability that the respective branch

appears in a random draw from the posterior distribution as given by

ClonalFrame.

Table 1

Estimators for the IMG Model and the P Value for the Test of Neutrality

Ne û r̂ ĉ P Value

Prochlorococcus 1.01 � 1011 2,309.17 2.80 1,208 0.630

Synechococcus 1.42 � 1011 4,422.04 3.38 1,430 0.0105

Combined 2.79 � 1011 6,631.75 5.25 1,099 ,0.0001

FIG. 4.—The gene content tree for Prochlorococcus. The bootstrap

values have been computed using random samples of the generated

gene clusters.
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was found for Prochlorococcus (table 1). In addition, when

the correction for sampling bias was used, the P value was
P 5 0.057 for the Synechococcus data set and ,10�4 for

the combined sample. Thus, sampling bias can explain

some of the deviation from the null model; however,

these results still suggest nonneutral evolution, at least

for Synechococcus.

Model Comparison

The observed gene frequency spectrum gn
1; . . . ; g

n
n, the ba-

sis of the neutrality test, and the spectrum predicted by

the IMG model are shown in figure 5. Note that the pre-

dicted spectrum can be computed either on a fixed tree

(again we used the tree inferred by ClonalFrame) or on

a random tree, the latter being the usual approach in pop-

ulation genetics.

Because Prochlorococcus showed the least deviation
from neutrality in our neutrality test, we used this data

set for comparing the IMG model with previous approaches.

For the extrapolation model (see Materials and Methods),

we estimated Sk � 878.01 � k�0.64 (recall that Sk is the num-

ber of new genes in the kth sequenced individual) and
Gk

k � 467:94 � 0:68k þ 1214:34 (where Gk
k is the number

of genes present in all k sampled individuals). For the supra-

genome model, estimators were obtained for d 5 7 fre-

quency classes (which come with frequencies l1 5 0.01,

l2 5 0.1, l3 5 0.3, l4 5 0.5, l5 5 0.7, l6 5 0.9, and

l7 5 1.0, respectively), as in the original paper (Hogg et al.

2007). This resulted in Ĝ153486; Ĝ254068; Ĝ351;

Ĝ45486; Ĝ5561; Ĝ65148; Ĝ751171:
Using these three approaches, we computed predictions

for various statistics for comparison with the data set. We

calculated the average number of genes per individual

and the pangenome sizes in a sample of n 5 2, n 5 11

and in a sample of n 5 1,000 individuals, as well as the num-

ber of genes in frequency at least 1% and the number of

new genes added by sequencing the 12th Prochlorococcus
individual; see table 2. For the IMG model, these numbers
are derived from equations (1), (2), (3), and (4) using estima-

tors from table 1. The extrapolation model was not used to

FIG. 5.—The gene frequency spectrum for our data set of 11 individuals of Prochlorococcus and Synechococcus, respectively. The x axis gives the

number of individuals a gene can be present in, and the y axis gives how many genes are present in that frequency. Predictions are obtained using

estimates from table 1 either on a fixed tree or on the average over a random tree.

Table 2

Observations and Predictions for Various Statistics and Models for Prochlorococcus

Observation IMG Model, Fixed Tree IMG Model, Random Tree Extrapolation Supragenome

Model parameters — Tree, h; q; c h;q; c a; b; c; d; a G1, . . . , G7

Genes per individual, G1
1 2,019 2,033 2,033 — 2,032

Pangenome size, G2 2,562 2,308 2,641 — 2,581

Pangenome size, G11 5,025 5,025 5,245 5,041 5,023

Pangenome size, G1000 ? — 15,225 28,051 9,421

Pangenome size, GNe ? — 57,792 15,337,650 9,421

Genes in frequency at least 1% ? — 8,549 — 9,421

New genes in 12th individual, S12 ? — 167 177 159

NOTE.—For example (second line), we compare the average number of genes per individual for observed and predicted values. Question marks indicate that the relevant numbers

are to dates unknown.
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predict G1
1, as the extrapolation will only give reasonable re-

sults for n � 3. For such n, the extrapolation model implies

Gn 5
Xn

i 5 2

Si þ K;

where K is the average number of genes per individual in the

sample. In the supragenome model, the expected number

of genes per individual is given by G15
P7

i51 Gili. More

generally, we obtain

Gn 5
X7

i 5 1

Gi ½1 � ð1 � liÞn�:

The number of new genes in the 12th individual is given

by G12 � G11.

For both the supragenome model and the IMG model, it

is possible to simulate data on the presence and absence of

genes in a sample. Using the shared gene content in simu-

lated data, we inferred the underlying genealogy for both
models. Because the supragenome only takes presence

and absence of genes into account, these genealogies

are almost star like; see figure 6.

k-Clades

Prochlorococcus and other marine picocyanobacteria can be

divided into several clades or genetically and physiologically

distinct populations. These clades separate Prochlorococcus
into sublineages such as LL–adapted and HL–adapted eco-

types that partition themselves vertically along the light gra-

dient in the water column. The 11 available Prochlorococcus
genomes are divided into the five clades HLI, HLII, LLI, LLII/

LLIII, and LLIV (Moore et al. 1998; Johnson et al. 2006). The
lowest average difference between these clades is k 5 433.6

different genes between HLI and HLII. In Rusch et al. (2010),

the existence of two thus far uncultivated clades occurring in

the high-nutrient, low-chlorophyll, iron-depleted waters of

the Pacific and Indian Oceans was documented. Another

novel Prochlorococcus clade has recently been discovered

in high-nutrient, low-chlorophyll waters in the South Pacific

Ocean (West et al. 2010). Based on our estimators ĥ and q̂ for
Prochlorococcus, setting k 5 433.6, we expect at least 18

such k-clades.

Discussion

The IMG Model

Although the amount of genomic data for various bacterial

taxa increases at a rapid pace, our understanding of the rel-

ative importance of the evolutionary forces, which shape

these genomes, is still far from complete. It is evident that

classical evolutionary factors, such as mutation, selection,

recombination/HGT, and genetic drift, are underlying ge-

nome evolution in bacteria. However, bacteria differ from
eukaryotes because their genome is much more variable

in gene content. We present here the IMG model, which

is the first mechanistic model which applies a population ge-

netic approach to genome evolution of bacteria. In addition,

we present here the first test of hypotheses about neutral

evolution of the distributed bacterial genome. The IMG

model is based on the genealogy of the sampled individuals

and the mechanisms of gene gain—for example, by HGT
from a different taxon or simple uptake of genetic material

from the environment—and gene loss. This approach is in

line with traditional models from population genetics such

as the infinitely many alleles model (Kimura and Crow 1964)

and the infinite sites model (Kimura 1969). The equivalent of

the two alleles of an SNP in the infinite sites model are pres-

ence and absence of a gene in the IMG model. The greatest

difference between the IMG model and traditional population
genetic analysis is that the IMG model can use independent

phylogenetic information from 16S and 23S rDNA, sequences

of core genes, or other conserved genomic regions.

Recently, Collins and Higgs (2012) have extended the

IMG model by assuming that the dispensable genome

may fall in several classes, each of which comes with its

FIG. 6.—Data (i.e., a sample of 11 complete genomes) are generated according to the supragenome model and the IMG model, respectively. This

means that the data consist of information about presence and absence of genes. Then, the gene content tree, inferred from pairwise distances of

individuals, is drawn.
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own rate of gene gain and loss. In particular, they show that
a model with two different classes of dispensable genes, but

without assuming that any of the genes is essential for sur-

vival, gives a reasonable fit of the gene frequency spectrum

for 172 complete genomes of Bacilli.

Test of Neutrality and Adaptive Forces

The IMG model comes with only three model parameters,
and it can be used to estimate the gene gain and loss rates.

In addition, it can be tested and is able to accurately explain

various statistics. Once a significant result of this test is

found (as e.g., for the combined sample of Prochlorococcus
and Synechococcus), the source of the deviation from neu-

trality must be found, such as 1) HGT, 2) varying population

size, 3) positive selection, and 4) negative selection.

The sample of 11 aquatic bacteria shows a clear deviation
from neutrality. This is not surprising because these individu-

als occupy different ecological niches and are hence exposed

to different selection pressures. For example, among the ma-

rine bacteria, we chose Persephonella marina, a chemolitho-

trophic, thermophilic hydrogen-oxidizing bacterium isolated

from a deep sea hydrothermal vent, colonizers of sediment

(Hyphomicrobium denitrificans), and phytodetrital macroag-

gregates (Rhodopirellula baltica), an obligate microaerophilic
magnetotactic cocci (Magnetococcus), and Shewanella
baltica isolated from a deep anoxic basin in the Baltic

Sea. Among the nonmarine strains is a cyanobacterial isolate

from a rice field (Cyanothece), a freshwater fish pathogen

(Flavobacterium psychrophilum), and Geobacter metallire-
ducens, an organism able to gain energy through the dissim-

ilatory reduction of iron, manganese, uranium, and other

metals. In particular, these bacteria belong to widely differ-
ent taxa (three very different alpha 2 gamma-, one delta-

proteobacteria, two Bacteroidetes/Chlorobi, one each from

the Aquificae, Planctomycetacia, and Cyanobacteria), which

diverged a long time ago. Although neutral evolution can be

rejected for the random sample of aquatic bacteria, the

P value of 0.00004 could still be improved. To do so, infor-

mation other than the gene frequency spectrum must be

included in the test. Additionally, power could be gained
from the presence or absence of pairs of genes, which is

equivalent to the analysis of linkage disequilibrium of SNPs

in the infinitely many sites model.

The IMG model takes an extreme view of bacterial ge-

nome evolution because it assumes that genes in the core

genome are absolutely necessary for survival, whereas

genes in the dispensable genome behave neutrally. In par-

ticular, the presence or absence of dispensable genes are
assumed not to lead to any change in fitness, whereas in

nature, several dispensable genes are known to affect fit-

ness (e.g., the nitrite and nitrate assimilation genes in uncul-

tured Prochlorococcus cells from marine surface waters;

Martiny et al. 2009). Moreover, the loss of some genes in

marine picocyanobacteria is probably not neutral. Prochlor-
ococcus cells are extremely small at only 0.5–0.8 long and

0.4–0.6 lm wide (Morel et al. 1993), and this small size is

thought to facilitate the uptake of rare nutrients due to the

high surface-to-volume ratio of these cells (Chisholm

1992). Because cell size and genome size are correlated,

the loss of genes and the resulting reduction of genome

size should be advantageous in the nutrient-poor marine

environment. The frequencies of genes related to phos-
phorus acquisition are ecosystem specific (Coleman and

Chisholm 2010). In Prochlorococcus, genes related to

phosphorus acquisition, metabolism, and uptake (which

are upregulated during P-starvation) are more abundant

in populations from phosphorus-poor habitats, such as

the Atlantic near the Bermuda, compared with the Oceans

close to Hawaii. Using a comparative genomics approach,

Coleman and Chisholm (2010) argue that these genes
were recently transferred and spread through the Atlantic

population by HGTand positive selection. However, only 29

out of 2,854 genes in Prochlorococcus show significantly

different frequencies between Bermuda and Hawaii, sug-

gesting that much of the variation in gene content is in fact

neutral.

The Underlying Genealogy in the IMG Model

In our analysis, we use the coalescent as a model for the true

organismal tree of the sample under consideration and

a core gene–based phylogeny s as a proxy for this true tree.

For both trees, there are alternative possibilities. Although

the approximation of the true tree by the sequences of many

genes should be a reliable method, in principle, s can be in-

ferred by any algorithm generating an ultrametric tree, like
UPGMA or ClonalFrame. As well as the algorithm, the par-

ticular genes used to construct the tree s will effect the es-

timates of h and q. However, because the IMG model is

based on the coalescent, methods taking coalescent theory

into account should be preferred to construct s.
The choice of the coalescent in the IMG model is inspired

from population genetic theory because it arises as the equi-

librium tree for a constant size population. However, it has
not been shown yet that the standard neutral model is

a good null model for prokaryotic evolution. Because the

notion of species remains unclear for prokaryotes, models

for macroevolution could be used as well, for example, birth

and death trees (Nee 2001) or the tree arising in a critical

branching process (Aldous and Popovic 2005). Moreover,

Cohan (2002) suggests the stable ecotype models, where

ecotypes are purged by periodic selection and may as well
inhabit new ecological niches. However, the resulting gene-

alogical tree has not been studied yet. Another choice is sug-

gested in Collins and Higgs (2012) who use gene gain and

loss along a star-like phylogeny. However, they conclude

that the coalescent gives superior results.
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The Role of HGT Within Populations

As a general pattern, it has been shown that HGT can be

a strong force in shaping bacterial genomes (Ochman et al.

2000), in particular in early evolution (Vogan and Higgs

2011). Whereas the IMG model as presented above takes

into account HGT between distant taxa, leading to gene

gain in the sequenced population, HGT within the popula-

tion is not taken into account. One objective of future re-

search will be to extend the IMG model to include the

possibility of horizontal gene flow within a population,

which was started in Baumdicker and Pfaffelhuber

(2011). Such a model-based analysis may lead to statistics,

which can disentangle the effects of these evolutionary

forces on gene content variation.

HGT has long been known to be an important player in

prokaryotic evolution (Doolittle et al. 2003). A quantitative

analysis is today given by using phylogenetic networks

(Huson and Bryant 2006) rather than trees and findings

of specific HGTevents along a given phylogeny. Halary et al.

(2010) suggested that horizontally transferred genes may

belong to different worlds that relate to different mecha-

nisms and pools of shared genes. Dagan and Martin

(2007) have analyzed different models for HGT along given

phylogenies. In particular, they compared the loss-only

model, with single-origin and multiple-origin models. In

the loss-only model, all genes are assumed to be present

in the MRCA, whereas the single-origin model assumes—as

the IMG model—that every gene present was gained or

horizontally transferred exactly once along the phylogeny.

Multiple-origin models then allow for multiple such gain

events of single genes, which is not taken into account

in the IMG model due to the assumption that all gained

genes are new. Dagan and Martin (2007) concluded that

loss-only and single gain models frequently imply ancestral

genomes, which are much larger than present ones. How-

ever, their analysis is based on data through distant groups,

from Archaea to Proteobacteria. In contrast, having a pop-

ulation genetic basis, the IMG model should only be applied

to more closely related taxa. At least for cyanobacteria that

we study here, their figure 3 suggests that the single-origin

model is realistic in the sense that ancestral genomes can

well be of the same size as present ones.

For future applications of the IMG model, the ratio of
HGT between taxa to HGTwithin taxa will be of importance.

If the sampled sequences are only distantly related, HGT

events between ancestral lines of the sampled sequences

must be taken into account, leading to a low ratio, render-

ing the assumption of single origins of genes made in the

IMG model false. In contrast, if the sampled sequences are

closely related, the potential number of genes that are im-

ported from distant taxa is vast, leading to a high ratio. Here,

the assumptions made by the IMG model as presented in the

present paper seem realistic.

Comparison to Other Models

Among the models presented here, the IMG model is the only

one that incorporates evolutionary forces such as gain and loss

of genes. It can be extended to include other forces such as

HGT within the population and selection, leading to different

patterns of genomic diversity. Both the extrapolation model

(Medini et al. 2005; Tettelin et al. 2005, 2008) and the supra-

genome model (Hogg et al. 2007; Snipen et al. 2009) are

purely descriptive, and statistical inference for bacterial evolu-

tion has so far not been developed based on these models.
Our numerical comparison of the IMG model (three pa-

rameters) with the extrapolation model (five parameters)

and supragenome model (seven parameters) revealed that

all three models are capable of predicting particular quan-

tities, such as the total number of genes in a bacterial

population; see table 2. The IMG model yields reasonable

estimates in comparison with the other two models despite

being based on only three parameters. The extrapolation

model falls short when predicting important statistics, as

it gives only a fit to the pangenome and a fit to the new

genes in the next individual for large sample sizes n.

The supragenome model gives better approximations to

the gene frequency spectrum than the IMG model (table 2).

However, the gene frequency spectrum consists of only 11

summary statistics for our Prochlorococcus data set, and

the IMG model can explain these numbers using only three

parameters instead of the seven parameters required by the

supragenome model (not counting the additional seven

different frequencies of the frequency classes).
The supragenome model leads to unrealistic conclusions

in at least two respects. First, it does not predict the number

of genes that occur at small frequencies (below 1% in our

analysis). However, such genes may comprise the largest

part of the distributed genome in many populations

(fig. 5). Second, regarding the separation of clades, the es-

timation for the number of k-clades from the IMG model

seems reasonable. In the supragenome model, the inferred

genealogies using gene content trees is almost star like (see

fig. 6). This implies that the number of k-clades coincides

with the sample size for small k and equals 1 for larger k. In

particular, the supragenome model fails to estimate the

correct number of k-clades in almost all cases.

The difference between predictions from the extrapola-

tion, supragenome, and IMG model is most apparent when

comparing the predicted size of the pangenome of a bacte-

rial taxon depending on the sample size. Whereas the ex-

trapolation model predicts a power law for the growth of

the pangenome with the sample size, the supragenome

model assumes a closed (bounded) pangenome, although

the IMG model predicts a logarithmic increase of the num-

ber of genes; see equation (2). Interestingly, Donati et al.

(2011) find a logarithmic increase in the size of the pange-

nome in a sample of Streptococcus pneumoniae.
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Prochlorococcus and Synechococcus

Using independent phylogenetic information, we obtained

estimators for the gene gain and loss rates, h and q. These

also result in estimators for the probability of a single gain or

loss during one round of replication (gain: 1.14 � 10�8 and

loss: 1.38 � 10�11 for Prochlorococcus).
The combined gene frequency spectrum for Prochloro-

coccus and Synechococcus shows a deviation from the

expectation under the IMG model. The data set from Syn-

echococcus itself gives a significant result, suggesting that

other forces, such as population expansion, HGT within the

population, or selection, act at least on Synechococcus.
A closer look at the data reveals the most severe deviation

between observed and expected gene frequency spectra. We

find a reduced number of genes present in two (out of 11 Syn-

echococcus strains) and an elevated number of genes present

in10 of the 11strains. The reason for the discrepancybetween

theobservedandpredictednumberofgenespresent in2outof

11 is that the estimator tries to adapt to an excess of singleton

genes in the data and thus overestimates the numberof genes

in2 of11strains. Possible reasons for this discrepancy are sam-

plingbias,populationgrowth,populationstructure, andselec-

tion. However, sampling bias does not lead to an increased

numberofhigh-frequencyvariants.Accordingly, theneutrality

test rises to0.057, which suggests that sampling bias isnot the

only source of deviation from the neutral model.
It is reasonable to assume that most of the genes in the

dispensable genome are deleterious because selection acts

to minimize the genome due to energetic considerations

(Lane and Martin 2010). As a result, we expect that most

of the ancient genes in the dispensable genome have been

filtered out while more recently gained genes are still pres-

ent. This form of selection can also lead to an excess of sin-

gleton genes. It is important to note, however, that the same

selective forces cannot explain an increased number of high-

frequency genes, which might instead be due to epistasis in

the dispensable genome.

HGTcan lead to the rejection of the neutrality test as well.

However, HGTcannotexplain the excessof singletons because

this mechanism would instead result in a higher number of

genes at intermediate frequency (Baumdicker and Pfaffelhub-

er2011).Thisresult is inagreementwiththemainconclusionof

Luo et al. (2011), who suggest that HGT is not the primary rea-

son for the genome size difference between Prochlorococcus

andSynechococcus. Inassessingtheeffectofpopulationstruc-

tureonthegene frequency spectrum, it shouldbekept inmind

thatSynechococcus isfoundinmorediversehabitats, including

coastal and open ocean waters in tropical, temperate, and po-

lar regions (for review, see Scanlan et al. 2009), whereas Pro-

chlorococcus is restricted to the ultraligotrophic open ocean

waters of tropical and subtropical regions. These observations

suggestastrongerpopulationstructureforSynechococcusand

thus a more severe deviation from the IMG model.

Effective Population Sizes

Effective population sizes for bacteria are difficult to esti-

mate (Fraser et al. 2009). Assuming that the inferred phy-

logenies are in fact realizations of coalescent trees, such

estimates can be obtained. The effective population size

determined here for Prochlorococcus (1.01 � 1011) is rel-
atively large as compared, for example, to that previously

reported for Escherichia coli (2.5 � 107, Charlesworth and

Eyre-Walker 2006).

The large population size of Prochlorococcus reported

here is in line with previous observations by Hu and Blanchard

(2009), who rejected the hypothesis of a small effective pop-

ulation size based on an analysis of substitution rates and

inefficient purifying selection. Moreover, from the effective
population size of Prochlorococcus and equation (2), we ob-

tained an estimate of 57,792 genes for the Prochlorococcus
total gene pool using the IMG model. This number depends

on the estimates of the generation time and the time to

the most recent common ancestor of Prochlorococcus.
Although more data would lead to better estimates for

these two parameters, the dependence is weak: we would

predict 32,072 genes if the latest common ancestor lived
2,000 years ago and the prediction increases only to

65,267 genes if the latest common ancestor lived when life

on earth began. In any case, most of these genes are present

only in a very few individuals. Nevertheless, several thousand

genes in picocyanobacteria, which are present at significant

frequencies in the pangenome, remain yet to be sequenced.

Supplementary Material

Supplementary materials are available at Genome Biology
and Evolution online (http://www.gbe.oxfordjournals.org/).
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