
The Inflammatory Microenvironment in Colorectal
Neoplasia

Mairi H. McLean1, Graeme I. Murray2, Keith N. Stewart2, Gillian Norrie3, Claus Mayer4, Georgina L. Hold1,

John Thomson1, Nicky Fyfe2, Mairi Hope1, N. Ashley G. Mowat1, Janice E. Drew5, Emad M. El-Omar1*

1Gastrointestinal Research Group, School of Medicine and Dentistry, Aberdeen University, Aberdeen, United Kingdom, 2Department of Pathology, Aberdeen University,

Aberdeen, United Kingdom, 3Colorectal Surgery Unit, Western General Hospital, Edinburgh, United Kingdom, 4 Biomathematics and Statistics Scotland, The Rowett

Institute of Nutrition and Health, Aberdeen University, Aberdeen, United Kingdom, 5 The Rowett Institute of Nutrition and Health, Aberdeen University, Aberdeen, United

Kingdom

Abstract

Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of
invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune
cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant
human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal
neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by
immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting
increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohisto-
chemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and
receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a
key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper
and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high
malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express
iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8,
CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation
within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of
early colorectal carcinogenesis to be identified.
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Introduction

Colorectal cancer (CRC) is a major health burden causing

significant morbidity and mortality, with over a million cases

diagnosed each year worldwide [1]. The majority of CRC is

sporadic, that is, associated with no identifiable heritable genetic

mutation. The accepted pathogenetic framework for this malig-

nancy is the adenoma-carcinoma sequence [2]. In understanding

pathogenesis of malignancy, the emphasis has previously rested on

epithelial cell behaviour, but over the last decade, the focus has

moved to the microenvironment as a whole and the importance of

stromal cell and epithelial cell interaction is now widely recognised

[3,4]. Inflammatory activity within the stroma of invasive

colorectal tumours is known to be a key predictor of disease

activity with type, density and location of immune cells impacting

on patient prognosis [5]. The point at which this inflammatory

infiltrate exerts influence on colorectal carcinogenesis is unknown.

In breast cancer models, non-invasive tumour cells have been

shown to recruit macrophages which induce angiogenesis and

promote malignant transformation [6]. To date, there has been no

report of inflammatory phenotype within pre-malignant human

colonic adenomas. Assessing the stromal microenvironment and

particularly, inflammatory activity within colorectal neoplastic

lesions is central to understanding early colorectal carcinogenesis,

and in particular, understanding the mechanisms involved in the

transition of pre-invasive to invasive disease. The aim of this paper

therefore was to define the inflammatory microenvironment

within pre-malignant human adenomatous colonic polyps, and

to investigate how this changes along with adenoma characteristics

linked to high malignant potential.

Materials and Methods

Assessment of inflammatory cell phenotype
Inflammatory cell phenotype was assessed by immunohisto-

chemistry on 65 colonic adenomatous polyps and 36 adjacent

normal mucosal biopsies, obtained from 36 patients at CRC

screening colonoscopy, as described previously [7]. The polyp
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sample set was expanded to include 40 colonic adenomas

exhibiting low grade dysplasia (LGD), 40 with high grade dysplasia

(HGD) and 40 adenomatous polyps with supervening invasive

adenocarcinoma (cancer polyps (CaP)) [7]. Each specimen was

evaluated to confirm histological diagnosis by an experienced

consultant gastrointestinal pathologist (GIM). The macroscopic

size of each polyp was measured post fixation, providing a

consistent measurement of size for all samples. Within the

prospectively collected polyp set, 36 were small (#1cm) and 29

large (.1cm). There was no statistically significant difference in

size distribution between the 40 LGD polyps, 40 HGD polyps or

the 40 CaP (LGD vs. HGD, p= 0.548; HGD vs. CaP, p = 0.397;

LGD vs. CaP, p = 0.068). Tissue was stained using the

Envision+TM biotin free system [8] incorporating either the

Envision+TM peroxidase linked biotin free system (Dako, K5007)

or CSA II biotin-free tyramide signal amplification (Dako, K1497),

dependant on antibody requirements (Table 1). Primary antibody

was applied for 60 minutes following antigen retrieval (Table 1).

Colour was developed with diaminobenzidine (DAB). One micro-

scopic high powered field (HPF) from each sample was digitally

imaged (640 magnification) by a gastrointestinal pathologist

(GIM) as representative of tissue type, distinct from lymphoid

aggregation and within the area of most positive staining. The

number of positive cells was counted to give a score of inflam-

matory cellular infiltrate.

Assessment of macrophage phenotype
Macrophage phenotype was assessed in 42 adenomatous polyps

and 25 adjacent normal mucosal biopsies (randomly selected

from the larger prospectively collected sample set) and polyps of

increasing epithelial cell dysplasia, as described above. A double

stain immunohistochemical technique was used, incorporating

detection of an intracellular enzymatic marker of macrophage

function, namely iNOS (pro-inflammatory classically activated

macrophage) or arginase I (alternatively activated macrophage)

[9,10](Table 1), identified by peroxidase linked immunoreactivity.

Sequential staining with CD68 detected macrophage infiltrate

using an alkaline phosphatase linked detection signal. Staining was

performed using either the G2 doublestain EnvisionTM kit or

EnvisionTM doublestain kit, dependant on supplier availability

(Dako, K5361 & K1395, respectively). Heat induced antigen

retrieval was performed. Levamisole was added to the liquid

permanent red chromagen to suppress endogenous alkaline

phosphatase activity. Optimisation ensured no cross-reactivity or

quenching of signal. The area of most positive macrophage

infiltration within one HPF (640 magnification), distinct from

lymphoid aggregation, was identified under fluorescent light at

580 nm using a Texas red filter set and digitally imaged, and also

captured under standard optical light. In relation to degree of cell

dysplasia, the area of defined histological abnormality was marked

and digitally imaged. The 2 images were imported into Corel-

Paint X3, version 13 and macrophage infiltrate assessed for

expression of either iNOS or arginase I.

Profiling inflammatory gene expression
Tissue representative of each stage of the adenoma-carcinoma

sequence (normal mucosa, adenoma and adenocarcinoma) was

obtained from 7 colectomy specimens as part of an ongoing CRC

tissue specimen bank, as previously published [11]. Histological

analysis confirmed pathological diagnosis. RNA was extracted

Table 1. Characteristics of the antibodies used for the immunohistochemical analysis of inflammatory cell infiltrate.

Inflammatory

cell type

Inflammatory

cell marker Type

Antigen

retrieval

method*

Positive tissue

control Dilution

IHC detection

protocol Supplier Code

Isotype/

Clone

T helper cell CD4 mouse
monoclonal

M20-high
pH

Tonsil 1:100 Envision Novocastra NCL-CD4-IF6 IgG1, IF6

cytotoxic T cell CD8 mouse
monoclonal

M20 Tonsil 1:160 Envision Dako M7103 IgG1k, C8/144B

activated T cell CD25 mouse
monoclonal

M20 Tonsil 1:600 Tyramide signal
amplification

Novocastra NCL-CD25-305 IgG2b, 4C9

B cell CD20 mouse
monoclonal

M20 Tonsil 1:400 Envision Dako M0755 IgG2ak, L26

Plasma cell CD138 mouse
monoclonal

M20 Tonsil 1:1000 Envision Dako M7077 IgG1k, VS38C

NK cell CD56 mouse
monoclonal

M20 Appendix 1:150 Envision Monosan MON9006-1 IgG1

Macrophage CD68 mouse
monoclonal

T16/M20 Tonsil 1:300 Envision Dako M0814 IgG1k, KP1[4]

Classically
activated
macrophage

iNOS mouse
monoclonal

M20 Appendix/colorectal
carcinoma

1:400 Tyramide signal
amplification

BD
biosciences

610328 6, IgG2a

Alternatively
activated
macrophage

Arginase I rabbit
polyclonal

M20 Liver 1:40 Envision Santa Cruz sc-20150 H-52

Neutrophil Neutrophil
elastase

mouse
monoclonal

nil Tonsil 1:100 Envision Dako M0752 IgG1k, NP57

Mast cell Mast cell
tryptase

mouse
monoclonal

M20 Tonsil/Appendix 1:30,000 Envision Dako M7052 IgG1k, AA1

*M=heat induced by microwaving in 10mM citrate buffer, pH 6.0., T = enzymatic digestion performed at 37uC, in 0.2% trypsin, 0.1% calcium chloride solution, pH 7.8.,
numerical values = time for antigen retrieval.
doi:10.1371/journal.pone.0015366.t001
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using the RNeasy mini kit (Qiagen, Crawley, UK, 74104),

incorporating Qiashredder column tissue homogenisation and

on-column DNase digestion. Agilent BioAnalyzerH profiling

assessed yield and quality of the extracted total RNA. 500ng of

total RNA was used to synthesize biotinylated cRNA using the

Oligo-GEArray Reagent kit (Superarray Biosciences, USA, GA-

034). Following quality assessment by Nanodrop spectrophotome-

tryH, this was hybridised to a commercially available targeted

Oligo-GEArrayH gene filter, Human Inflammatory Cytokines and

Receptors (OHS-011, Superarray Bioscience, USA), representing

112 inflammatory cytokine and receptor genes. Array images were

captured using a Fuji LAS1000 cooled CCD camera. Hybridised

arrays from each patient were imaged together. Signal intensity

was analysed using AIDA Image Analyser programme v3.21

(Raytest Isotopenmessgeräte GmBH, Straubenhardt, Germany).

Microarray data was validated by quantitative reverse transcrip-

tase real-time PCR. Reverse transcription was performed using

500ng total RNA and random primers, catalyzed with Super-

scriptTM II reverse transcriptase (concentration 200units/ml)

(Invitrogen, UK, 18064-14). Glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH) and beta-2-microglobulin (B2M) were selected

as normaliser genes from the initial microarray filter gene

expression data. All primers were obtained from Superarray

Bioscience (UK distributer; Tebu-Bio, Peterborough, UK). Real-

time PCR reaction for each sample was performed on a Biorad

iCyclerH (Bio-Rad Laboratories, UK) in duplicate, incorporating

RT2 Real-TimeTM SYBR green mastermix (PA-010)(Superarray

Bioscience, USA). A 10 fold serial dilution standard curve was

included for each gene of interest and both normalisers on each

plate. Data was included if the PCR efficiency fell between 80% to

105%. A no template control was included. The PCR cycling

programme (15 minutes, 95uC to activate the Taq polymerase,

followed by 40 cycles of 95uC for 15 seconds, 55uC for 30 seconds

and 72uC for 30 seconds) was followed immediately by a default

melting curve program to 96uC. Sequence verification of PCR

amplicons was performed by either cloning into pGEMH- T easy

vector system (Promega, Southhampton, UK, A1360), incorpo-

rating transformation of JM109 high efficiency competent cells

(Promega, Southhampton, UK, L2001) and the universal M13

primer, or purification of RT-PCR product and sequencing using

custom designed gene specific primers based on reference positions

indicated from RefSeq accession number supplied with Super-

array primer assays.

Statistical methods
Differences in inflammatory cell infiltrate between tissue types

and in relation to adenoma size was assessed using paired t-tests.

One way ANOVA assessed the relationship between inflammatory

infiltrate and degree of dysplasia. One paired T test assessed

macrophage phenotype. Both absolute and relative differences in

function were tested in a one way ANOVA. SAS 9.1.3 for

Windows XP (SAS Institute, Cary, NC, USA) was used for

statistical analyses.

Gene array signal intensities were normalised to background

signal, log-transformed and rescaled to ensure each data point lay

between lowest and highest signal intensity. Data from short and

long exposure images were analysed in combination and a

weighted average generated. ANOVA was conducted with Patient

as blocking variable. Gene expression signals between normal,

adenoma and CRC were compared and greater than 2 fold

difference in expression pattern identified. RT-PCR data was

analysed using a paired t-test, incorporating the 22DD CT (Livak)

method as previously published [12].

Statistical significance was set at p,0.05 throughout.

Ethics
Ethical approval for this study was obtained from Grampian

Ethics Committee. Written informed consent was obtained from

all participants.

Results

Assessment of inflammatory cell phenotype
Patient and adenoma characteristics are shown in Table 2.

Macrophage (p= 0.0002), neutrophil (p = 0.0001), helper T cells

Table 2. Adenoma and patient characteristics.

Adenoma and patient characteristics

Adenomas collected within paired

polyp-normal sample set (n=64) LGD (n=40) HGD (n=40) CaP (n =40)

Colonic site Left sided* 54 (85%) 35 (88%) 37 (92%) 37 (92%)

Right sided 10 (15%) 5 (12%) 3 (8%) 3 (8%)

Polyp size Small (#1cm) 35 (55%) 11 (27%) 8 (20%) 5 (12%)

Large (.1cm) 29 (45%) 29 (73%) 32 (80%) 35 (88%)

Histological

classification

Tubular adenoma 50 (78%) 32 (80%) 15 (38%) 13 (32%)

Tubulo-villous adenoma 14 (22%) 8 (20%) 25 (62%) 27 (68%)

Degree of dysplasia Low grade 56 (88%) 0 (0%) 0 (0%) 0 (0%)

High grade 2 (3%) 40 (100%) 0 (0%) 0 (0%)

Cancer polyp 6 (9%) 0 (0%) 40 (100%) 40 (100%)

Source CRC screening 64 (100%) 32 (80%) 2 (5%) 5 (12%)

Diagnostic database 0 (0%) 8 (20%) 38 (95%) 35 (88%)

Patient age (years) 63 (53–69) 63 (55–79) 71 (45–92) 67 (38–89)

Gender Male 58% 60% 55% 53%

Female 42% 40% 45% 47%

*distal to splenic flexure.
doi:10.1371/journal.pone.0015366.t002
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(p = 0.004),activated T cells (p = 0.0001) and NK cells (p = 0.04)

were increased in adenomas compared to adjacent normal mucosa

(Table 3 and Figure 1). Infiltration of macrophage, neutrophil and

activated T cells correlated with adenoma size, with correlation

co-efficient of 0.51 (p= 0.0001), 0.27 (p = 0.03) and 0.50 (p =

0.0001), respectively. This represented a mean cell count of 9

(95% CI 6–12) in small polyps compared to 12 (95% CI 6–19) in

large polyps for neutrophil infiltrate (p = 0.0006), 12 (95% CI 9–

14) in small polyps compared to 20 (95% CI 16–25) in large polyps

for macrophage infiltrate (p = 0.003) and 2 (95% CI 1–3) in small

polyps compared to 8 (95% CI 6–11) in large polyps for activated

T cell infiltrate (p = 0.0001). T helper cells did not increase along

with adenoma size (p = 0.23). There was an increase in macro-

phage (p = 0.0001) and neutrophils (p = 0.0001) as the degree of

dysplasia progressed from low grade to high grade and finally to

overt invasive adenocarcinoma (Table 4). There was a statistically

significant increase in T helper cells in cancer polyps compared to

their benign adenomatous counterparts (p = 0.009). There was

no increase in activated T cell infiltration in association with

increasing degree of cell dysplasia (p = 0.06).

Assessment of macrophage phenotype
There were no iNOS positive pro-inflammatory macrophages

in the normal colonic mucosal biopsies. In comparison, within

paired adenomas, these cells were a key feature of the stroma with

84% (61%–93%) of the macrophage population expressing iNOS

(p= 0.001) (Table 5). Arginase I expression within the macrophage

population was not a prominent feature of either the normal

mucosal biopsies or the adenomas. Overall, there appeared to be

more arginase I expressing macrophages within the stroma of the

polyps, when analysed as both the absolute number of arginase I

positive cells and the percentage of arginase I positive cells within

the total macrophage population, and this was statistically

significant with p= 0.001 and p= 0.023, respectively, but the

overall number of positive cells were low (Table 5). 45%, 67% and

34% of the total macrophage population expressed iNOS in the

low grade dysplastic, high grade dysplastic and cancer polyp

groups, respectively. This is compared to 12%, 5% and 13% of

macrophage expressing arginase I. The difference in this pattern of

enzymatic expression favours a pro-inflammatory phenotype. The

relative proportion of iNOS expressing pro-inflammatory cells to

arginase I expressing regulatory cells was greatest in the low grade

dysplastic (p = 0.001) and high grade dysplastic groups (p = 0.001).

The relative proportion of regulatory to pro-inflammatory

macrophage was higher in the cancer polyp group suggesting

that regulatory macrophage are more abundant within areas of

invasive disease.

Profiling of inflammatory gene expression
The average age of the patients was 71 years (range 55–79). Five of

the patients were male. Five of the cancers originated on the left side

of colon. On staging, one was Duke’s A, 4 Dukes B and 2 Dukes C.

CXCL1, CXCL2, CXCL3, CCL20, and IL-8 had increased

expression in the adenoma and adenocarcinoma compared to

normal colonic mucosa. CCL19, CCL21, CCL23, CCL5, were

found to have reduced expression in the adenoma and

adenocarcinoma compared to normal mucosa (Table 6, and

Figure 2). It is clear that the change in expression of all of these

genes occurs in the precancerous adenomatous lesion, early in the

neoplastic process, prior to malignant transformation. Expression

pattern of all of these genes was validated by RT-PCR, normalised

to both housekeeper genes (B2M and GAPDH) (data for GAPDH

shown in Table S1). Identification of the PCR products was

confirmed by sequencing of the PCR amplicons.

Discussion

This study has defined the inflammatory cell phenotype within

the stromal microenvironment of human colorectal pre-malignant

adenomas and identified how this evolves with adenoma

progression to overt invasive disease. In addition, several pro-

inflammatory genes are differentially expressed in pre-malignant

colonic adenomatous polyp compared to adjacent normal mucosa.

All of the 9 differentially expressed genes are linked to inflam-

mation and key cell functions important in tumour biology. IL-8 is

a known potent chemoattractant of neutrophils and macrophages

to areas of inflammatory activity. IL-8 is also mitogenic [13],

angiogenic [14] and, through linked expression of MMP’s,

influences tumour cell motility such that invasion is enhanced

[15]. CCL20 is a chemokine involved in directing lymphoid cell

migration through binding to its receptor CCR6. CCR6 is

significantly up-regulated in both colorectal cancer and associated

liver metastases and data suggests that it plays a role in the

recruitment of CCR6+ tumour cells to the site of distant metastases

[16]. CXCL1 expression is up-regulated in colorectal adenomas

and adenocarcinoma [17], inhibiting apoptosis and inversely

Table 3. Assessment of inflammatory cell phenotype in 65 colonic adenomas and 35 adjacent normal mucosal biopsies (paired T
test).

Inflammatory cell Normal Colon Adenomatous Polyp Mean Difference (95% CI) P-Value

T helper cell 13.19 (11.84) 21.80 (14.67) 8.61 (2.95, 14.27) 0.004

Cytotoxic T cell 6.25 (7.97) 6.00 (8.31) 20.25 (22.66, 2.16) 0.83

B cell 2.78 (6.56) 4.11 (7.31) 1.33 (21.60, 4.27) 0.36

Activated T cell 2.32 (2.67) 7.69 (5.71) 5.53 (3.34, 7.72) ,0.0001

NK cell 0.19 (1.01) 2.11 (5.39) 1.92 (0.11, 3.72) 0.04

Macrophage 10.83 (10.20) 19.63 (10.69) 8.91 (4.50, 13.32) 0.0002

Mast cell 10.00 (5.35) 10.56 (9.63) 0.71 (21.97, 3.40) 0.59

Neutrophil 1.56 (3.22) 14.83 (14.76) 13.28 (8.37, 18.19) ,0.0001

Plasma cell 5.50 (7.19) 6.00 (8.18) 0.50 (22.61, 3.61) 0.75

In this analysis, the maximum infiltrate value was used for the polyp when more than 1 polyp existed.
Numerical data represents mean cell counts (with mean of standard deviation).
doi:10.1371/journal.pone.0015366.t003
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linked to expression of fibulin-1, an extra-cellular matrix protein

implicated in control of tumour cell migration. Wang et al. (2006)

[18] reported that expression of CXCL1 induced by PGE2 was

linked to angiogenesis in colorectal cancer in vitro and in vivo and

thus provided a link between COX-2 up-regulation and

chemokine induced tumour associated endothelial cell migration.

Of interest, is the fact that expression of several chemokines was

down-regulated in adenomas. CCL23 is an immune mediator

involved in the chemotaxis of monocytes but not neutrophils [19].

CCL23 inhibits the release of neutrophils and monocytes from

bone marrow, suggesting that it may be an important mediator in

regulating bone marrow response during immune stimulation

[20]. In addition, CCL23 confers angiogenic properties [21],

mediated through up-regulation of MMP2 gene expression in

endothelial cells [22]. CCL5 drives T cell and monocyte migration

and activation, with increased expression linked to a number of

malignancies [23,24]. CCL5 was not found to be up-regulated in

colorectal cancer compared to adjacent normal mucosa by Baier

and colleagues [25] and this would be in keeping with the present

study. CCL19 and CCL21 are structurally related chemokines

that share the common receptor, CCR7. They play a pivotal role

in the development of secondary lymphoid tissue as seen in animal

models of deficiency [26,27] and are involved in T cell activation

through interaction with dendritic cells within secondary lymphoid

organs. It is difficult to speculate on the biological ramifications of

differential expression of each of these chemokines individually.

However, the dysregulation of these inflammatory cytokine and

chemokine genes in adenomatous polyps compared to adjacent

Table 4. Assessment of inflammatory cell infiltrate in colonic
adenomas in relation to increasing degree of epithelial cell
dysplasia (one way ANOVA).

Inflammatory

cell

Low grade

dysplasia

High grade

dysplasia

Cancer

polyps P value

T helper cell 14.20 (40) 13.80 (40) 21.95 (38) 0.009

Activated T cell 4.95 (40) 5.43 (40) 8.26 (39) 0.06

Macrophage 40.37 (39) 55.89 (40) 82.33 (39) ,0.0001

Neutrophil 8.13 (40) 17.80 (40) 31.44 (39) ,0.0001

Numerical data denotes mean cell counts. () = n.
doi:10.1371/journal.pone.0015366.t004

Figure 1. Inflammatory cell infiltration in colorectal adenomas compared to normal colonic mucosa. Macrophage infiltrate was
increased in polyps (B) compared to adjacent normal mucosa (A). Neutrophil infiltrate was increased in polyps (D) compared to adjacent normal
mucosa (C). CD25+ activated T cells were increased in polyps (F) compared to adjacent normal mucosa (E).
doi:10.1371/journal.pone.0015366.g001
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normal mucosa complements the cellular findings of an active

inflammatory stromal microenvironment and is worthy of further

investigation.

Several gene expression studies have previously been performed

on normal and diseased colonic tissue. In general, a genome wide

approach has been applied to identify genes dysregulated in

malignant tissue that can be targeted in treatment strategies and

for staging [28–30]. In contrast, there are fewer reports of gene

expression studies in pre-malignant colorectal adenomas [31–34].

Each stage of the adenoma-carcinoma sequence may have an

identifying gene signature primarily involving genes related to cell

cycle, cell growth, RNA and protein processing and cell signalling.

Sabates-Bellver et al [35] assessed 32 pedunculated colorectal

adenomas compared to normal mucosa and identified differential

expression of several inflammatory genes in adenomas, corre-

sponding to those identified from our data analysis. Specifically,

CCL19 and CCL5 had reduced expression in polyp lesions. In

addition, IL-8, CXCL1, CXCL2, CXCL3, and CCL20 had higher

levels of expression in the polyps compared to normal, which is in

keeping with the current study.

The gut exerts a continuous low grade ‘physiological’ mucosal

inflammatory activity, in response to continual challenges from

luminal contents, with T helper cell, macrophage, CD8+ T cells,

and plasma cell infiltrates [36,37]. The normal mucosal biopsies in

this study revealed mucosal immunoactivity as expected. The

demonstration that polyps harbour an increased cellular inflam-

matory infiltrate over and above what is expected in ‘‘normal’’

colonic tissue is an important finding. This study has shown that

adenomatous polyps are rich with pro-inflammatory macrophage,

neutrophil and T helper cell infiltration and these are likely to

exert a significant influence on their surrounding microenviron-

ment within the polyp lesion. NK cells were also found to be

increased in polyp compared to normal mucosa. However, the

majority of polyps did not have any evidence of CD56+ NK cell

infiltrate and those that did had an average of only 5 positive cells/

HPF. This only marginally achieved statistical significance

(p = 0.04) and the relevance of this in the biological microenvi-

ronment is debatable and requires further evaluation.

Neutrophils are a source of N- nitrosamines, especially in the

presence of colonic amine producing bacteria, and these are

known to be carcinogenic [38,39]. Coussens et al [40] showed that

neutrophil and macrophage derived MMP-9 enhanced progres-

sion from dysplasia to overt malignancy through paracrine

signalling in a mouse model of squamous skin cancer, with

reduced MMP-9 delaying angiogenesis within dysplastic areas and

reducing the incidence of invasive disease. In addition, inflamma-

tory cells of haemopoetic origin, introduced by bone marrow

transplant, were identified in hyperplastic, dysplastic and neoplas-

tic skin lesions, and produced MMP-9 driven changes associated

with early carcinogenesis. Our previous data showed that MMP-9

is expressed within adenomatous polyps [41]. Recently, Jablonska

and colleagues [42] have demonstrated that endogenous IFNb

inhibits angiogenesis, by inhibiting pro-angiogenic genes within

tumour associated neutrophils, in a transplantable mouse tumour

model. Neutrophil elastase, secreted by neutrophils, is a main

constituent of phagocytic response, degrading proteins within the

local environment such as elastin, collagen and other constituents

of extracellular matrix [43]. Elastase deficient mice have

significantly reduced skin carcinoma load in response to repeated

UV light or chemical exposure [44]. Administration of a specific

Table 5. Assessment of macrophage phenotype in colonic adenomas (n=42) and adjacent normal mucosa (n=25).
() = 25th and 75th centiles.

Normal colon Adenomatous polyp P value

Median number of iNOS+ cells 0 (0–3) 11 (6–18) 0.001

% iNOS+ cells/total CD68+ cells 0% (0%–43%) 84% (61%–93%) 0.001

Median number of arginase I+ cells 0 (0–1) 1 (0–2) 0.001

% arginase I+ cells/total CD68+ cells 0% (0%–10%) 6% (0%–25%) 0.023

doi:10.1371/journal.pone.0015366.t005

Table 6. Differential expression of inflammatory genes in colorectal neoplastic progression.

Gene Normal(N) Adenoma(Ad) CRC P value N.vs.Ad P value N.vs.CRC P value Ad.vs.CRC

CCL20 2.47 3.97 3.65 0.014 0.044 0.537

CXCL1 1.60 3.52 3.31 0.001 0.001 0.520

CXCL2 1.35 3.10 3.16 0.003 0.002 0.910

CXCL3 0.77 1.76 1.88 0.009 0.004 0.712

IL-8 1.63 2.84 3.42 0.01 0.001 0.173

CCL5 3.61 2.40 2.59 0.007 0.017 0.660

CCL19 2.73 1.57 1.59 0.004 0.004 0.944

CCL21 2.98 1.87 2.23 0.007 0.052 0.285

CCL23 2.02 0.96 0.91 0.001 0.001 0.831

Gene expression in normal colonic mucosa vs. pre-malignant adenomatous polyp (Ad) vs. invasive adenocarcinoma (CRC). Bold denotes genes with increased
expression in neoplastic tissue compared to normal mucosa, and italics denotes genes with reduced expression in neoplastic tissue compared to normal mucosa.
doi:10.1371/journal.pone.0015366.t006
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neutrophil elastase inhibitor suppressed the proliferation and

motility of a pancreatic cancer cell line [45], as well as squamous

and adenocarcinoma cell lines of lung malignancy [46]. The

underlying mechanism is unclear. Degradation of protein trans-

cription factors may disrupt regulatory proteins of gene expression

[44]. Reactive oxygen species derived from polymorphs can

indirectly affect gene expression by, for example, modulating

enzyme activity and promoting changes in transcription factor

binding capacity. Neutrophil activation has been implicated in cell

cycle G2/M arrest, dependent on expression of p53 and p21, and

associated with DNA damage checkpoint mechanisms, in an in

vitro co-culture model mimicking colitis [47].

Pro-inflammatory macrophages are a central and potent

constituent of innate immunity. Within our cancer polyp group,

the macrophage population appears to change with a reduced

proportion of iNOS expressing classically activated cells. Macro-

phages are well recognised at sites of malignancy. Tumour

associated macrophage have poor antigen presenting capabilities

with a limited anti-tumour response. This reduced tumoricidal

capacity has been linked to reduced iNOS expression [48] and

would be in keeping with the current data.

There is pharmacological evidence for the role of inflammation in

the development of colorectal neoplasia. Several large randomised

controlled trials have shown that regular aspirin use can reduce the

risk of CRC and adenoma development by up to 50% [49–52]. The

use of aspirin or NSAIDs in our study population is unknown.

This study has defined the stromal microenvironment of pre-

malignant colorectal adenomas and identified key inflammato-

ry components involved in adenoma progression to invasive

malignancy. It is clear from our data that a phenotypic and

genotypic ‘switch’ occurs early in the adenoma-carcinoma

sequence, with expression of inflammatory cytokines and

chemokines dysregulated in the transition from normal mucosa

to adenomatous polyp, rather than at the polyp to invasive

disease transition. This data increases the understanding of the

environmental influences within the adenoma in relation to

disease progression and may have identified potential mecha-

nistic pathways in the initiation and promotion of early

colorectal carcinogenesis. Ultimately, this may identify pheno-

typic markers within adenomas which determine malignant

potential.

Supporting Information

Table S1 RT-PCR validation of gene expression in normal

colonic mucosa, adenomatous polyp and adenocarcinoma (CRC),

normalised to expression of GAPDH and B2M. P value generated

from 2 tailed t-test statistical analysis. Bold denotes genes with

increased expression in neoplastic tissue compared to normal

mucosa, and italics denotes genes with reduced expression in

neoplastic tissue compared to normal mucosa.

(DOC)

Figure 2. Signal intensity of targeted microarray. Signal intensity of targeted microarray with gene expression in 5 genes significantly up-
regulated in adenoma and CRC compared to normal (A) and 4 genes significantly down-regulated in adenoma and CRC compared to adjacent normal
mucosa (B) (p values noted in Table 6).
doi:10.1371/journal.pone.0015366.g002
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