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Schizophrenia is a disorder with a heterogeneous etiology involving complex interplay

between genetic and environmental risk factors. The immune system is now known to

play vital roles in nervous system function and pathology through regulating neuronal

and glial development, synaptic plasticity, and behavior. In this regard, the immune

system is positioned as a common link between the seemingly diverse genetic and

environmental risk factors for schizophrenia. Synthesizing information about how the

immune-brain axis is affected by multiple factors and how these factors might interact

in schizophrenia is necessary to better understand the pathogenesis of this disease.

Such knowledge will aid in the development of more translatable animal models

that may lead to effective therapeutic interventions. Here, we provide an overview of

the genetic risk factors for schizophrenia that modulate immune function. We also

explore environmental factors for schizophrenia including exposure to pollution, gut

dysbiosis, maternal immune activation and early-life stress, and how the consequences

of these risk factors are linked to microglial function and dysfunction. We also propose

that morphological and signaling deficits of the blood-brain barrier, as observed

in some individuals with schizophrenia, can act as a gateway between peripheral

and central nervous system inflammation, thus affecting microglia in their essential

functions. Finally, we describe the diverse roles that microglia play in response to

neuroinflammation and their impact on brain development and homeostasis, as well

as schizophrenia pathophysiology.

Keywords: neuroinflammation, microglia, schizophrenia, genes, Environment, risk factors, brain development,

neurodevelopmental

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 August 2020 | Volume 14 | Article 274

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2020.00274
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncel.2020.00274
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2020.00274&domain=pdf&date_stamp=2020-08-27
https://www.frontiersin.org/articles/10.3389/fncel.2020.00274/full
http://loop.frontiersin.org/people/867154/overview
http://loop.frontiersin.org/people/1015593/overview
http://loop.frontiersin.org/people/51155/overview
http://loop.frontiersin.org/people/215119/overview
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Comer et al. Inflammation in Schizophrenia Pathogenesis

INTRODUCTION

Schizophrenia (SCZ) is a prevalent mental illness without
satisfactory treatment options. Approximately 20 million people
worldwide are afflicted by this chronic and debilitating mental
disorder (American Psychiatric Association, 2013; Whiteford
et al., 2013). SCZ is characterized by a broad range of clinical
manifestations including hallucinations, social and cognitive
impairments, as well as disordered thinking and behavior that
impair daily functioning (American Psychiatric Association,
2013). Current treatment options do not improve cognitive or
negative symptoms, both of which contribute more significantly
to the long-term prognosis of SCZ than positive symptoms
(Lieberman et al., 2005; Green, 2006). More effective therapies
for SCZ have lagged due to a lack of understanding of its
underlying mechanisms.

Genome-wide association studies (GWAS) have identified
novel susceptibility loci that confer greater risk for SCZ
(Ripke et al., 2013; Li et al., 2017). These breakthroughs have
enabled the characterization of genes that may shed light on
the pathophysiology of SCZ. In addition, much progress has
been made in preclinical studies focusing on environmental
risk factors for SCZ and other neurodevelopmental disorders
(NDD) that alter brain development such as psychosocial stress,
maternal immune activation (MIA), and exposure to pollution
(Bergdolt and Dunaevsky, 2019; Gomes et al., 2019; Horsdal
et al., 2019). Although there are a multitude of genetic and
environmental factors conferring increased risk for SCZ, recent
work suggests that these factors converge by altering immune
processes, which are known to play an essential role in shaping
brain development (Müller and Schwarz, 2010; Stephan et al.,
2012; Kroken et al., 2018). Indeed, elevated immune function
and chemokine responses are found in SCZ and therapeutics that
target immune function have shown some success in symptom
reduction (Sommer et al., 2014; Frydecka et al., 2018; Kroken
et al., 2018). Importantly, subclinical inflammation correlates
with cognitive deficits in SCZ (Misiak et al., 2018), which are a
critical determinant for the long-term prognosis of this disease.
It is unclear how immune molecules regulate synaptic wiring
during normal brain development and contribute to synaptic
pathology in neuropsychiatric disorders. Causal links between
specific immune molecules and altered synaptic connectivity
within circuits implicated in neuropsychiatric disorders are
currently lacking (Elmer and McAllister, 2012).

Microglia are central nervous system (CNS) phagocytes that,
among their other roles, orchestrate innate immunity in the
brain. Microglia have well-described roles in rapidly responding
to inflammatory insults through dynamic surveillance of the CNS
parenchyma (Nimmerjahn et al., 2005; Liu Y. U. et al., 2019) and
clearing debris and apoptotic cells through phagocytosis (Ayata
et al., 2018; Galloway et al., 2019). Recent studies have begun to
uncover the diversity of microglia, which can have significantly
different gene expression patterns across brain regions, in health
and in pathological states, and at different developmental time
points (Tay et al., 2017a; Hammond et al., 2019; Sankowski et al.,
2019; Tan et al., 2020). These complex cells contribute to normal
brain development and function by supporting the neuronal

circuitry through synapse addition, elimination, maintenance,
and plasticity (Hammond et al., 2018; Bohlen et al., 2019).
Despite variability in the findings of several studies, there is
evidence of microglial dysfunction in SCZ (Bayer et al., 1999;
Hercher et al., 2014; Bloomfield et al., 2016; Trépanier et al.,
2016; De Picker et al., 2017; Sellgren et al., 2019; Uranova
et al., 2020). A key element to understand the pathogenesis
of SCZ is to discern how genetic and environmental risk
factors intersect to alter microglial function given. Furthermore,
outstanding questions that remain to be answered are at what
stage(s) of disease progression microglial function ameliorates or
contributes to the pathology of SCZ, and what are the particular
subtypes or phenotypes of microglia that could be targeted for
therapeutic intervention.

In this review, we discuss the genetic and environmental
risk factors for SCZ and how they converge to alter microglial
function in response to systemic and central inflammation.
Additionally, we highlight how these risk factors alter the
indispensable functions of microglia during development,
adolescence and adulthood. Limitations of the current
knowledge are also addressed, and key future experiments
are proposed. Understanding how the heterogeneous genetic and
environmental risk factors for SCZ interact to reach a disease
threshold and determine its progression is necessary for the
development of more effective therapeutics.

GENETIC RISK FACTORS THAT INTERPLAY
WITH IMMUNOLOGICAL RESPONSES

Schizophrenia is driven by genetic factors, as the risk for
developing this disorder increases from 1% in the general
population to 50% in individuals with a diagnosed twin
(Cardno and Gottesman, 2000; Stefansson et al., 2009). Recent
ground-breaking genome-wide association studies (GWAS) have
made progress in discovering loci throughout the genome that
are associated with SCZ (Schizophrenia Psychiatric Genome-
Wide Association Study Consortium, 2011; Ripke et al., 2013;
Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014; Li et al., 2017; Dennison et al., 2019). These
studies reveal that SCZ has a heterogeneous etiology, with
genes likely conferring risk across the entire genome. This
heterogeneity, in combination with environmental factors, has
made it difficult to pinpoint which genes contribute to the disease
pathology. Although the genetic determinants for SCZ are not
well understood, evidence suggests that immune dysfunction and
inflammation contribute to its pathophysiology (Trépanier et al.,
2016; van Kesteren et al., 2017).

The major histocompatibility (MHC) locus is located on
chromosome 6 and has the highest association to SCZ compared
to any other loci across the genome (Shi et al., 2009; Stefansson
et al., 2009; Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014). This region encodes genes that
are involved in innate immunity. For instance, complement
component 4A (C4A), located in the MHC locus, is highly
associated with SCZ: specific structural variants and regulatory
regions that increase the expression of C4A confer a greater risk
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for SCZ (Sekar et al., 2016). The complement cascade is part of
the innate immune system that recognizes foreign pathogens and
apoptotic cells, and tags them for destruction, such as through
phagocytosis by macrophages (Veerhuis et al., 2011). Besides
their established role in immune defense, complement proteins
play a role in various stages of brain development including
neurogenesis, cellular migration and synaptic development
(Veerhuis et al., 2011; Lee et al., 2019). Ground-breaking work in
the last 5-10 years have linked complement proteins to microglia-
mediated pruning of synapses, suggesting that C4A could directly
contribute to SCZ pathology (Stevens et al., 2007; Schafer et al.,
2012; Hong et al., 2016).

In line with this, it was recently shown that increased
expression of the mouse homologue of C4A, C4b, in medial
prefrontal cortex (mPFC) layer (L) 2/3 pyramidal neurons
led to a marked reduction in connectivity and decreased
sociability in juvenile and adult mice, both of which mirrored
the deficits seen in SCZ (Comer et al., 2020). These results
suggest that C4A might contribute directly to pathology in
SCZ. Although, the molecular mechanisms that link increased
C4 expression to synaptic loss remain unclear, overexpressing
this neuroimmune gene led to increased localization of the
postsynaptic protein PSD-95 to microglial lysosomes, suggesting
upregulated microglia-dependent synaptic engulfment (Comer
et al., 2020). Additionally, variation in C4 structural alleles
increases risk for autoimmune diseases and indicate that sex-
differences in the C4 gene might explain greater vulnerability
to SCZ in males (Kamitaki et al., 2020). In another study, C4
serum levels were assessed at baseline and in a 1-year follow-up
in a cohort of twenty-five patients with first episode psychosis
that were taking either olanzapine or risperidone (Mondelli et al.,
2020). Compared with responders to antipsychotic medication,
non-responders showed significantly higher baseline C4 levels,
suggesting that baseline expression of this immune gene can
predict clinical outcome (Mondelli et al., 2020). Since this study
focused on a limited number of markers, it is not clear however
how psychosis progression correlates with levels of other immune
genes. Lastly, the gene ‘CUB and sushi multiple domains 1‘
(CSMD1) is an important regulator of C4 that is expressed during
early postnatal development (Kraus et al., 2006). Genetic variants
located in the CSMD1 and CSMD2 genes have been linked to
SCZ (Håvik et al., 2011) and their dysregulation led to deficits in
general cognitive ability and executive function (Athanasiu et al.,
2017), both of which are affected in SCZ. Conversely, a recent
study showed that CSMD1 levels in the blood are decreased in
SCZ, while antipsychotic treatment resulted in up-regulation of
CSMD1 and improved cognitive symptoms (Liu Y. et al., 2019).

Transcriptomic and genomic studies have implicated
alterations in key cytokines with SCZ, including increases in
interferon regulatory factor 3 (IRF3) (Li et al., 2015), which is
a major transcription factor in viral infection, and interferon
gamma (IFN-γ), an important regulator of viral propagation
(Paul-Samojedny et al., 2011). In support of neuroimmune
genes altered in SCZ, other studies have found changes in
pro-inflammatory interleukin 1 (IL)-1α (Katila et al., 1999),
IL-1β (Katila et al., 1999; Sasayama et al., 2011), IL-6 (Kalmady
et al., 2014; Frydecka et al., 2015) and anti-inflammatory IL-10

[reviewed in Gao et al. (2014)]. Several studies also investigated
circulating C-reactive protein (CRP), IL-6, IL-1β, TNF-β,
and TGF-β, which are also elevated at the mRNA level in
people with SCZ, to determine their reliability as peripheral
biomarkers (Kroken et al., 2018). However, other studies
reported limited immune gene enrichment in SCZ (Pouget et al.,
2016), highlighting the genetic complexity of the disease, in
addition to possible variability between cohorts and confounding
factors such as medication, among other challenges with GWAS.

Several GWAS have revealed that multiple immune receptors
are associated with SCZ including the MHC receptors and Toll-
like receptors (TLRs) (Purcell et al., 2009; Shi et al., 2009;
Stefansson et al., 2009; Schizophrenia Psychiatric Genome-Wide
Association Study Consortium, 2011; Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014). TLRs
play a role in the recognition of microbe-derived molecular
signals by innate immune cells including microglia [reviewed in
Wright et al. (2001) and Lehner (2012)]. In addition to their
established role in innate immunity, TLRs regulate early brain
development (Mallard, 2012; Chen et al., 2019) via their effects
on synaptic plasticity and neurogenesis (Barak et al., 2014). Other
groups have shown alterations in TLR2 (Kang et al., 2013) and
TLR4 (García-Bueno et al., 2016; MacDowell et al., 2017) in
either the blood or post-mortem brain tissue of people with
SCZ. Overall, these data have linked MHC signaling and other
immune receptors pathway with the pathology of SCZ, However,
the molecular underpinnings of their contribution to SCZ are not
yet clear. It also still not understood how disruption in particular
immune pathways contributes to specific cellular and behavioral
hallmarks of this disorder, such as decreased gray matter volume.

To identify robust peripheral biomarkers that can predict
SCZ pathology, researchers have compiled an architecture of
genes observed in patients from multiple GWAS. A subset
of overlapping genes from these studies identified candidates
including CD14, CLU, DPP4, EGR1, HSPD1, MHC and C4 genes
(Pouget et al., 2016). Despite the identification of these candidate
biomarkers, other studies highlight that the current literature
does not provide sufficient evidence that increased inflammation
is a hallmark of all SCZ cases (Kroken et al., 2018). Some studies
have identified markers that are related to antigen presentation
and immune activity (Pouget et al., 2016), whereas others have
revealed changes in inflammatory cytokines (Hudson and Miller,
2018; Kroken et al., 2018). These studies together indicate that
some cases or stages of SCZ may involve the innate and/or
adaptive immune system. However, genetics only explains part
of the susceptibility and pathophysiology of SCZ, which provides
further support that environmental risk factors are also required
to trigger the disease in most cases (Knuesel et al., 2014).

Lastly, SCZ-associated genes with diverse functions in the
brain have also been implicated in inflammation (Brandon
et al., 2009). For example, the gene Disrupted-in-Schizophrenia
1 (DISC1) was first found in a Scottish family with SCZ
(St Clair et al., 1990) and subsequently in other populations
worldwide (Chubb et al., 2008). Interestingly, the disruption
of DISC1 protein in mice led to dysregulation of an immune-
related network of genes that are perturbed in SCZ (Trossbach
et al., 2019), suggesting that non-immune genes can modulate
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the expression of inflammatory gene networks. In support of
this, in a dual-hit genetic-environmental mouse model of SCZ,
where DISC1 mutation was combined with MIA, transient
administration of minocycline, an anti-inflammatory antibiotic
drug, rescued electrophysiological and structural deficits during
early postnatal development, as well as cognitive abilities in
juvenile mice (Chini et al., 2020). It is clear that the expression
of hundreds of genes is altered in SCZ, although it remains
to be determined how the interaction between immune and
non-immune pathways is implicated in this disorder. Overall,
growing evidence suggests that immune gene dysfunction and
inflammation both contribute to the pathophysiology of SCZ
(Trépanier et al., 2016; van Kesteren et al., 2017).

EXPOSURE TO POLLUTION CAUSES
NEUROINFLAMMATION

The environment is becoming increasingly polluted from
multiple sources. Traffic-related air pollution (TRAP), such as
diesel exhaust (Inoue et al., 2006; Hartz et al., 2008; Block and
Calderón-Garcidueñas, 2009; Bolton et al., 2017), is the result
of the combustion of fossil fuels and can be modeled in the
lab using elemental carbon (Newman et al., 2013) or by taking
the finest particles (<200 nm) from TRAP and re-aerosolizing
them into nanoparticulate matter (nPM). nPM is the most toxic
component of TRAP, in terms of its impact on the brain (Davis
et al., 2013). By-products of TRAP, such as ozone (O3), which
can be generated from nitrogen oxide, can also be changed
photochemically after their release frommotor vehicles (Mumaw
et al., 2016). Altogether, multiple paradigms are currently used
in animal models to study the effects of air pollution on brain
development (Davis et al., 2013; Newman et al., 2013; Woodward
et al., 2017; Table 1). This work is particularly relevant when
considering the epidemiological studies that link air pollution
to SCZ pathogenesis (Horsdal et al., 2019). Indeed, many of the
genes altered in SCZ overlap with genes that are affected by
exposure to air pollution (Figure 1). Interestingly, immune genes,
including those expressed by microglia, are at the center of this
interaction (Peters et al., 2006; Genc et al., 2012).

While the mechanisms involved in SCZ pathogenesis are still
unclear, exposure to air pollution has been found to increase the
expression of multiple inflammatory genes in humans andmouse
models. Children exposed to TRAP have elevated circulating
levels of pro-inflammatory cytokines, including IL-6, IL-1ß,
CD14, and TNF-α, compared to children living in less-polluted
cities (Calderón-Garcidueñas et al., 2008, 2015; Gruzieva et al.,
2017). Additionally, nPM from air pollution induced a similar
inflammatory cytokine signature in the circulation of healthy
young adults, characterized by an elevation of IL-6, together with
an increased density of inflammatory cells and microparticles,
suggesting the occurrence of endothelial injury (Pope et al., 2016).
In line with this, TRAP exposure in rodents increased IL-1α, IL-6
and TLR4 expression in the brain (Bos et al., 2012; Bolton et al.,
2017). Pollution exposure especially impacted microglial TLR4
signaling in multiple mouse models involving TRAP (Woodward
et al., 2017, 2018), O3 (Mumaw et al., 2016), or diesel exhaust

particle (Bolton et al., 2017; Bai et al., 2019) exposure, by
upregulating TLR4 in a MyD88-dependent pathway (Woodward
et al., 2017). Male offspring were especially susceptible to these
deleterious effects, showing greater changes in microglial TLR4
signaling that were accompanied by behavioral deficits in anxiety-
like behavior, contextual and auditory cue fear conditioning and
the forced swim test (Bolton et al., 2012, 2013; Bolton et al.,
2017). Prolonged exposure to inflammatory molecules, such as
IL-6, additionally led to neuroadaptive effects such as altered
synaptic plasticity (Gruol, 2015). Therefore, exposure to pollution
could alter brain development and function by causing increased
expression of pro-inflammatorymarkers, a feature on whichMIA
models of SCZ rely on (Girgis et al., 2014).

TRAP alters brain development and increases the risk for
SCZ (Pedersen et al., 2004; Woodward et al., 2015), however it
is unclear if pollution-mediated changes in brain development
or inflammatory signaling directly contribute to pathology.
Recent work has studied the effects of chronic nPM exposure
using a double-hit model where cortical neuronal cultures from
exposed mice were re-exposed in culture. A double exposure
to nPM reduced neurite outgrowth (Davis et al., 2013) while
resulting in an inflammatory transcriptomic profile (Solaimani
et al., 2017) in neuronal cultures. Another group showed that
TRAP can reduce hippocampal neurogenesis by 70% in rats,
which correlated with behavior deficits in object recognition,
food-seeking behavior, and in the forced swim test (Woodward
et al., 2018). These phenotypes were reproduced in mice using
elemental carbon exposure (Morris-Schaffer et al., 2019). In
the mouse brain, nPM exposure induced neuroinflammation
evident through a microglia-mediated increase in TNF-α (Cheng
et al., 2016). Furthermore, exposure to nPM led to altered
microglia morphology and elevated levels of C5, C5a, and CD68
proteins, indicative of increased phagocytic activity, in the corpus
callosum (Babadjouni et al., 2018) a region that is particularly
reduced in volume in SCZ patients (Kubicki et al., 2005). Other
work has highlighted the neurotoxicity of ultrafine particles
(UFP), which induced pro-inflammatory signaling and lead to a
long-lasting reduction of corpus callosum volume (Allen et al.,
2017). Overall, neuroinflammation induced by pollution appears
to have a substantial impact on the brain by altering axonal
myelination (Cole et al., 2016). However, it is still unclear to what
extent pollution-driven inflammation, compared to other risk
factors, drives myelination deficits in SCZ. Taken together, the
inflammatory state caused by exposure to air pollution has been
shown to alter microglial function and neuronal development,
as well as axonal myelination, thus affecting several processes of
neurodevelopment that have been linked to SCZ pathogenesis.

THE GUT-BRAIN AXIS IN SCZ

The CNS communicates bi-directionally with the gastrointestinal
(GI) system to maintain homeostasis, for instance by regulating
hunger and digestion processes at steady state (Konturek et al.,
2004). There has been extensive study of the reciprocal gut
and CNS interactions, which communicate through the enteric
nervous system and vagus nerve, and via alternative pathways
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TABLE 1 | Overview of the effects of different pollutants on neuroinflammation.

Pollutant

Expourse

Species Age Sample measurements Phenotype Articles

NO2 and PM humans 8 years old (exposure in

infancy)

serum levels increase in IL-6 and IL-10 2017 Gruzieva et al.,

2017

CO, NOx, NO2,

and benzene

humans longitudinal- from

childhood to adulthood

SCZ diagnosis increased risk of developing SCZ (only

for exourse to benzene and CO

Pedersen et al.,

2004

NOx, NO2 and

PM

humans longitudinal- from

childhood to adulthood

Presense of psychosis increased odds of psychotic

experiences (only for exposure to NO2

and NOx)

Newbury et al.,

2019

PM (2.5 um) humans young adults plasma levelsapoptosis apoptosis of endothelial cells, increased

levels of circulating monocytes and

T-cells, increased proinflammatory

cytokines (IL-6, IL-1β, MCP-1, and

MIP-1)

Pope et al.,

2016

DEP mice embryonic (E18) to

young adulthood (P30)

(prenatal exposure)

cytokine ELISAs and IHC from

hippocampus and parietal

cortex

increased cytokines and altered

morphology of microglia in male mice

dependent on TLR4 signaling; altered

cortical volume; increased

microglia-neuron interactions in males

Bolton et al.,

2012, 2017

DEP mice adults olfactory bulb and

hippocampus protein levels

increased lipid peroxidation and

pro-inflammatory cytokines (IL-1α,

IL-1β, IL-3, IL-6, and TNF-α). Increased

expression of Iba1 and TSPO

Cole et al.,

2016

DEP mice adult (prenatal

exposure)

behavioral, brain protein and

mRNA levels from PCF, HPC,

hypothalamus and parietal

cortexi

increased anxiety behaviors; Increased

IL-1β and TLR4 in males and

decreased IL-10

Bolton et al.,

2013

nanoscale PM

(<0.2 um)

mice adults neonatal cortical neurons impaired neurnal differentiation;

increased depressive behaviors

Davis et al.,

2013

nanoscale PM

(<0.2 um)

mice adults corpus callosum protein levels increased complement protein

deposition (C5, C5a and CD88) in brain

but not serum; altered microglial

morphology

Babadjouni

et al., 2018

PM mice juvenile mice (postnatal

day 11-15) (prenatal

exposure)

cerebellum myelin density,

cerebellum iron levels, RNAseq

of cerebellum

increased inflammation signaling;

increased iron inclusions; myelin sheath

damage

Klocke et al.,

2018

PM (2.5 um) mice adults (exposure in

utero)

western blot, ELISA and IHC in

temporal cortex

deficits in spatial memory; increase in

COX2 and Arg1 protein, increase in

GFAP reactivity, decreased cytokines

levels in temporal cortex (IL-1α, IL-2,

IL-4 IL-6, IL-10, IFN-γ, GM-CSF and

TNF-α) and spleen (IL-2,IL-6, IL-10 and

TNF-α)

Kulas et al.,

2018

ultrafine

elemental

carbon

mice adults (neonatal

exposure)

behavioral assays, protein

expression in the corpus

callosum and ventricles

no changes observed in locomotion,

learning, memory, impulsivity or anxiety

behaviors, no changes in GFAP or MBP

Morris-Schaffer

et al., 2019

ultrafine PM mice juvenile and early

adulthood

hippocampus and amygdala

transcript and protein, corpus

callosum IHC, behavioral

measures

lateral ventricle dilation; changes in

cytokines, neurotransmitters and

microglia activation markers in

sex-dependent manner,

hypomyelination, elevated glutamate,

increased repetitive and impulsive

behaviors

Allen et al.,

2014, 2017

nanoscale PM

(<0.2 um)

rats gestation to adulthood behavioral, protein levels in the

adult hippocampus

70% decrease in adult hippocampal

neurogenesis, 35% increase in Iba1 in

the dentate gyrus; 75% decrease in

tight junction protein of the BBB;

impaired contextual memory,

food-seeking and depressive-like

behaviors

Woodward

et al., 2018

(Continued)
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TABLE 1 | Continued

Pollutant

Expourse

Species Age Sample measurements Phenotype Articles

nanoscale PM

(<0.2 um)

rats/mice in vitro: postnatal day 3,

in vivo: adult

glial transcript measurements in

culture (rat mized glial cultures)

and hippocampus (mice)

TLR4-mediated increase in 2000

transcripts related to neuroinflammation

and stress

Woodward

et al., 2017

carbon black

and DEP

rats/mice adults cultured microglia (mice BV-2

cells) and hippocampus (rat)

protein levels

increased IL-6, TNF-a, and Iba1,

increased caspase-3 mediated

autophagy in microglia

Bai et al., 2019

ozone (O3),

mixed vehicle

exhaust

rats/mice young and aged adults serum levels increased microglial proinflammatory

response especially pronounced in

aging mice

Mumaw et al.,

2016

PM: particulate matter, SCZ: schizophrenia, ELISA: enzyme-linked immunosorbent assay, IHC: immunohistochemistry, PFC: prefrontal cortex, HPC: hippocampus, mRNA:
messenger RNA, IL: interleukin, TSPO: translocator protein, Iba: Ionized calcium binding adaptor molecule 1, TLR: toll-like receptor, TNFα: tumor necrosis factor alpha,
MCP-1: monocyte chemoattractant protein-1, MIP-1: macrophage inflammatory protein 1, GFAP: glial fibrillary acidic protein, CD88: cluster of differentiation 88, COX-2:
cyclooxygenase-2, IFNγ: interferon gamma, gm-csf: granulocyte-macrophage colony-stimulating factor, C: complement cascade, BBB: blood brain barrier.

involving the immune and neuroendocrine systems (Sudo et al.,
2004; Sampson et al., 2016; Singh et al., 2016) or through direct
secretion by gut microbes of neurotransmitters (Yano et al.,
2015) and metabolites (De Vadder et al., 2014; Sherwin et al.,

FIGURE 1 | Overlap between immune-signaling genes that are associated

with pollution and SCZ. Of the immune genes that are associated with SCZ,

many are also found to be altered either in humans or animals exposed to

pollutants, offering a genetic point of convergence between changes in

pollution-mediated inflammatory signaling and SCZ. Inflammatory gene

expression, including TLR2, TNF-α, MHC, CRP, TLR4, IRF3, complement

pathway, IL-6, IFN-y, CD14, IL-10, TGF-β are altered in SCZ, while TNF-α,

TLR4, IL-6, CD14 and IL-1 are altered in SCZ and after exposure to air

pollution. These genes are specifically enriched in microglia.

2019). However, the importance of the gut in mediating brain
function and behavior was ignited by the discovery that germ-
free mice, which are devoid of microorganisms, have heightened
stress responses (Sudo et al., 2004). In more recent work, the
microbiota has been shown to influence complex behaviors such
as social behavior, depression, and anxiety which are directly
relevant to SCZ and other neuropsychiatric disorders (Desbonnet
et al., 2014; Sherwin et al., 2019). Additionally, 19% of people
with SCZ are comorbid for irritable bowel syndrome, which has a
known inflammatory etiology (Gupta et al., 1997) compared to an
occurrence rate of only 2.5% in the general population. Studying
the role of the microbiota in disease states is challenging since it
is highly sensitive to environmental changes. Therefore, most of
the environmental risk factors for SCZ also impact themicrobiota
(Franklin and Ericsson, 2017), making it difficult to determine
causation. However, recent work suggests a causative role for the
microbiota in neuropsychiatric disorders and highlights the role
of the immune system in linking the brain and gut in pathological
conditions (Castro-Nallar et al., 2015; Yolken et al., 2015; Schwarz
et al., 2018; Zheng et al., 2019; Zhu et al., 2019).

The microbiota not only plays a key role in regulating
host metabolism but also modulates inflammatory responses
and neural function. Germ-free mice have multiple deficits in
nervous system function including heightened hypothalamic-
pituitary-adrenal (HPA) axis responses (Sudo et al., 2004), altered
anxiety-like behaviors (Neufeld et al., 2011), increased motor
activity (Diaz Heijtz et al., 2011), and impaired memory (Gareau
et al., 2011), and social behaviors (Desbonnet et al., 2014). In
healthy individuals, increased HPA axis function is generally
associated with a suppression of subclinical inflammation
due to the anti-inflammatory properties of glucocorticoids
(Barnes, 1998). However, the ability of cortisol to suppress
inflammation might be altered in SCZ, instead correlating
with increased inflammation evident by an increase in IL-6
(Chiappelli et al., 2016).

The microbiota of people with SCZ has been found to
contain more of the bacterial species Lactobacillus compared
to healthy controls, and levels of this bacterium correlate with
psychosis severity (Castro-Nallar et al., 2015; Yolken et al., 2015;
Schwarz et al., 2018). In a recent study, gut microbiota from SCZ
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patients was transferred into germ-free mice to test whether SCZ-
relevant behavioral phenotypes were transmissible via their gut
microbiome. Germ-free mice receiving fecal transplants from
these patients had lower levels of glutamate and higher levels
of glutamine and GABA in the hippocampus, and these mice
exhibited locomotor hyperactivity and decreased anxiety-like and
depressive-like behaviors, as well as increased startle responses
relative to control mice that received fecal transplants from
healthy subjects (Zheng et al., 2019). However, SCZ patients
in this study were receiving antipsychotic treatment, which
has been shown to alter the gut-microbiome (Bretler et al.,
2019) so this could be a confounding effect. Transplantation
of the gut microbiome from drug-free individuals with SCZ
into antibiotic-treated mice caused SCZ-related phenotypes
such as impaired learning and memory as well as increased
psychomotor behaviors, while also leading to increased PFC
dopamine and hippocampal serotonin levels compared to mice
receiving microbiota transplants from healthy controls (Zhu
et al., 2019), suggesting drug-independent effects of the gut-
microbiome in SCZ.

Microbes are able to produce or aid in the production
of multiple neurotransmitters, including serotonin, dopamine
and GABA, but it is still unclear how the gut production of
these neurotransmitters affects CNS function (Yano et al., 2015;
Strandwitz, 2018). Additionally, gut microbiome transplantation
or treatment with probiotics has been shown to, at least partially,
reverse MIA-associated phenotypes in rodents, including deficits
in anxiety-like, stereotypic and sensorimotor behaviors (Hsiao
et al., 2013). The reversal of these phenotypes seems to be
mediated through the normalization of gut permeability and
microbe dysbiosis (Hsiao et al., 2013), suggesting that the
gut microbiota can directly modulate immune responses even
between a dam and its embryo. This is not surprising given
that the microbiota has a well-studied role in inducing and
maintaining the function of the host immune system.

The gut microbiome can affect the integrity of the blood-brain
barrier (BBB), which facilitates increased neuroinflammation.
The presence of gut microbes is necessary for the proper
formation of the BBB during early development. Mice from
germ-free dams have disrupted BBBmaturation, which is evident
by decreased tight junction expression both prenatally and
postnatally. The hyperpermeability of the BBB in germ-free
mice persists into adulthood, but can be rescued by microbiota
transplantation from controls or through the administration of
bacteria that produce short chain fatty acids (SCFAs) (Braniste
et al., 2014), which are known to have anti-inflammatory effects
and promote BBB integrity (Hoyles et al., 2018). As mentioned
previously, the gut plays an important role in the differentiation
of Th17 cells. Interestingly, the gut also promotes the infiltration
of Th17 cells into the brain through the meninges where
these cells secrete IL-17, which further promotes immune cell
infiltration [reviewed in Cipollini et al. (2019)]. BBB endothelial
cells express TLRs and therefore are able to respond to gut
microbe components such as LPS, which can alter tight junction
expression and promote immune cell infiltration into the CNS
(Tang et al., 2017). The BBB and microbiome are both disrupted
in SCZ; this works thus highlights the potential for crosstalk

between these systems that might act synergistically to further
contribute to neuroinflammation in SCZ.

Gut microbes produce metabolites that can cross the BBB
and inhibit the function of mitochondria in the CNS (Hulme
et al., 2020). A decrease in mitochondria density and altered
structure has been observed in post-mortem SCZ brain tissue
across multiple regions including the anterior cingulate cortex
(Flippo and Strack, 2017; Roberts, 2017). This finding raises the
intriguing possibility that gut microbe metabolites can contribute
to SCZ pathology.While the identity of the CNS cell(s) affected by
gut metabolites remains unclear, the dysfunction of mitochondria
in microglia has been shown to alter cytokine production and
inflammatory responses in the brain [reviewed in Culmsee et al.
(2018)]. MIA, which increases the risk for SCZ, has been shown
in mice to alter the structure of mitochondria in a disease-
associated microglial subtype known as dark microglia, among
the hippocampus (Hui et al., 2018). Taken together, these studies
suggest that there is extensive interplay between risk factors for
SCZ, such that signaling from the gut-brain axis and exposure
to an early immune insult can alter the function of microglia
and CNS mitochondria. Future studies could aim to target the
gut microbiome to dually control BBB integrity and reduce
neuroinflammation.

Gut microbiota dysbiosis can alter the maturation and
function of microglia in the CNS, thus contributing to
neuroinflammation (Erny et al., 2015; Thion et al., 2018). Germ-
free mice have microglia with an immature morphology and gene
expression profile in adulthood (Erny et al., 2015), suggesting that
the microbiota impacts the maturation of microglia. The absence
of microbes was found to not only affect microglial function
but also impair innate immune responses, which were partially
recovered by colonization with a more complex microbiome
or by supplementation with SCFAs, which are a by-product of
certain gut microbes (Erny et al., 2015). SCFAs might affect
CNS function through their interactions with BBB endothelial
cells (Braniste et al., 2014) or directly with the CNS considering
that they do not require receptors to bypass the BBB (Frost
et al., 2014). The lack of SCFAs could additionally lead to
increased peripheral and central inflammation considering their
well-known anti-inflammatory functions (Vinolo et al., 2011; Li
M. et al., 2018).

Microglia also show sex-dependent differences in response
to gut microbe sterility. Microglia from germ-free male mice
displayed altered expression of immune genes and a more
immature phenotype at juvenile stages whereas microglia from
female mice were more affected in adulthood (Thion et al.,
2018). These findings suggest that the maternal microbiome can
regulate microglial function in the offspring brain (Thion et al.,
2018), notably in the context of MIA exposure (Kim et al., 2017;
Shin Yim et al., 2017), in a sexually dimorphic manner. Sex
differences in microglial response to microbiome challenges are
intriguing as they could partially explain the earlier onset of SCZ
in males compared to females (Ochoa et al., 2012). MIA models
also display sexual dimorphism in microglial properties and
behavioral outcomes (Hui et al., 2018). However, much work is
needed to understand whether microglia-induced sex differences
are present in SCZ.

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 274

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Comer et al. Inflammation in Schizophrenia Pathogenesis

Without a doubt, the gut microbiome influences the
development and maintenance of the immune and nervous
systems, with significant crosstalk. In the context of SCZ,
the metabolites and diversity of gut microbes may impact
multiple disease symptoms. The microbiome links multiple
risk factors for SCZ, including stress responses, by promoting
immune activation and BBB disruption. Innate immunity of
the brain, including microglial function, is sensitive to gut
dysbiosis, making the gut microbiota an interesting target
in SCZ. Probiotics and microbiome transplants should be
further explored to improve symptom severity in people
with SCZ. Additionally, precautionary steps could be taken
in pregnant mothers to improve diversity of gut microflora,
considering its profound impact on brain development. Future
work should further explore the role of SCFA-producing
microbes, considering that they exert anti-inflammatory
effects and improve brain function and behavior. Taken
together, gut microbes are positioned to alter immune
responses to environmental challenges by regulating neuronal
function, behavior, and microglial responses, all of which
are altered in SCZ.

MIA ENHANCES RISK FOR SCZ BY
ALTERING MICROGLIAL FUNCTION

It has become increasingly clear that immune challenges
occurring during pregnancy increases offspring risk for varied
neurodevelopmental and neuropsychiatric disorders, including
SCZ. Specifically, maternal exposure during pregnancy to
bacterial (Sørensen et al., 2009) or viral infections such as
influenza, rubella or herpes (Pearce, 2001; Brown and Derkits,
2010) leads to lasting changes in offspring brain function and
behavior (Estes and McAllister, 2016). Maternal infection has
been extensively studied using animal models of MIA, which
have provided a substantial amount of causative evidence for how
early immune insults disrupt brain development and function
(Knuesel et al., 2014; Estes and McAllister, 2016). MIA can be
induced by exposing pregnant dams to immunogens that mimic
an infection. The most common immunogens used to model
MIA include polyinosinic:polycytidylic acid [poly(I:C)] and LPS
which mimic viral or bacterial infection, respectively. These
agents elicit immune responses that enable cytokines to pass
through the placental barrier, activating placental and embryo
macrophages, and leading to increased inflammation in the
developing offspring (Wu et al., 2017). Although work is needed
to normalize MIA protocols, particularly on the temporal level,
and to understand the variability in reported results (Kentner
et al., 2019), this animal model has provided insight into how
maternal infection enhances the risk for various disorders. Here,
we focus on progress that has been made in understanding
prenatal immune challenges in mice and humans.

MIA impacts brain function in a circuit-specific manner and
interacts with other risk factors for SCZ. These early immune
insults can elicit a vast array of phenotypes in mice that are
relevant to SCZ and ASD, including abnormalities in ultrasonic
vocalization and sociability, increased repetitive behaviors, motor

dysfunction, and deficits in sensorimotor gating and cognitive
abilities such as workingmemory (Knuesel et al., 2014; Fernández
de Cossío et al., 2017; Pendyala et al., 2017; Shin Yim et al., 2017).
Some of these behavioral effects are sex-dependent (Haida et al.,
2019). MIA-induced behaviors were accompanied by changes
in specific brain areas such as altered hippocampal volume and
cortical thickness, and changes in synaptic density and proteins
(Estes and McAllister, 2016; Fernández de Cossío et al., 2017),
which are also observed in SCZ (Glantz and Lewis, 2000; Hui
et al., 2018; Onwordi et al., 2020). Alterations in amygdala-
cortical circuitry have been implicated in SCZ (Benes, 2010)
and a recent study showed that MIA enhances glutamatergic
neurotransmission between these circuits by increasing synaptic
strength in the exposed offspring (Li Y. et al., 2018). An
exciting development in this field showed that MIA-induced
deficits in neurodevelopment depend on inflammatory signaling
through the maternal microbiome (Kim et al., 2017). MIA via
LPS also disrupts BBB function by increasing its permeability,
thus promoting neuroinflammation (Estes and McAllister, 2014;
Simões et al., 2018). However, there is also evidence for no change
in BBB permeability after MIA induced via poly(I:C) in mice
(Garay et al., 2013), suggesting immunogen-dependent effects.
These differences also emphasize the variability of MIA animal
models and the need for experimental standardization.

Given that microglia are the primary innate immune cells of
the brain, they provide rapid responses to immune insults and are
greatly affected by systemic inflammation. MIA exerts its effects
on neurodevelopment largely by disrupting microglial function
and by priming them for altered responses later in life. Changes
in the density of microglia are found in early postnatal MIA
offspring in multiple cortical and subcortical regions including
the anterior cingulate cortex, striatum and hippocampus (Zhang
et al., 2018). Microglial involvement in MIA effects is evident
through an increase in cytokine and chemokine signaling,
in mouse hippocampus and basal forebrain, during late fetal
development in response to either LPS (Schaafsma et al., 2017)
or poly(I:C) (Pratt et al., 2013). A recent study showed that an
MIA mouse model induced at embryonic day 9.5 with poly(I:C)
led to an increased density of a pathological microglial subtype,
called dark microglia, in the hippocampus of male versus female
offspring (Hui et al., 2018). Dark microglia are almost exclusively
observed in disease states or in aged animals, and exhibit greater
levels of oxidative stress and hyper-ramified processes in closer
proximity to synapses than typical microglia (Bisht et al., 2016).
These studies highlight the ability of MIA to alter microglial
state and function.

Moreover, MIA in mice alters the transcriptome and
phagocytic activity of microglia in offspring (Mattei et al., 2017).
Specifically, hippocampal microglia from male poly(I:C) mice
displayed a downregulation of genes that encode cell surface
receptors associated with phagocytosis (P2ry6, Sirpa, Siglece,
Cx3cr1, Fcgr1, Itgav) (Mattei et al., 2017). These receptors
are important components of the microglial ‘sensome’, which
contribute to the regulation of microglia-neuron interactions
and are important for the engulfment of neuronal material
(Mattei et al., 2017; Hickman and El Khoury, 2019; Figure 2).
Inflammatory abnormalities, such as increased levels of
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SERPINA3, TNFα, IL-1β, IL-6, and IL-6ST, have been observed in
the ventral midbrain in post-mortem SCZ tissue, and these results
were also replicated in an MIA mouse model (Purves-Tyson
et al., 2019). Importantly, these differences in immune markers
from SCZ tissue could be accounted for by a subset of cases,
including about 45% of high inflammatory cases. The ventral
midbrain houses the majority of dopamine-releasing neurons in
the brain, therefore MIA might contribute to SCZ pathology by
disrupting immune-mediated wiring of dopaminergic circuits
(Purves-Tyson et al., 2019). These findings are important because
they link SCZ-associated neuroinflammation to dopaminergic
abnormalities, which are a hallmark of this disorder.

Multiple studies targeting microglial signaling pathways
were able to reverse MIA-associated neuropathology, suggesting
that microglia are the main culprit in inducing neurological
dysfunction in response to immune challenges. For example,
a study that targeted colony stimulating factor 1 receptor
(CSF-1R), which plays a role in microglial proliferation, was
successful in reversing some MIA-induced phenotypes (Ikezu
et al., 2020). Depleting and repopulating microglia by inhibiting
CSF-1R was protective in mice exposed to poly(I:C) prenatally
(Ikezu et al., 2020). Specifically, once the microglial population
was renewed, not only were the deficits in repetitive and
social behaviors reversed, but normal neuronal connectivity
and microglia-neuron interactions were also restored (Ikezu
et al., 2020). Another successful approach to restore typical
microglial function targeted the peroxisome proliferator-
activated receptor gamma (PPARγ) signaling pathway. PPARγ

signaling is activated by fatty acids and reduces myeloid cell-
induced inflammation via suppressing their production and/or
secretion of inflammatory molecules (Bernardo and Minghetti,
2006). Agonists of PPARγ have been found to be protective
in the context of MIA by inhibiting microglial expression of
pro-inflammatory cytokines and surface antigens (Bernardo
and Minghetti, 2006), suggesting that targeting microglial
PPARγ signaling could be beneficial in offspring exposed to
MIA (Zhao et al., 2019). In support of this, a recent study
showed lower serum levels of PPARγ in patients with SCZ
while levels of this biomarker decreased further with disease
progression (Yüksel et al., 2019). Treatment with minocycline,
a broad-spectrum anti-inflammatory and antibiotic drug that
generally restores microglial functions, also reversed changes
in microglial transcriptome and phagocytic activity in mouse
offspring exposed to MIA (Mattei et al., 2017). Lastly, there
is evidence that deep brain stimulation in rats can prevent
some of the behavioral deficits associated with MIA specifically
by reducing microglial pro-inflammatory responses (Hadar
et al., 2017). Taken together, these data suggest that microglia
play a critical role in MIA-induced brain dysfunction and that
targeting microglia is a potential therapeutic approach to reverse
MIA-induced phenotypes.

MIA is a risk factor for SCZ that depends onmaternal immune
signaling relayed to the fetal brain through the placenta. Maternal
gut microorganisms have been found to play an important role
in MIA-mediated deficits. A ground-breaking study showed that
MIA phenotypes in exposed offspring are dependent on the
presence of segmented filamentous bacteria in the maternal gut

which promote Th17 cell differentiation, leading to increased IL-
17a production (Kim et al., 2017). MIA phenotypes, including
deficits in cortical development and behavioral abnormalities,
were dependent on gut microbiome-mediated increases in IL-
17a (Kim et al., 2017; Shin Yim et al., 2017). These data
show that maternal microbe-induced immune signaling impacts
fetal brain development with long-term consequences and that
prenatal inflammatory insults can prime the gut-immune-
brain axis, thus leading to altered CNS responses to immune
challenges later in life.

MIA is an important model that has increased our
understanding of how immune insults occurring during
embryonic development can alter brain development. Although
there is variability in data obtained using mouse models of
MIA, notably due to differences in immunogen manufacture
(molecular weight, endotoxin contamination, etc.), timing of
immunogen administration, dosage, route of administration,
housing conditions, timing of cage cages and mouse strain
used (Careaga et al., 2018; Kentner et al., 2019; Kowash et al.,
2019), understanding what causes these differences could aid in
understanding the mechanisms underlying vulnerability versus
resiliency to MIA (Meyer, 2019). In humans, only a subset of
pregnant mothers who are exposed to a viral or bacterial infection
have offspring who later develop SCZ (Estes et al., 2019). This
is to be expected since immune activation is only one of the
many risk factors for SCZ. Therefore, the variability in mouse
models of MIA might be exploited to elucidate why certain sub-
populations of individuals are at greater risk for SCZ. Since
some mouse strains are resilient to MIA, the genetic differences
between mouse strains could be used to identify protective versus
susceptibility genes (Schwartzer et al., 2013). Overall, future work
aimed at understanding such variability will likely be valuable in
discovering only a subset of subjects are vulnerable to MIA.

It is interesting thatMIA is a risk factor for both SCZ and ASD,
since some of the neurological deficits observed in these disorders
appear to be opposing. For example, SCZ is characterized by
a significant loss of gray matter resulting in hypoconnectivity
between the anterior hippocampus and PFC (Vita et al., 2012;
Blessing et al., 2020), on which the neonatal ventral hippocampal
lesion rodent model of SCZ is based (Joseph et al., 2018), whereas
ASD is associated with hyperconnectivity (Supekar et al., 2013).
How could the same risk factor play a role in such opposing
phenotypes?We propose that the underlying genetic background
and the time of exposure are important factors that determine
the effects that MIA exerts on brain development. For example,
SCZ is associated with genetic variation in the C4 gene that led
to enhanced C4 expression (Sekar et al., 2016) whereas C4, C3,
and C1q were found to be downregulated in ASD (Fagan et al.,
2017). Differences in certain genes, such as complement genes,
which have an established role in synaptic pruning (Stevens
et al., 2007; Schafer et al., 2012; Sekar et al., 2016; Comer et al.,
2020), could explain howMIA differentially contribute to disease
phenotypes. Alternatively, the expression of TLR3 and TLR4,
which directly respond to poly(I:C) and LPS (Lu et al., 2008; Zhou
et al., 2013), respectively, could differ between mouse strains
with varying susceptibility to MIA and in humans predisposed
to different NDDs. Lastly, it is not clear how recently emerging
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FIGURE 2 | Key components of the microglial sensome associated with SCZ. The microglial sensome is a group of receptors and proteins that allow microglia to

sense and respond to their changing environment, facilitating the diverse roles of microglial as well as their complex interactions with multiple cell-types in the brain.

Components of the microglia sensome can be categorized to include purinergic, cytokine, Fc, pattern recognition, extracellular matrix, and cell-cell interaction

receptors and ligands, among others not listed here. Future work could aim at targeting the microglial sensome to normalize microglial function in SCZ.

viruses, such as SARS andMERS coronaviruses, might contribute
to NDDs (Gretebeck and Subbarao, 2015; Fauci et al., 2020). It
is also unknown whether the severe acute respiratory syndrome
coronavirus 2, which caused the COVID-19 pandemic, leads to
lasting consequences on brain development and behavior while
preliminary data suggest that passive transfer of antibodies from
mother to embryo is possible (Zeng et al., 2020).

STRESS-INDUCED INFLAMMATION AND
MICROGLIAL DYSFUNCTION

Exposure to psychological stress or traumatic life events
prenatally and during childhood or adolescence results in an
increased risk for SCZ (Weinstock, 2008; Read et al., 2009;
Kessler et al., 2010; Holtzman et al., 2013). Specifically, during
critical periods of development, certain stressors, such as
physical or mental abuse, socioeconomic disadvantage, living
in an urban environment and neglect, all confer greater
risk for SCZ (McGrath et al., 2004; Quidé et al., 2017;
Popovic et al., 2019). Additionally, people with SCZ have
altered physiological responses and increased vulnerability
to stressful stimuli (Schifani et al., 2018). Thus, increased
exposure and vulnerability to psychosocial stress, especially
during critical periods of brain development, represents

a significant challenge. However, cellular and molecular
mechanisms that link early life stress (ELS) with increased
risk for SCZ are still unclear. Nevertheless, evidence suggest
that psychosocial stressors contribute to SCZ pathology by
in part increasing neuroinflammation (Figure 3). A unified
review was recently published focusing on the relationship
between childhood trauma and psychosis, integrating results
of epidemiological, clinical, neuropsychological and biological
studies (Misiak et al., 2017).

Individuals with SCZ have altered physiological stress
responses (van Venrooij et al., 2012; Schifani et al., 2018;
van Leeuwen et al., 2018). Exposure to stress stimulates
the sympathetic nervous system causing the secretion of
epinephrine and norepinephrine, resulting in increased HPA
axis function which leads to the release of stress hormones,
such as cortisol, into the blood [reviewed by Chrousos (2009)].
These stress hormones alter an organism’s physiology to
promote activities that combat the stressor, such as increased
cardiac function and glucose availability, while decreasing less
urgent processes including digestion, reproduction, and immune
function (Chrousos, 2009). In healthy individuals, cortisol led to
the suppression of adaptive immunity and an increase in innate
immunity due to the effects of glucocorticoids on inflammation
(Barnes, 1998). Although cortisol has some anti-inflammatory
effects, its ability to regulate inflammatory responses is altered

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 August 2020 | Volume 14 | Article 274

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Comer et al. Inflammation in Schizophrenia Pathogenesis

FIGURE 3 | Neuroinflammation-induced changes in microglia that are implicated in SCZ pathogenicity. Risk factors for SCZ that alter microglial function and

enhance neuroinflammation include pollution, stress, nutrition induced gut-brain axis dysbiosis, viral infection, maternal immune activation, genetic predisposition,

and cytokine secretion. Homeostatic microglia perform their immune sentinel role by interacting with neurons to guide circuit wiring during development. In an

increased inflammatory milieu, loss of microglial homeostasis perturbs microglia-neuron interactions that may cause altered plasticity due to pathogenic synaptic

formation, synaptic stripping, and pruning. Therapeutic approaches that promote homeostatic microglia through the reduction of neuroinflammation via

anti-inflammatory drugs, microglial inhibition and repopulation, improved nutrition, environmental enrichment, and prevention of psychological stress could be

potentially exploited to limit exacerbation of SCZ.
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in SCZ. In healthy individuals, an acute stressor led to increased
salivary levels of cortisol and a decrease in IL-6; however,
in individuals with SCZ, an increase in cortisol was shown
to be accompanied by an increase in IL-6 (Chiappelli et al.,
2016). Additionally, chronic and ELS, which are risk factors
for SCZ, are linked to increased immune activation (Chiappelli
et al., 2016), as well as abnormal sensitivity and levels of
glucocorticoids and their receptors (Webster et al., 2002; Sinclair
et al., 2012; do Prado et al., 2017), disrupting the ability of
cortisol to regulate inflammation (Miller and Chen, 2010). In
this sense, stress-induced release of cortisol might increase
inflammatory responses in people with SCZ instead of having
anti-inflammatory effects such as seen in healthy individuals.

Although multiple studies have found an increase in HPA axis
function in people with SCZ (Walder et al., 2000; Mondelli et al.,
2010a; Chiappelli et al., 2016), others have reported a decrease
in cortisol levels compared to controls in response to a stressor
(Ciufolini et al., 2014; Lange et al., 2017; Glassman et al., 2018).
The inconsistencies between these findings could be due variation
including differences in stressor intensity, duration, time point of
exposure (Lange et al., 2017), or administration of antipsychotics,
which have been shown to alter cortisol stress responses
(Houtepen et al., 2015). Despite these discrepancies, HPA axis
dysfunction has been observed in first-episode psychosis prior to
antipsychotic treatment (Ryan et al., 2004; Mondelli et al., 2010b;
Mondelli et al., 2010a). Additionally, recent work has shown that
regardless of differences in cortisol responses to acute stressors
among people with SCZ, those with decreased cortisol responses
to social stress had lower measures of social functioning (Tas
et al., 2018). Therefore, understanding differences in cortisol
responses and its relationship to immune function in SCZ
could provide insight into the role of psychosocial stress on
disease progression.

Prenatal psychological stress is associated with an increased
risk of SCZ (Kofman, 2002; Weinstock, 2008; Pugliese et al.,
2019). In mice, prenatal stress increased placental expression of
several pro-inflammatory genes including IL-6, IL-1B, and TNFα
specifically in males, and these changes were partially rescued
by maternal administration of a non-steroidal anti-inflammatory
drug (Bronson and Bale, 2014). Additionally, studies inmice have
shown that male offspring exposed to prenatal stress displayed
behavioral deficits including anhedonia and changes in stress
responses that coincided with altered placental gene expression in
males but not females, affecting PPARα, the growth factor IGFBP-
1, hypoxia-inducible factor 3a (HIF3α), and glucose transporter
GLUT4, all of which have been implicated in immune system
function (Mueller and Bale, 2008). Importantly, the placenta
is a regulator of maternal-fetal immune initiation in offspring
[reviewed in Hsiao and Patterson (2012)] and this interaction
appears to be crucial given that prenatal dysregulation of the
immune system can lead to altered immune responses postnatally
(Bilbo and Schwarz, 2009; Pedersen et al., 2018). Maternal
restraint stress resulted in offspring with altered microglial
morphology and density in the cortical plate at embryonic
stages and in neocortex at adulthood, and these prenatal-induced
changes were reversed by blocking IL-6 (Gumusoglu et al.,
2017), confirming that increased maternal expression of IL-6 can

cause neuroinflammation in embryos by crossing the placenta
(Dahlgren et al., 2006). Nevertheless, the role of maternal
stress-induced inflammation and the specific involvement of the
placenta in mediating its consequences are not fully understood.

ELS, such as childhood abuse or neglect, is a major risk
factor for SCZ, however the mechanisms by which ELS induces
changes in neuronal circuitry is not clear. Mounting evidence
suggests that dysfunction of the immune system and microglia,
especially, can contribute to brain miswiring and behavioral
deficits after ELS (Na et al., 2014; Johnson and Kaffman,
2018). In humans and mice, ELS increases multiple blood pro-
inflammatory markers including CRP, IL-1β, IL-6, IL-8, TNF-α
(Hepgul et al., 2012; Marsland et al., 2017; Réus et al., 2017)
while suppressing the anti-inflammatory cytokine IL-10, leading
to depressive-like behaviors in mice (Réus et al., 2017). In line
with these findings, ELS resulted in altered microglial gene
expression, density, morphology and phagocytic activity during
maturation in particular brain regions including the mPFC,
striatum, anterior cingulate cortex and hippocampus (Cohen
et al., 2016; Delpech et al., 2016; Bollinger et al., 2017; Wang et al.,
2017; Banqueri et al., 2019; Réus et al., 2019). Chronic stress also
alteredmicroglial function by activating the P2X7 receptor, which
induced the NLRP3 inflammasome thus increasing levels of
mature IL-1β within the brain (Pan et al., 2014; Yue et al., 2017).

Since microglia play vital roles in brain development and
homeostasis including neurogenesis, synaptic formation and
elimination (Salter and Beggs, 2014; Hong et al., 2016; Tay
et al., 2017b), their dysfunction could explain some of the
neurological deficits observed after exposure to stress. Studies
using RT-PCR from isolated microglia show that steroid
hormone receptors, such as the glucocorticoid receptor, are
abundant in microglia (Sierra et al., 2008), suggesting the
possibility that stress could directly impact microglial function
through glucocorticoid signaling. Indeed, a line of evidence
suggests that stress can impact microglial proliferation, while
blocking corticosterone synthesis or glucocorticoid receptor
activity restored normal microglia density in mice (Nair and
Bonneau, 2006; Duque and Munhoz, 2016). There is evidence
that stress later in life can also induce changes in microglia,
especially when these cells are primed by an environmental
insult either prenatally or during early postnatal development
(Catale et al., 2020). For instance, mice that were susceptible
to repeated social defeat had microglial transcriptomes that
were enriched for markers of phagocytosis, pro-inflammatory
responses and reactive oxygen species compared to mice that
were either resistant or not exposed to stress (Lehmann
et al., 2018). Additionally, mice that were sensitive to repeated
social defeat showed an increase in markers for extracellular
matrix remodeling and BBB leakage, which coincided with an
enhanced permeability of the BBB to a fluorescent tracer, and
correlated with increased microglial phagocytosis of neuronal
material (Stankiewicz et al., 2015; Lehmann et al., 2018).
Additionally, microglial depletion by the CSF1R antagonist
PLX5622 in a repeated social defeat mouse model protected
against the behavioral abnormalities and prevented an increase
in reactive oxygen species in the mPFC, nucleus accumbens and
paraventricular nucleus (Lehmann et al., 2019). Together, these
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data support that microglia play a vital role in stress-induced
neuropathology by becoming more phagocytic, inducing the
inflammasome and engulfing neuronal material.

Psychosocial stress might be more preventable than the
other risk factors for SCZ. Reducing psychosocial stress in
expecting mothers and young children or combating stress
with exercise, nature exposure, yoga, or therapy could be used
in individuals at risk for or diagnosed with SCZ (Entringer
et al., 2009; Vancampfort et al., 2011; Brannigan et al., 2019).
Some lines of evidence show that environmental enrichment
can protect against or reverse many effects of stress, including
ELS, by rescuing behavioral phenotypes, inflammatory responses,
microglial function, and oxidative stress, notably in themPFC (do
Prado et al., 2016; McCreary and Metz, 2016; Dandi et al., 2018;
González-Pardo et al., 2019), a region implicated in SCZ (Glantz
and Lewis, 2000; Barch et al., 2001). However there is conflicting
evidence concerning the ability of environmental enrichment to
rescue these phenotypes in severe cases of ELS (Mackes et al.,
2020). Alternatively, future studies could determine if treatment
with anti-inflammatory medications can protect against stress-
induced neuroinflammation since microglial depletion has been
shown to be protective (Lehmann et al., 2019).

HOW THE PERIPHERAL IMMUNE
SYSTEM GAINS ACCESS TO THE CNS IN
SCZ

The link between BBB dysfunction and SCZ was first established
when epidemiological studies revealed that about two-thirds of
SCZ cases are diagnosed with comorbid conditions associated
with deficits in endothelial cell function, such as metabolic
syndrome and cardiovascular disease (Israel et al., 2011;
Burghardt et al., 2014). Capillary wall endothelial cells form
tight junctions with one another and are an integral component
of the BBB along with pericytes, astrocytic endfeet, microglia,
and the extracellular matrix that forms the basement membrane
(Lassmann et al., 1991; Abbott et al., 2010; Bisht et al., 2016;
Joost et al., 2019). The BBB restricts the passage of molecules
between the blood and the brain to protect sensitive neural
tissue from pathogens and immune molecules while allowing
the passage of vital molecules such as glucose (Abbott et al.,
2010). This allows the BBB to isolate the brain from peripheral
immune responses; however, it has become increasingly clear that
in pathological states the ability of the BBB to isolate the CNS
from harmful immunological responses is disrupted (Bechter
et al., 2010; Najjar et al., 2017).

Claudin-5, expressed in brain endothelial cells, forms a
major component of the BBB barrier-forming tight junctions
(Morita et al., 1999; Greene et al., 2019). Claudin-5 maps
to a region on chromosome 22 where small deletions cause
the 22q11 deletion syndrome, which is found in 30% of SCZ
cases (Murphy, 2002; Motahari et al., 2019). People with this
syndrome are haploinsufficient for claudin-5 and have increased
odds of developing SCZ (Fiksinski et al., 2018; Greene et al.,
2018). A recent study showed that during acute versus chronic
inflammation, levels of claudin-5 are differentially expressed
(Haruwaka et al., 2019). It is still unknown if microglial

phagocytosis of tight junctions is also involved in SCZ, although
this finding suggests that BBB dysfunction could be mediated
through a decrease of molecules involved in tight junctions or
BBB permeability.

Indeed, post-mortemmPFC tissue from SCZ individuals show
changes in the endothelial cell gene expression of molecules
involved in tight junctions and BBB permeability. People with
SCZ can be divided into subgroups based on their extent
of brain and serum inflammatory markers (Fillman et al.,
2016). Cases of SCZ that have higher serum pro-inflammatory
markers, which include about 40% of affected people (Fillman
et al., 2016), also have greater gray matter loss in the mPFC,
which is thought to underlie multiple symptoms of SCZ
(Zhang et al., 2016). Compared to healthy controls, SCZ cases,
especially high-inflammatory cases, have increased expression
of the intercellular adhesion molecules ICAM-1 and VCAM-1
in endothelial cells from the PFC (Kavzoglu and Hariri, 2013;
Cai et al., 2018; Nguyen et al., 2018). ICAM-1 and VCAM-
1 interact with receptors on leucocytes to allow monocyte
infiltration into the brain (Hermand et al., 2000). In endothelial
cell cultures, ICAM-1 expression can be induced in a dose-
dependent manner by the pro-inflammatory cytokine IL-1β (Cai
et al., 2018). ICAM-1 expression has also been found to correlate
with the expression of the macrophage marker CD163, and
CD163-positive macrophages were found in close association
with neurons in the frontal cortex of high-inflammatory SCZ
cases (Cai et al., 2018). In this study, proteins that form
endothelial cell tight junctions, including cadherin-5 (CDH5)
and occluding (OCLN), were also upregulated in the frontal
cortex (Cai et al., 2018), which highlights a compensatory
mechanism to regain BBB integrity. Conversely, multiple studies
have a found a decreased expression of CDH5 in the PFC
of SCZ individuals, while genetic knockdown of CDH5 in
mouse PFC led to BBB disruption and changes in behavior
including deficits in learning, memory, sensorimotor gating,
and anxiety-like behavior (Nishiura et al., 2017; Greene et al.,
2018). The expression of tight junction genes could differ
depending on the time point during SCZ progression, such
that compensatory mechanisms could be elicited in later disease
stages. In addition, the conflicting evidence for a leaky BBB
in SCZ suggest that the BBB is compromised in only a
subset of SCZ cases. The finding of subgroups of people with
SCZ showing variable levels of systemic inflammation support
this hypothesis. Together, these findings reveal the importance
of studying subgroups of SCZ patients, based on systemic
inflammation, to gain a more comprehensive understanding of
the disease pathogenesis.

In addition to endothelial cells, pericytes and astrocytes
have also been implicated in BBB dysfunction during systemic
inflammation (Fabry et al., 1993; Nishioku et al., 2009; Chen
et al., 2017; Banks et al., 2018). There is some evidence that
pericytes can exit the perivascular space in response to LPS-
induced inflammation in mice, while the extent of pericyte
detachment correlated with microglial reactivity (Nishioku
et al., 2009). Pericytes secrete cytokines, including IL-1 and
IL-6, which are capable of disrupting endothelial cell tight
junctions (Fabry et al., 1993). Disruption of the BBB in several
mouse models of neuropsychiatric or inflammatory diseases
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has been shown to affect microglial function, while dynamic
neuroimmune interactions were described at the BBB in both
health and diseased sates (Merlini et al., 2012; Borjini et al.,
2019; Haruwaka et al., 2019). Although causal evidence is needed,
multiple studies have found that microglial reactivity worsens
BBB integrity in pathological states and that administration
of the anti-inflammatory drug minocycline can improve BBB
function (Yenari et al., 2006; da Fonseca et al., 2014; Shigemoto-
Mogami et al., 2018). More work is still needed to understand
whether or how the interplay between BBB dysfunction and
microglia abnormalities contribute to the pathogenesis of SCZ.
Complex cytokine signaling between the pericytes, endothelial
cells, astrocytes and microglia is crucial for the development and
maintenance of BBB integrity (Chen et al., 2017; Banks et al.,
2018). Lastly, it was suggested that PFC hypoconnectivity in
SCZ might result from altered blood flow regulated by pericytes,
together with abnormalities in the structures of capillaries and
astrocytic end feet (Uranova et al., 2010). As such, understanding
the complex interactions between cell-types of the neurovascular
unit and how they might be altered in response to inflammation
in SCZ will likely be important.

Abnormal activity in multiple brain networks and regions
are observed in SCZ (Uhlhaas, 2013). There is clear evidence
that excitatory circuits are altered in SCZ (Glantz and Lewis,
1997, 2000; Uhlhaas, 2013). Blockade of N-methyl-D-aspartate
receptors (NMDARs) in healthy subjects leads to psychotic
symptoms and cognitive deficits that resemble those observed in
SCZ (Balu, 2016). Additionally, both mRNA and protein levels
of the NMDA subunits NR1 and NR2C are decreased in post-
mortem SCZ brain tissue (Weickert et al., 2013). Recent evidence
suggests that NMDAR function might be inhibited in SCZ by
autoantibodies, which are produced against an organism’s own
tissue and are implicated in autoimmune disorders such as lupus
(Becker et al., 2019). Circulating autoantibodies against glutamate
and NMDARs were found to be present in approximately 20% of
psychotic SCZ patients (Jézéquel et al., 2017). An increased BBB
permeability might alter neuronal function by allowing the entry
of autoantibodies against NMDARs into the brain, which have
been shown in mouse models and neuronal culture experiments
to suppress glutamatergic activity by altering the organization of
NMDARs and their anchoring molecule ephrin-B2 (Kayser and
Dalmau, 2016; Jézéquel et al., 2017; Kannan et al., 2017). Studies
that interrogate specific cell-type and neural circuit responses will
allow greater understanding of the impact of BBB permeability
on brain function and open new opportunities to therapeutically
modulate these pathways.

Beyond the BBB, peripheral inflammatory responses can gain
access to the CNS via the meninges, the multi-layered protective
tissue that surrounds the brain and spinal cord [reviewed in
Rustenhoven and Kipnis (2019)]. Cytokines can accumulate
in the dural CSF and cross into the brain, passing between
endothelial cells that lack tight junctions (Louveau et al., 2015).
Additionally, cytokine signaling specifically within the meninges
has been shown to alter neuronal function by binding directly
with receptors on neurons in frontal cortical regions and altering
cognitive and social behaviors in mice (Derecki et al., 2010;
Filiano et al., 2016). Meningeal T-cell production of multiple

inflammatory molecules, including IL-17, IL-4, and INF-γ, have
been shown to alter both excitatory and inhibitory circuitry and
modulate cognitive function and social behavior (Derecki et al.,
2010; Filiano et al., 2016; Ribeiro et al., 2019). Lastly, the CNS
meningeal lymphatic system also offers a route for peripheral-
central immune crosstalk. Since the brain does not contain
a resident lymphatic system, waste removal is facilitated by
cerebrospinal fluid draining through the meninges into the deep
cervical lymph nodes, where interactions between CNS immune
molecules and peripheral immune cells can occur (Louveau et al.,
2015, 2018). In this manner, the peripheral immune system can
gauge central immune status. In the aging brain, dysfunction
of the meningeal lymphatic vessels leads to accumulation of
harmful amyloid beta-protein toxicity and increase Alzheimer’s
pathology (Da Mesquita et al., 2018). Longitudinal imaging
studies have shown that progressive brainmatter loss is consistent
with accelerated aging in patients with SCZ (Schnack et al.,
2016). It remains to be determined whether therapeutic agents
that boost lymphatic function by either increasing the diameter
of the lymphatic vessels or cerebral spinal fluid drainage (Da
Mesquita et al., 2018) could improve the cognitive and social
deficits observed in SCZ.

DISCUSSION

Is SCZ an Inflammatory Disease?
There is growing evidence from both human and animal studies
that many of the risk factors for SCZ converge on their
ability to promote neuroinflammation, and that these effects
are mediated in part by microglia. However, is there a pro-
inflammatory phenotype in SCZ? Post-mortem and clinical
studies show an increase in pro-inflammatory markers in people
with SCZ compared to controls (Fillman et al., 2016; Sekar et al.,
2016; Boerrigter et al., 2017; Lesh et al., 2018; Goldsmith and
Rapaport, 2020; Pedraz-Petrozzi et al., 2020). Moreover, there is
evidence for elevated levels of cytokines in blood samples from
people with SCZ, whether they are medication-naive or receiving
antipsychotic treatment, during episodes of psychosis (McKernan
et al., 2011; De Picker et al., 2019; Mondelli et al., 2020; Steiner
et al., 2020). Thus, such studies suggest that inflammation
might contribute to the development of SCZ and also drive its
progression and cyclic nature.

Schizophrenia cases can be sub-divided using either serum
or post-mortem brain tissue levels of pro-inflammatory
cytokines, which reveal that about 40% of SCZ cases have a
high inflammatory expression signature (Fillman et al., 2016;
Boerrigter et al., 2017; Cai et al., 2018). Although these studies
suggest there are subtypes of SCZ patients, they do not provide
information on their inflammatory states earlier in the disease
development nor do they assay inflammation in the brain, which
could differ from blood or CSF biomarkers of inflammation.
There has been some success in longitudinal PET imaging
studies that measure expression of translocator protein (TSPO),
a non-specific marker of pro-inflammatory microglia, in the
brain (Selvaraj et al., 2018). These studies show that SCZ is
characterized by increased TSPO expression, which correlated
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with greater gray matter loss (Selvaraj et al., 2018). However,
there have been mixed results concerning PET measurements
of TSPO with some studies showing increased TSPO binding in
SCZ (Doorduin et al., 2009; Bloomfield et al., 2016) and others
showing no correlation (Di Biase et al., 2017; Notter et al., 2018).
Additionally, recent work revealed that neuronal activity can
also drive the expression of TSPO (Notter et al., 2020). It is thus
not clear if TSPO is a reliable marker for neuroinflammation
(Sneeboer et al., 2020). The identification of more specific
in vivo markers for neuroinflammation would be useful. Ideally,
additional work should be done to specifically interrogate the
extent of neuroinflammation in SCZ, in addition to peripheral
inflammation, to determine if increased inflammation correlates
with all or only a percentage of SCZ cases.

Given that SCZ is a highly heterogeneous disease, it is
not surprising that there are different disease subtypes. Studies
that have divided individuals with SCZ based on inflammatory
markers have found more severe symptomology in those with
higher levels of pro-inflammatory markers. Specifically, there is
evidence for greater gray matter loss and poorer performance
in language tasks (Fillman et al., 2016) and increased depressive
symptoms (Bossù et al., 2015) in SCZ cases characterized by high
inflammatory state. Consistent with this, therapeutics that reduce
inflammation provide the greatest symptom improvement in
neuropsychiatric cases associated with high inflammation. For
example, inhibition of TNF was shown to improve symptoms
in people with major depression, but only in those with
heightened immune biomarkers (Raison et al., 2013; Weinberger
et al., 2015). Additionally, various anti-inflammatory agents
including aspirin, estrogen, N-acetylcysteine, COX-2 inhibitors,
minocycline and fatty acids (Sommer et al., 2014) have been
shown to improve symptom severity in SCZ, but there are some
mixed findings of the efficacy of these therapeutics. Minocycline
has been shown to reduce microglia and complement-dependent
synapse removal in an in vitro model from patient-derived
neuronal cultures while decreasing the risk for SCZ when
administered to young adults (Sellgren et al., 2019), suggesting
that targeting synaptic pruning via neuroinflammation would be
therapeutic for SCZ and might directly target the disease process.
Nevertheless, it is possible that there are discrepancies concerning
the ability of some of these drugs to improve symptoms in
SCZ because they might only be effective in high-inflammatory
cases. Future work aiming to elucidate the differences between
subtypes of SCZ could potentially allow for the development
of more effective and targeted therapeutics. Although people
with SCZ can be divided based on extent of inflammation,
there is no denying the role of the immune system in this
complex disease.

In line with this, microglia are significantly altered in SCZ and
contribute to neural dysfunction by responding and contributing
to neuroinflammatory signaling (Figure 3). In SCZ post-mortem
tissue, microglia have been noted to have altered morphologies
and densities in brain regions known to contribute to the
symptomology of SCZ.Microglia engulfment of synapticmaterial
is essential for the normal wiring of the brain and can contribute
to pathological states when mis-regulated (Wake et al., 2009;
Tremblay et al., 2010; Paolicelli et al., 2011; Schafer et al., 2012;

Dejanovic et al., 2018; Filipello et al., 2018; Vainchtein et al.,
2018; Weinhard et al., 2018; Comer et al., 2020). There is also
evidence that microglia contribute to synapse formation during
development, adolescence and into adulthood (Parkhurst et al.,
2013; Miyamoto et al., 2016; Akiyoshi et al., 2018; Weinhard
et al., 2018). Additionally, a two-photon in vivo imaging study
in awake mice has shown that microglial contacts with synapses
increase synaptic activity thus enhancing neuronal network
synchronization (Akiyoshi et al., 2018). In this study, when
MIA was induced with poly(I:C), microglia became reactive
while neuronal synchronization decreased (Akiyoshi et al., 2018),
suggesting that microglia contribute to network function and
that their role in this process can be easily disrupted by
immune responses.

Although there is evidence that microglia contribute to
excessive synaptic pruning in SCZ, it is not clear if microglia-
dependent synapse formation is also altered. Since much of
the data collected from individuals with SCZ is from post-
mortem samples, it is difficult to discern what is occurring on
the synaptic level earlier in development. Recent studies suggest
that more immature spine types can be differentially targeted
in SCZ (MacDonald et al., 2017; Comer et al., 2020), therefore,
it is possible that synapse formation mediated by microglia is
also altered in SCZ. In a prenatal ventral hippocampus lesion
model for SCZ, microglia displayed altered density, morphology
and ultrastructure, together with increased expression of multiple
complement genes including C1q and C3 (Hui et al., 2019).
This increase in microglial expression of complement proteins
coincided with an increase of synaptic pruning in the PFC and
behavioral deficits in rats, but was reversed by administration
of minocycline (Hui et al., 2019). These studies highlight the
necessary role exerted by microglia in normal brain development
but also show their ability to drive neuroinflammation and
contribute to pathology in disease states.

Indeed, there are multiple disease-associated microglial
subtypes such as those seen in neurodegenerative disorders
(Deczkowska et al., 2018) and dark microglia which were recently
observed in SCZ post-mortem brain samples (Uranova et al.,
2018). More work is needed to fully understand microglial
subtypes that are more prevalent in disease states and how they
contribute together to pathology, however data suggest they
partially contribute to disease by enhancing synaptic pruning
(Stratoulias et al., 2019). Future studies should also aim to develop
more translational animal models so that in vivo studies can
be performed to gain greater understanding into how microglia
functionally impact synaptic development and circuit function in
pathological states.

Does Inflammation Affect Specific
Circuits and Neuromodulatory Systems?
Although there is no doubt that the immune system plays
a critical role in shaping brain development and contributes
to disease states when dysregulated, there is a need to
understand which specific circuits and neuromodulatory systems
in particular are most impacted by abnormal immune signaling.
It is clear that complement proteins facilitate the removal of
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synapses (Stevens et al., 2007) and that the upregulation of
complement proteins contributes to circuit miswiring (Comer
et al., 2020). However, SCZ is also characterized by alterations
in inhibitory circuits (Dienel and Lewis, 2019), neuromodulatory
systems such as dopamine (Howes et al., 2017) and glutamate
(Uno and Coyle, 2019), and changes in the connectivity between
brain regions such as the hippocampus and PFC (Sigurdsson
and Duvarci, 2015). Do inflammatory responses alter specific
neurotransmitter systems and networks differentially?

There is evidence that inflammatory responses target specific
neuromodulatory systems and brain circuits. For example,
changes to the gut microbiome driven by inflammation can
alter the production of serotonin (Rogers et al., 2016), which
is known to be disrupted in SCZ. Interestingly, MIA in rats
has been found to increase the levels of dopamine in both
the nucleus accumbens and mPFC (Luchicchi et al., 2016) of
offspring, which is well-known to play a role in the positive
symptoms of SCZ (Kesby et al., 2018). Additionally, MIA
initially triggers hyperinhibition and neuronal miswiring, before
leading to a reduced inhibitory drive (Thion et al., 2019).
ELS in mice was shown to alter HPA circuity development,
in addition to hippocampal and PFC function (Brenhouse
et al., 2019). In addition, ELS is known to have an impact
on inhibitory connectivity (Goodwill et al., 2018; Ohta et al.,
2020), and previous work suggests that oxidative stress and/or
neuroinflammation might underlie the changes in parvalbumin
interneurons in response to ELS (Holland et al., 2014; Brenhouse
et al., 2019). There is evidence for parvalbumin interneuron
dysfunction in SCZ, as they have altered density in the frontal
cortex of individuals with SCZ (Kaar et al., 2019). Interestingly,
the meninges modulate cortical interneuron migration during
development (Borrell and Marín, 2006); future work could
interrogate whether changes in meningeal signaling, such as
immune molecule signaling, could contribute to alterations in
interneuron migration in SCZ.

The glutamate hypothesis of SCZ evolved from observations
that NMDA receptor antagonists, such as ketamine, produce
behavioral states similar to SCZ negative and positive
symptoms in healthy human subjects (Krystal et al., 1994;
Adler et al., 1998; Hu et al., 2015). As discussed throughout
this review, studies have also reported spine dysgenesis
and alterations in mRNA and protein levels of glutamate
receptors in human SCZ post mortem tissue. The presence of
circulating autoantibodies against glutamate and NMDARs in
a subpopulation of psychotic SCZ patients further support this
hypothesis (Ehrenreich, 2018). It has recently been shown that
increased expression of the SCZ-associated gene C4 led to a
decrease in excitatory connectivity with no loss of inhibitory
transmission, suggesting that excitatory synapses might be
more vulnerable to elimination (Comer et al., 2020). In support
of this, neuronal pentraxins, regulators of AMPA receptor
trafficking, are interacting partners of C1q (Ma and Garred,
2018), providing a link between the complement pathway
and excitatory synapse elimination. Another link between
alterations in glutamatergic transmission and SCZ comes
from studies in astrocytes, which have increased reactivity
in SCZ (post mortem tissue) and are positioned to alter

glutamatergic transmission through the regulation of glutamate
biosynthesis, release, uptake and metabolism [reviewed in
Mei et al. (2018)]. Lastly, the mobile genetic element, human
endogenous retrovirus is associated with neuropsychiatric
conditions and produces a protein that alters glutamate
synapse structure and plasticity dependent on the presence
of glial cells and neuroinflammatory signaling, contributing
to altered behavior when expressed in mice (Johansson et al.,
2020). Together, these studies suggest that inflammation might
contribute to altered glutamatergic transmission through
multiple mechanisms (Figure 4).

Although these studies suggest that risk factors for SCZ
can exert specific effects on different CNS circuits, more
work is needed to fully understand the mechanisms by
which inflammation alters specific neuromodulatory systems
and circuits. Studies that combine mouse models of SCZ
and inflammation with whole-brain or mesoscopic imaging
could shed light into how specific neuronal networks are
impaired in SCZ (Sofroniew et al., 2016; Boido et al., 2019;
Grandjean et al., 2020).

Impact of the Immune System on
Synapse Development in SCZ
It is well-established that spine dysfunction is present in SCZ and
is at least partially mediated by reductions in excitatory synaptic
connectivity and plasticity (Glantz and Lewis, 2000; Glausier and
Lewis, 2013; Berdenis van Berlekom et al., 2020). However, most
of the work in this field has relied on human post-mortem tissue,
so there is limited knowledge of what could be occurring earlier in
development to drive these synaptic alterations. Recent work has
highlighted the fact that the immune system works closely with
the CNS to establish and refine neural circuits in healthy states as
a part of normal development (Paolicelli et al., 2011; Tay et al.,
2017b; Hammond et al., 2018). However, when this process is
dysregulated, it can lead to pathology and the miswiring of the
brain through synaptic loss (Schafer et al., 2012; Comer et al.,
2020), which occurs in SCZ.

How are certain synapses selectively removed while others
are protected? In the developing brain, there is a period of
enhanced synaptogenesis followed by critical developmental
periods characterized by experience-dependent refinement of
synapses (Trachtenberg et al., 2002; Holtmaat and Svoboda,
2009). Synaptic elimination driven by sensory experience refines
brain circuitry by optimizing connections between neurons.
In SCZ, this process is thought to be dysregulated, thus
leading to a loss of both excessive and necessary synapses,
causing aberrant brain connectivity. Recent data suggest that
more immature spine types, such as filopodia and thin
spines (Cruz-Martín et al., 2012), are lost while larger, more
established spines remain intact in SCZ (MacDonald et al.,
2017). A similar phenotype was seen in mice overexpressing
the mouse homologue of the SCZ-associated gene C4. In
this in vivo model, synaptic loss observed in the PFC
was specifically due to a loss of smaller spine-types while
mushrooms spines were unaffected (Comer et al., 2020).
This evidence is in line with previous work showing that
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FIGURE 4 | Neuroinflammation-induced dysfunctions that alter glutamatergic transmission in SCZ. Changes in glutamatergic transmission are known to occur in

SCZ. Neuroinflammation impacts excitatory circuitry in SCZ through complement-mediated engulfment of excitatory synapses, the production of autoantibodies

against NMDARs, changes in glutamate homeostasis potentially mediated by alterations in astrocytes and changes in the gut-brain axis, a known regulator of

glutamate synthesis that is able to impact CNS functions such as stress responses. These changes in excitatory transmission can alter brain circuitry, for example,

by altering synaptic plasticity and long-range excitation.
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complement-dependent synapse removal is activity-dependent
and that connections with less activity are more likely to be
eliminated (Schafer et al., 2012). Small spines were also shown
to be preferentially contacted and eliminated upon microglial
contact in vivo (Tremblay et al., 2010). Additionally, it has
been suggested that immune signaling is able to protect more
mature spines. There is increased expression of the “don’t
eat me” signal CD47 at synaptic inputs that are more active
(Lehrman et al., 2018). In this way, the immune system would
guide synaptic wiring by tagging synapses for removal while
protecting other connections that are essential to the function
of a circuit. However, more work is needed to support this idea
and understand the mechanisms by which the immune system
contributes to synapse-specific elimination versus stabilization.

It is also possible that in SCZ, spine loss is driven by
the inability of circuits to produce “appropriate” connections.
Therefore, the subsequent excessive pruning that occurs in SCZ
could be due to the fact that neurons fail to produce adequate
connections in the first place. This is relevant in the context of
microglia since they regulate synaptogenesis (Miyamoto et al.,
2016). Since most of the data obtained from people with SCZ
is limited to post-mortem tissue, our information about what is
happening on the circuit and synaptic level during development
is limited. In this scenario, using mouse models to understand
the role of microglia and immune signaling in synapse formation
during the first weeks of postnatal development, when most
synaptogenesis occurs (Cruz-Martín et al., 2010), is key. Future
advances in the resolution and capabilities of in vivo human
imaging studies notably through specific markers could help
answer this question. It is encouraging that previous studies show
a similar phenotype in mice that is seen in humans in terms
of weaker synapses preferentially being eliminated (MacDonald
et al., 2017; Comer et al., 2020). This could allow for studies
in mice that more readily translate to humans. Understanding
the mechanisms of complement-mediated circuit wiring is a
worthwhile area of future study given it is both a mechanism
of normal brain development and is implicated in multiple
neurodevelopmental and neurodegenerative diseases. Lastly,
enthusiasm has grown over the last decade to study marmosets in
neuroscience research and an increase in the feasibility of genetic
manipulations could provide an additional model to study how
abnormal neuroimmune signaling contributes to SCZ (Okano
et al., 2016; Servick, 2018).

Risk Factors Likely Interact
Synergistically to Increase Odds for
Developing SCZ
Here, we have highlighted the diverse risk factors for SCZ and
how they impact the CNS by altering immune signaling. Likely,
these risk factors act additively on certain signaling pathways
to push vulnerable individuals past a certain threshold into a
disease state. This field would benefit from future studies that aim
to elucidate how the immune system regulates specific circuits
and neuromodulatory systems to drive the diverse phenotypes
observed in SCZ. Additionally, an in-depth understanding of the
specific signaling networks compromised in SCZ may enable the
restoration of typical immune-driven neurodevelopment after
exposure to the various genetic and environmental risk factors
described in this review.
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