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The Infinity Norm of a Certain Type

of Symmetric Circulant Matrix

By W. D. Hoskins and D. S. Meek

Abstract.   An attainable bound for the infinity norm of the inverse of a whole class

of symmetric circulant Toeplitz matrices is found.   The class of matrices includes

those arising from interpolation with both odd and even degree periodic polynomial

splines on a uniform mesh.

1. Introduction.  In a recent paper Albasiny and Hoskins have found attainable

bounds for the infinity norm of the inverse of the matrix arising from interpolation

with an odd degree periodic polynomial spline on a uniform mesh.  Their methods

can be generalized and apply to a larger class of circulant matrices which includes the

matrices arising from interpolation with even degree periodic polynomial splines on a

uniform mesh.  The results are sharpened in that, although the above-mentioned

bound is not attained for odd order matrices, it can now be shown that as the order

increases the actual infinity norm approaches the bound.

The bound on the infinity norm of the inverse of these particular matrices is

useful in the error analysis which examines the accuracy with which various derivatives

of a smooth periodic function are approximated by an interpolating periodic polyno-

mial spline on a uniform mesh. In [3] this error analysis is given for odd degree splines

and with the help of [5] and the results developed here, this error analysis can be

carried out for even degree splines.

The first part of this paper is concerned with the general results on the infinity

norms while the second part shows that these results apply to even degree splines and

that the bounds obtained can be very simply expressed in terms of Euler numbers.

2. Bound on the Infinity Norm.   Let a¡, i = 0, 1.r, be a set of r + 1,

r > 1, real positive numbers such that the function

F(x) =ar+ ar_x(x + l/x) + ■ • • + a0(xr + \¡xr)

has 2r negative real zeros, not equal to -1 (denoted by ~bk, -l/£>fc with bk > 1,

k = 1, 2, . . . , r).  Throughout this section it is assumed that the symbol a¡ represents

numbers chosen as above.

Theorem 2.1.  Let A be the n x n symmetric circulant,
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or more briefly,

A = circ(ar, ar_v . . . , aQ, 0, . . . , 0, a0, . . . , ar_x)nXn.

where the quantities ar, . . . , a0 are fixed, but n is an arbitrary positive integer with

n> r + 1, and let L be defined,

(2.1)       L = ar - 2Mr_, + 2ar_2 -■■■ + 2(- l)'a0 = a0 ft bk(\ - l¡bk)2,
fc=i

f-iii =then for n even, \\A    \\ = \\L and for n odd

\\A-X\\<WL fi    -y1      <!/¿
kl=\\l+llb»kJ

but iimn_>0<>||j4-1|| = \jL.   The matrix norm here and throughout the paper is the in-

finity norm of Varga [8, p. 15].

The proof for n even is a generalization of a proof in [3], and the ideas for the

proof for «odd are contained in [4].  It follows from a succession of theorems in this

section.  To make the statements of these theorems simpler, a matrix related to matrix

A whose inverse has the same infinity norm as A~x is now defined.  Let the matrix B

be B - SAST, where Sis the diagonal matrix diag(l, -1, . . . , (-l)"_1)„Xn-

Before stating the next theorem, it must be observed that the quantity L in

Eq. (2.1) is F(-1) and is a positive number, as can be seen if F(x) is written in the

form

Hx)=a0 n   bk(l +xlbk)(\ +x-l/bk).
fc = i
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Theorem 2.2.   The matrix A is positive definite with its smallest eigenvalue

being L when n is even and approaching L from above when n is odd and increasing.

Proof.   Since A is a circulant, its eigenvalues are known explicitly and are

F(wm) where wm = exp(2mm/n), m-\,2.n, [7].  By writing the eigenvalues

in the form

F^m) ^olí «** + WM + K, + <»>
*=1

it can be seen that the eigenvalues are positive.  The smallest eigenvalue is obtained by

taking m = n¡2 when n is even and is F(-1) = L.   For n odd, m = (n - l)/2 or m =

(n + l)/2 gives the smallest eigenvalue; and this eigenvalue is greater than L but

approaches L as n increases.

Theorem 2.3. Ifn is even, B~1 > 0 and \\B~Ï\\ = Í/L.

Proof.   The proof is a simple modification of a proof in [3] and expresses B~l

as the product of positive matrices.

Theorem 2.4. Ifn is odd, \\BTl\\ < l/L.

Proof.   The methods in [3] can be generalized to show \\B~l\\ < l/L, but the

following proof, which is similar to the one for Theorem 2.3, shows that for n odd,

wrH<HL
Let Q be the matrix

Q =

i
o

-l nXn

and note that Q l = QT, Q" = -/.   Now the matrix B can be written

B = a/ - ar_,(Q + QT1 ) + ••• + (- Xja^ + QTr),

and its inverse is

B-1 = l/«0 n l/Mf- UbkQrxTlQ - UbkQTl •
k=r

The matrices (/ - l/fefeß)_1 and (/ - \lbkQ~l)~l can be expanded in powers of Q;

and it can be seen that, although their elements are not all positive, the sign pattern is

simple enough that the infinity norm can be found by the summation of a geometric

series.  Thus,

1 - Hb"k        1 li\-U\ =w-iibkQr1\\ = w-iibk<rT1\\ <
1 + 1/62 i-i/**   i-i/**'

and the infinity norm of B 'is bounded

\\B-l\\<lla0 J] ilbJj-Ljç-y = ML.
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The proof of Theorem 2.1 can now be completed. The elements of the two matrices A  '

and B~x have the same moduli but not the same signs so that H-4"11| = |LS * ||. If n is

even, ||i4-I|| = ||£_1|l = l/L. Ifn is odd, |H_1|I = IIÄ_1|I < ML. Now the smallest

eigenvalue of A approaches L from above as n increases, thus the largest eigenvalue of

A-1 approaches \\L from below. This in turn means that |t4_11| must approach \\L

from below as n increases, [8, p. 10].

3. Application to Even Degree Splines. A restricted form of the theorems in the

previous section has already been applied in an error analysis with odd degree splines

[3]. In this section it is shown that the theorems also apply to even degree periodic

splines, and a similar error analysis could be performed using [5].

The matrix arising from even degree periodic splines of degree TV is

D = circ(c(7V+1)/2>Ar, c(JV_1^2>JV, .... cti2tN, 0, . . . , 0,

<31> c c c )C1/2,N> C3/2^V.c(N-l)/2Jv)nXn>

where ci+ 1/2yNis defined in [5],

ct+i/2jf=MQff+1(i + M2),

and QN+l(x) is the 5-spline with integral knots

Ö,v+1(x) = l/yV!V"+1x?.

The theorems in the previous section may be used here if the symmetric polynomial

N

Pn(x) =   £   Ci+l/2JfX
1 = 0

has N negative roots none of which equals-1. In [2, p. 135] the analogous theorem for

odd degree splines is proven, and the same method of proof applies here. Using the re-

currence relation from [6]

c,+ i/2,iv+i =(f + M2)ci+i/2Jf+(N-i + 3/2)ci_l/2jf,

and an inductive argument, the polynomial pN(x) is seen to satisfy the recurrence relation

PN+ÁX) = (1/2 + (N + \ll)x)pN(x)-x(x - \)p'N(x).

Again using induction, it is possible to prove that pN(x)h.?& N distinct negative roots.

This polynomial is symmetric, TV is even and the N roots are distinct; thus, none of the

roots can equal -1.

Having seen that the theorems of the previous section apply to the matrices from

even degree splines, it is now desirable to express the bound on the infinity norm in

simple terms. For the matrices arising from odd degree splines this bound can be ex-

pressed in terms of Bernoulli numbers [3], while for the matrices associated with even de-

gree splines, it is expressed in terms of Euler numbers.

The bound for the matrix arising from even degree splines, Eq. (3.1), is

L = c(N+l)/2,N ~ 2c(N-l)/2J{ + " " " + 2(-l/       Ci/2jlf.
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The generating function for the coefficients ci+1,2/v- is

[5], and letting z = -e* and then x = 0,

Nowe*/2/(l + e*)is1¿sechx/2,sofrom [l,p. 85]

L=(-\fl2EN,

where ¿^ is the Nth Euler number.

If/is a periodic function and s a periodic spline of even degree interpolating to/

at a uniform set of knots, then the following error bounds may be obtained (as in [3] ),

where the norm of a function is the maximum absolute value of the function at the knots.

The symbols f and s are vectors of the function values and spline values at the knots.

TV = 2, s is a quadratic spline

»w-^iK^iifWii + ot;*4),

(cf. [9]).

TV = 4, s is a quartic spline

l|f(1)"s(1)|l<i¿o/z4||f(s)|l + 0(A6)'

||f<3> - s<3>||< | A2||f<5>|| + Oih4),
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x = 0

||f<2>-s(2>||<^/i2||f<4>||+0(/A

l|f(2)"s(2)|l<40Ö,!4||f(6)|l + o('l6)'
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