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Abstract: We study the analytic properties of tree-level wavefunction coefficients in quasi-

de Sitter space. We focus on theories which spontaneously break dS boost symmetries and

can produce significant non-Gaussianities. The corresponding inflationary correlators are

(approximately) scale invariant, but are not invariant under the full conformal group. We

derive cutting rules and dispersion formulas for the late-time wavefunction coefficients by

using factorization and analyticity properties of the dS bulk-to-bulk propagator. This gives

a unitarity method which is valid at tree-level for general n-point functions and for fields

of arbitrary mass. Using the cutting rules and dispersion formulas, we are able to compute

n-point functions by gluing together lower-point functions. As an application, we study

general four-point, scalar exchange diagrams in the EFT of inflation. We show that exchange

diagrams constructed from boost-breaking interactions can be written as a finite sum over

residues. Finally, we explain how the dS identities used in this work are related by analytic

continuation to analogous identities in Anti-de Sitter space.
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1 Introduction

According to inflation, the early universe went through a phase of quasi-de Sitter expansion

that stretched quantum fluctuations to superhorizon scales [1–4]. Current measurements

show that inflationary correlators are nearly Gaussian and scale invariant [5]. A discovery of

non-Gaussianities in future experiments [6] would be an exciting development as they encode

information about the physics of inflation, its UV completion, and the possible existence of

new particles [7–9]. The goal of this work is to study inflationary correlators using a bootstrap

approach that leverages their analytic properties.

The natural observables in dS are equal-time correlation functions at future infinity. In

weakly-coupled theories one can compute these correlators by summing over all relevant Feyn-

man diagrams. However, even tree-level dS Feynman diagrams can be difficult to compute in

practice. Individual Feynman diagrams can also obscure symmetries that are manifest in the

final answer. Therefore, it is useful to understand how dS correlators can be studied from a

purely boundary, or on-shell, perspective. On-shell methods have yielded new insights into

the mathematical structure of flat-space scattering amplitudes [10, 11], and it is natural to

expect that similar progress can also be made for cosmological observables. On-shell methods

for inflation have recently been developed in the cosmological bootstrap program [12–29],

which uses physical consistency conditions and symmetries to fix the late-time correlators.

In particular, these works have shown the importance of studying dS correlators as analytic

functions of their momenta and imposing that they have the correct singularity structure.1

Late-time correlators in pure dSd+1 are invariant under the d-dimensional, Euclidean

conformal group, SO(d+ 1, 1). Conformal invariance imposes strong constraints on the form

of boundary dS correlators [44–52]2, which can be used to bootstrap four-point functions

from first principles [13]. There has also been progress bootstrapping theories which break

dS boost symmetries, or boundary special conformal transformations [16, 21, 24–29]. This

generalization is important because inflaton backgrounds generically break dS boost symme-

tries by an order one amount. Moreover, only boost-breaking interactions can produce large

non-Gaussianities in single-clock theories [21]. Bulk time translations, or boundary scale

transformations, are also broken by the inflaton background, but this symmetry can be (ap-

proximately) restored if the scalar sector of the theory has an internal, global shift symmetry

[53, 54]. This means that generic models of inflation will produce boundary correlators that

are scale invariant, but not conformally invariant. For this reason, we will develop bootstrap

methods for theories that break dS boost symmetries and can therefore produce significant

non-Gaussianities.

We will specifically study how to bootstrap the dS wavefunction in perturbation theory.

Given the wavefunction, one can compute late-time correlation functions by performing an

additional path integral [55]. We will leave this step implicit in our work and instead fo-

1For related work on simplifying AdS/CFT perturbation theory in momentum space see [30–43].
2One subtlety is that correlators may only be invariant under a combined conformal and coordinate trans-

formation [51].
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cus on the wavefunction coefficients themselves. We first show that the momentum space

discontinuity of a tree-level, n-point wavefunction coefficient is fixed in terms of a product

of lower-point coefficients. Equivalently, the momentum space discontinuity of a tree-level,

dS Feynman diagram is equal to a product of on-shell sub-diagrams. We then explain how

to reconstruct the original n-point function from its discontinuity, up to contact diagram

ambiguities, by using a momentum space dispersion formula. We find that the dispersion

formula for massless scalars can generically be rewritten as a contour integral of a rational

function. The dispersion formula therefore reduces complicated, nested bulk Feynman inte-

grals to a finite sum which is completely fixed in terms of lower-point data. Together, the dS

cutting rules and dispersion formulas yield an efficient, on-shell method to compute tree-level

wavefunction coefficients.

The unitarity methods used in this work are related by analytic continuation to analogous

unitarity methods in AdS momentum space [56, 57].3 The existence of an analytic continua-

tion between the dS wavefunction and the AdS partition function [55, 62] helps explain why

dS wavefunction coefficients have simple analyticity properties in perturbation theory. We

should emphasize though that none of the dS identities we use rely on assuming that the AdS

theory is unitary. For example, the factorization conditions and dispersion formulas we study

are valid for heavy fields in dS, which are mapped by analytic continuation to tachyons in

AdS.4 Instead, the unitarity methods studied here follow directly from the analytic structure

of tree-level dS Feynman diagrams.

Our results are closely related to and motivated by recent progress on dS unitarity meth-

ods [16, 24, 26–28]. It will then be useful to explain how our methods overlap with and differ

from previous works on this subject. First, here we study discontinuities of wavefunction

coefficients with respect to a single Mandelstam invariant. In [24, 27, 28] a different disconti-

nuity was studied which involves analytically continuing the norms of the external momenta,

|ka|. Although these two discontinuities involve analytic continuations in different variables,

they are equivalent at tree level and only start to differ at one loop. In addition, in both this

work and in [16, 26] tree-level exchange diagrams are computed by gluing together boundary

three-point functions. Here we perform this gluing by using a dispersion formula, where we

disperse in a single Mandelstam invariant. The output of the dispersion formula differs from

the Feynman diagram result by at most a finite sum of contact diagrams. In [16, 26] different

gluings were performed using partial energy recursion relations. In general, the output of

these recursion relations cannot be expressed as a linear combination of dS Feynman dia-

grams. Rather, the partial energy recursion relations fix part of the wavefunction coefficient

and the remaining terms are fixed by imposing physical consistency conditions, including the

Cosmological Optical theorem [24], the manifest locality test [26], and/or the absence of folded

singularities [16]. However, the partial energy recursion relations allow one to access certain

3For previous works on AdS/CFT unitarity methods, from both a bulk and boundary perspective, see

[58–61].
4Here by “tachyons” we mean bulk AdS fields which are inconsistent with the boundary CFT unitarity

bounds [63].
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non-analyticites which are not picked up by the dispersion formula studied here. Overall,

the results presented here and in [16, 24, 26–28] are complementary and highlight different

analyticity properties of the dS wavefunction.

Outline

Here we will give an outline for the remainder of the paper. In Section 2 we review the defini-

tion of the dS wavefunction and the Feynman rules used to compute wavefunction coefficients.

We first show that the discontinuity of the dS bulk-to-bulk propagator factorizes in terms of a

product of bulk-to-boundary propagators (2.20). We then show that the bulk-to-bulk propa-

gator obeys a momentum-space dispersion formula (2.28). From these two identities we derive

the main results: a factorization condition (2.31) and dispersion formula (2.32) for tree-level

dS wavefunction coefficients. These results are valid for arbitrary interactions and for fields of

arbitrary mass. In Section 3 we apply these identities to diagrams involving massless scalars

and boost-breaking interactions. We compute general, higher-derivative, four-point exchange

diagrams in the EFT of inflation [53, 54, 64] and also a five-point diagram constructed from

a φ′3 vertex. In all cases our results are consistent with previous results in the literature. In

Section 4 we explain how the dS identities used in Sections 2 and 3 are related by analytic

continuation to analogous AdS identities. Finally, in Section 5 we discuss future directions.

The appendices contain various technical details. In Appendix A we give the explicit form

of four-point dS exchange and contact diagrams. In Appendix B we discuss two different ways

of regularizing divergent dispersion integrals, either by regulating the integrand with a hard

cutoff or by defining the dispersion integral via analytic continuation. We show that the two

regularizations differ by a finite sum of contact diagrams. In Appendix C we study ambiguities

of the dispersion formula in general asymptotically AdS spacetimes.

Conventions

We use the mostly plus metric for both Lorentzian AdSd+1 and dSd+1. We use bold letters for

the d-dimensional momenta, k, and define their norms as k ≡
√

k2. We will mostly restrict

to d = 3, although our methods carry over to general spacetime dimensions. When including

indices, we use Greek letters for Lorentzian vectors, kµ, and Latin letters for Euclidean vectors,

ki. Our conventions for the Fourier transform are,

f(x) =

∫
ddk

(2π)d
e±ik·xf(k), (1.1)

where we use the + and − signs in dS and AdS, respectively.

Since the boundary of AdS is Lorentzian while the boundary of dS is Euclidean, different

sets of variables are natural to use when studying the respective boundary correlators. We

will mostly be studying the dS wavefunction, so we define the Mandelstam invariants as,

sab = (ka + kb)
2. (1.2)
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In (1.2), a and b refer to different external operators. In dS the variables ka and
√
sab are often

referred to as the external and internal energy variables.5 In AdS we will use the following

notation,

s−,ab = −(ka + kb)
2, (1.3)

to emphasize the change in sign when defining the Mandelstam invariants.

At four points we define s ≡ s12, t ≡ s23, and u ≡ s13. In general QFTs, four-point func-

tions depend on 6 independent variables, which we take to be {ka, s, t}. The last Mandelstam

invariant u is fixed by momentum conservation. When studying s-channel discontinuities,

we will analytically continue in s while keeping ka and t held fixed. We adopt the same

conventions in AdS, except with an extra “-” subscript for each Mandelstam invariant.

2 dS Wavefunction

2.1 Feynman Rules

In this section we review the Feynman rules for the dS wavefunction. We study a single scalar

field Φ(x, η) in a dS4 background,

ds2
dS =

1

Hη2
(−dη2 + δijdx

idxj). (2.1)

Here η ∈ (−∞, η0) is the conformal time and η0 is the late-time cutoff where we evaluate the

boundary correlators. For simplicity, we will set the Hubble parameter to one, H = 1.

The wavefunction of the universe is defined by taking the overlap of a field configuration

at η = η0 with the initial vacuum state, which we take to be the Bunch-Davies vacuum |Ω〉,

Ψ[φ(x)] ≡ 〈φ(x)|Ω〉 =

Φ(x,η0)=φ(x)∫
Φ(x,−∞)=0

DΦeiS[Φ]. (2.2)

In weakly-coupled theories we can expand the wavefunction in terms of the late-time fluctu-

ations,

Ψ[φ] ≈ exp

[
−
∞∑
n=2

1

n!

d3k1 . . . d
3kn

(2π)3n
Ψn(k1, . . . ,kn)φ(k1) . . . φ(kn)

]
. (2.3)

The functions Ψn are known as the wavefunction coefficients. Given the wavefunction, we

can compute the late-time correlators using [55],

〈φ(k1) . . . φ(kn)〉 =

∫
Dφφ(k1) . . . φ(kn)|Ψ[φ]|2∫

Dφ|Ψ[φ]|2
. (2.4)

5In the dS literature, see for example [13, 24], they define sthereab =
√
shereab .
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At tree level it is straightforward to go from the wavefunction coefficients to the late-time

correlators. However, in this work we will only compute the wavefunction itself. Finally, it will

be convenient to remove an overall momentum conserving δ-function from the wavefunction

coefficients,

Ψn(k1, . . . ,kn) = (2π)3δ(k1 + . . .+ kn)ψn(k1, . . . ,kn). (2.5)

The wavefunction coefficients can be computed using a set of Feynman rules that are

related to the ones used in AdS/CFT [55] (see also [65, 66]). To start, we write down the free

action for a field Φ propagating on a dS4 background with a speed of sound cs,

SdS
0 =

1

2

∫
dηd3x

1

η2

(
Φ′2 − c2

s(∂iΦ)2 − m2

η2
Φ2

)
. (2.6)

Here the prime denotes a derivative with respect to η. A massless, self-interacting scalar with

a non-trivial speed of sound appears in the decoupling limit of the EFT of inflation [53, 54].

In that context, Φ is the Goldstone boson for broken time translations and the decoupling

limit is,

Mpl →∞ and Ḣ → 0 such that M2
plḢ is fixed. (2.7)

Here Mpl is the Planck scale and the dot denotes a derivative with respect to the physical

time t. In this limit gravity is decoupled and the EFT of inflation becomes a non-relativistic,

scalar QFT on a rigid background, which we have taken to be dS. For more details on the

EFT of inflation and its decoupling limit see [53, 54, 67–69].

A non-trivial, constant speed of sound, cs 6= 1 preserves boundary scale invariance, but

breaks boundary special conformal transformations [70].6 Scale invariance is also broken

during inflation, but its breaking is slow-roll suppressed while the breaking of special confor-

mal transformations is generically of order one [21]. We will ignore slow-roll corrections and

assume that the boundary correlators are scale, but not conformally, invariant.

Since we are studying a single bulk scalar field, we can in practice set cs = 1 and

restore the cs dependence later using dimensional analysis. Equivalently, we are rescaling

the coordinates to impose a fake dS invariance. Setting cs = 1, the action (2.6) yields the

standard relativistic dS propagators,

Kν(k, η, η0) =

(
η

η0

) 3
2 H

(2)
ν (−kη)

H
(2)
ν (−kη0)

, (2.8)

Gν(k, η1, η2, η0) =
π

4

(
H(1)
ν (−kη1)H(2)

ν (−kη2)θ(η1 − η2) +H(1)
ν (−kη2)H(2)

ν (−kη1)θ(η2 − η1)

− H
(1)
ν (−kη0)

H(2)(−kη0)
H(2)
ν (−kη1)H(2)

ν (−kη2)

)
, (2.9)

6A time-dependent speed of sound breaks both scale and special conformal transformations on the boundary.
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where Kν is the bulk-to-boundary propagator and G is the bulk-to-bulk propagator. The H
(i)
ν

are the Hankel functions and the parameter ν is related to the mass m of the bulk field Φ by,

ν =

√
9

4
−m2. (2.10)

Requiring that we have a Bunch-Davies vacuum in the infinite past translates into the fol-

lowing boundary conditions,

lim
η→−∞

Kν(k, η, η0) = 0, lim
η1→−∞

Gν(k, η1, η2, η0) = 0, (2.11)

which hold if we use the iε prescription, k → k − iε. We will often leave the dependence on

η0 implicit and take the limit η0 → 0 for IR-finite diagrams.

Next, we can consider interactions of Φ which preserve boundary scale and Poincaré

invariance, but break special conformal transformations. The most general such interaction

takes the form [26],

Sint =

∫
dηd3x η

∑
aNa−4∂N1Φ . . . ∂NnΦ, (2.12)

where ∂ denotes a derivative with respect to η or xi and Na counts the total number of

derivatives, of either type, acting on each field. The powers of η are fixed by imposing

boundary scale invariance. These types of interactions appear in the EFT of inflation and we

will study explicit examples of them in Section 3.

Finally, to compute wavefunction coefficients we draw dS Feynman diagrams where all

external lines end on the future boundary at η = η0. We use Kν and Gν for each bulk-to-

boundary and bulk-to-bulk line, respectively, and include a factor of iV for each interaction

vertex. We then integrate over all loop momenta and the positions in time of the interaction

vertices. We will mostly study s-channel, exchange diagrams of the form,

ψexch(ka, s, t) = . (2.13)

2.2 Cutting Rules and Dispersion

In this section we will show that tree-level dS wavefunction coefficients can be computed using

cutting rules and momentum space dispersion formulas. For simplicity, we start by studying

the propagators of a conformally coupled scalar, which corresponds to m2 = 2 in Hubble

units or ν = 1/2. We find,

Kν=1/2(k, η) =
η

η0
eik(η−η0), (2.14)

Gν=1/2(k, η1, η2) =
η1η2

2k

(
θ(η1 − η2)e−ik(η1−η2) + θ(η2 − η1)eik(η1−η2) − e−ik(2η0−η1−η2)

)
.

(2.15)

– 7 –



As stated earlier, to ensure that both propagators decay at past infinity, we give the norms

k a negative imaginary part. In polar coordinates, k2 = reiθ, this becomes the condition

θ ∈ (−2π, 0). If θ is in this interval, then the Feynman integrals converge. It is therefore

natural to place the k2 branch cut on the positive real axis. We then define the following

monodromy operation,

disck2f(k2) = f(e−2πik2)− f(k2), (2.16)

which in our conventions corresponds to a discontinuity when k2 is real and positive. For the

conformally coupled scalar we find,

disck2G1/2(k, η1, η2) = P1/2(k)disck2K1/2(k, η1)disck2K1/2(k, η2), (2.17)

where the power spectrum Pν(k) is defined for general ν by,

〈φ(k, η0)φ(k′, η0)〉 = δ(k + k′)Pν(k), (2.18)

Pν(k) =
π

4
η3

0H
(1)
ν (−kη0)H(2)

ν (−kη0). (2.19)

The relation (2.17) shows that disck2 of the dS bulk-to-bulk propagator produces a result

which is factorized in (η1, η2). It is not difficult to show that this identity continues to hold

for generic ν,

disck2Gν(k, η1, η2) = Pν(k)disck2Kν(k, η1)disck2Kν(k, η2). (2.20)

The identity (2.20) can be represented diagrammatically as,

= Pν(k) , (2.21)

where the dashed lines correspond to the discontinuity of the appropriate propagator. The fact

that the discontinuity of the bulk-to-bulk propagator factorizes has been observed previously

in both AdS [56] and dS [16, 28]. To prove (2.20) we used [71]:

sin(νπ)H(1)
ν (zeiπm) = − sin((m− 1)νπ)H(1)

ν (z)− e−iπν sin(mνπ)H(2)
ν (z), (2.22)

sin(νπ)H(2)
ν (zeiπm) = eiπν sin(mνπ)H(1)

ν (z) + sin((m+ 1)νπ)H(2)
ν (z), (2.23)

where m ∈ Z and ν is arbitrary.

To see why the factorization property (2.20) is useful, we will study the discontinuity

of a tree-level exchange diagram. We will consider an exchange diagram constructed from a
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non-derivative φ2ξ interaction,7 where ξ is a generic scalar:

ψξ(ka, s, t) =

= −g2

η0∫
−∞

dη1dη2

η4
1η

4
2

Kφ(k1, η1)Kφ(k2, η1)Gξ(
√
s, η1, η2)Kφ(k3, η2)Kφ(k4, η2). (2.24)

Here we used the fields to label the propagators and, as a reminder, have defined s = (k1+k2)2.

From the factorization property of the bulk-to-bulk propagator (2.20), we see that taking the

discontinuity of (2.24) factorizes the diagram into a product of three-point functions,

discsψξ(ka, s, t) = Pξ(
√
s)discsψ

φφξ
3 (k1, k2,

√
s)discsψ

φφξ
3 (k3, k4,

√
s), (2.25)

where the three-point wavefunction coefficient is,

ψφφξ3 (k1, k2, k3) = ig

η0∫
−∞

dη

η4
Kφ(k1, η)Kφ(k2, η)Kξ(k3, η). (2.26)

In terms of diagrams, the factorization condition (2.25) is,

discs = Pξ(
√
s) . (2.27)

To compute the full diagram, we will use that Gν is an analytic function of k2 that decays

at large k. This allows us to write down a dispersion formula for the bulk-to-bulk propagator,

Gν(k, η1, η2) =
1

2πi

∞∫
0

dp2

p2 − k2 + iε
discp2Gν(p, η1, η2). (2.28)

The relation (2.28) makes it manifest that all tree-level dS diagrams involving scalar exchange

have a dispersive representation, up to possible contact diagram ambiguities. For example,

if we use (2.28) in (2.24) we find the following fixed-t dispersion formula for the ξ exchange

diagram,

ψξ(ka, s, t) = −g2 1

2πi

∞∫
0

ds′

s′ − s+ iε

η0∫
−∞

dη1dη2

η4
1η

4
2

Kφ(k1, η1)Kφ(k2, η1)discs′Gξ(
√
s′, η1, η2)

×Kφ(k3, η2)Kφ(k4, η2)

=
1

2πi

∞∫
0

ds′

s′ − s+ iε
discs′ψξ(ka, s

′, t). (2.29)

7To simplify notation, we will use the same letter for the bulk field and its boundary condition at η0.
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The identity (2.29) is true for any field ξ, including both light (m2
ξ < 9/4) and heavy fields

(m2
ξ > 9/4), because the bulk identity (2.28) is true for all ν. In addition, (2.29) is also

manifestly true for IR-divergent diagrams because we have cut off the η-integral. The obser-

vation that a dispersion formula for the bulk-to-bulk propagator implies one for the boundary

correlator has also been used in AdS [57].

To be more general, we can consider the exchange of a scalar χ which couples to φ through

derivative interactions,

ψχ(ka, s, t) = −
η0∫
−∞

dη1dη2

η4
1η

4
2

VLVRKφ(k1, η1)Kφ(k2, η1)Gχ(
√
s, η1, η2)Kφ(k3, η2)Kφ(k4, η2),

(2.30)

where VL,R are the left and right vertex factors. At tree level these are polynomials in the

external momenta, ka · kb, and differential operators in η1,2. Taking the discontinuity in s of

(2.30) again factorizes the diagram in terms of three-point functions,

discsψχ(ka, s, t) = Pχ(
√
s)discsψ

φφχ
3 (k1, k2,

√
s)discsψ

φφχ
3 (k3, k4,

√
s), (2.31)

and therefore the bulk picture (2.27) is still valid. However, the presence of the non-trivial

vertex factors, and specifically the dependence on the dot products ka · kb, means that the

previous dispersion formula (2.29) will in general only hold up to contact diagram ambiguities,

ψχ(ka, s, t) =
1

2πi

∞∫
0

ds′

s′ − s+ iε
discs′ψχ(ka, s

′, t) + (contact diagrams). (2.32)

The discontinuity of a contact diagram with respect to a Mandelstam invariant manifestly

vanishes,

discs,t,uψcont(ka, s, t) = 0, (2.33)

so the relation (2.32) is consistent with the factorization condition (2.31). In section 4 we

will prove (2.32) in AdS for general, boost-breaking interactions. The corresponding result

in dS for light field exchange then follows by analytic continuation (for an argument valid for

heavy fields in dS see Appendix C).

In the next section we will study the dispersion formula (2.32) for exchange diagrams in-

volving boost-breaking, derivative interactions. We will see that contact diagram ambiguities

only appear for interactions involving spatial derivatives, such as φ′(∂iφ)2. If the diagram is

constructed using interactions that only involve time derivatives, then the dispersion formula

(2.32) holds without any ambiguities. There is a similar story when we have internal or exter-

nal spinning fields: taking the discontinuity still factorizes the four-point function, but there

can be contact diagram ambiguities in the dispersion formula due to derivative interactions.

The only new feature for spinning fields is that we need to include a sum over helicities in

(2.31).
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One of the goals of the cosmological bootstrap is to develop a purely boundary way

to study and think about inflationary correlators. It may look like we have taken a step

backwards in this regard since the factorization condition (2.31) and boundary dispersion

formula (2.32) were derived by using explicit properties of the dS bulk-to-bulk propagator.

While this is true, these identities are useful because they give relations between purely

boundary, or on-shell, observables. Therefore, we can use (2.31) and (2.32) to study four-

point functions by gluing together boundary three-point functions, which in turn can be

bootstrapped using symmetries and consistency conditions [25].

3 Boost-Breaking dS Diagrams

In this section we study boost-breaking dS exchange diagrams that appear in the EFT of infla-

tion. We will not consider boost-preserving cubic interactions as this analysis was previously

carried out in AdS [56, 57] and the corresponding dS analysis is identical in form.

For the remainder of this section we will use φ to denote a massless (m = 0) scalar in

dS. It is dual to a boundary scalar with dimension ∆φ = 3, or νφ = 3/2. When studying

three-point functions it will be convenient to introduce the following symmetric polynomials,

e1 = k1 + k2 + k3, e2 = k1k2 + k1k3 + k2k3, e3 = k1k2k3. (3.1)

The first polynomial, e1, is also the total energy variable, kT =
∑

a ka, at three points.

3.1 φφ′2

We first study the following cubic interaction,

Sint =
g

2

∫
d3xdη

1

η2
φφ′2. (3.2)

We can prove that the exchange diagram constructed from this interaction obeys a fixed-t

dispersion formula without any contact diagram ambiguities. The exchange diagram is,

ψφφ
′2

4 (ka, s, t) = −g2

0∫
−∞

dη1dη2 G(
√
s, η1, η2)F φφ

′2

3 (k1, k2, η1)F φφ
′2

3 (k3, k4, η2), (3.3)

where,

F φφ
′2

3 (k1, k2, η1) = η−2
1 K

′
φ(k1, η1)K′φ(k2, η1)−

[
∂η1(η−2

1 K
′
φ(k1, η1)Kφ(k2, η1)) + (k1 ↔ k2)

]
.

(3.4)

To derive a dispersion formula for ψφφ
′2

4 we can use the bulk dispersion formula (2.28) in (3.3)

and then switch the orders of integration.8 This yields,

ψφφ
′2

4 (ka, s, t) =
1

2πi

∞∫
0

ds′

s′ − s+ iε
discs′ψ

φφ′2

4 (ka, s
′, t). (3.5)

8For IR-divergent interactions the integrals can only be swapped if we cut off the η-integral.
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The virtue of the dispersive representation (3.5) is that the dispersion integral is simpler

to compute in comparison to the bulk Feynman integrals in (3.3). To compute (3.5), we

first use that the s-channel discontinuity factorizes the exchange diagram into a product of

three-point functions, (2.31). The three-point wavefunction coefficient for φφ′2 is,

ψφφ
′2

3 (k1, k2, k3) =
g

e2
1

(e2e3 + e1e
2
2 − 2e2

1e3). (3.6)

Plugging this result into (2.31) yields,

discsψ
φφ′2

4 (ka, s, t) = P3/2(
√
s)discsψ

φφ′2

3 (k1, k2,
√
s)discsψ

φφ′2

3 (k3, k4,
√
s)

=
2g2s3/2

((k1 + k2)2 − s)2 ((k3 + k4)2 − s)2(
k4

1 + 4k3
1k2 + 4k2

1k
2
2 + 4k1k

3
2 + k4

2 − s
(
k2

1 + k2
2

))(
k4

3 + 4k3
3k4 + 4k2

3k
2
4 + 4k3k

3
4 + k4

4 − s
(
k2

3 + k2
4

))
. (3.7)

In (3.7) we evaluated the power spectrum in the limit η0 → 0,

P3/2(k)

∣∣∣∣
η0=0

=
1

2k3
. (3.8)

To compute the dispersion integral (3.5), we can note that (3.7) is a rational, odd function

of
√
s. For this reason, we will make the change of variables s′ = p2,

ψφφ
′2

4 (ka, s, t) =
1

πi

∞∫
0

dp

p2 − s+ iε
pdiscp2ψ

φφ′2

4 (ka, p
2, t). (3.9)

The integrand is now an even function of p, so we can extend the integration over the entire

real line,

ψφφ
′2

4 (ka, s, t) =
1

2πi

∞∫
−∞

dp

p2 − s+ iε

2g2p4

((k1 + k2)2 − p2)2 ((k3 + k4)2 − p2)2(
k4

1 + 4k3
1k2 + 4k2

1k
2
2 + 4k1k

3
2 + k4

2 − p2
(
k2

1 + k2
2

))(
k4

3 + 4k3
3k4 + 4k2

3k
2
4 + 4k3k

3
4 + k4

4 − p2
(
k2

3 + k2
4

))
.

(3.10)

The integrand of (3.10) vanishes as p→∞ in the complex plane, and therefore we can close

the p-contour in either the upper or lower half-plane. The poles in p are located at,

p = ±(k1 + k2), (3.11)

p = ±(k3 + k4), (3.12)

p = ±
√
s− iε. (3.13)
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When evaluating the contour integral, we should recall that the Bunch-Davies boundary

condition (2.11) implies that the ka have a small, negative imaginary part. Finally, we can

close the contour in the lower half-plane to find,

ψφφ
′2

4 (ka, s, t) = −
(

Res
p=k1+k2

+ Res
p=k3+k4

+ Res
p=
√
s−iε

)
p

p2 − s+ iε
discp2ψ

φφ′2

4 (ka, p
2, t). (3.14)

We see that the bulk Feynman integrals in (3.3) have been reduced to a finite sum.9

Although the sum in (3.14) is simple to evaluate, the final result is lengthy and we leave

the full result for Appendix A. Here we will only point out that the expression (3.14) obeys

a number of consistency conditions. For example, it does not have folded singularities, i.e. it

is finite in the limits s → (k1 + k2)2 and s → (k3 + k4)2. In addition, it obeys the manifest

locality test (MLT) [26]:

∂k1ψ
φφ′2

4 (ka, s, t)

∣∣∣∣
k1=0

= 0. (3.15)

The MLT (3.15) holds for massless scalar fields in dS whose interactions only involve non-

negative powers of ∂i [26].10 Of course, the fact that these consistency conditions hold is

expected since we have simply rewritten a Feynman integral using a bulk dispersion formula.

3.2 EFT of Inflation

3.2.1 Leading Order

In this section we study the leading cubic interactions for the EFT of inflation in the decou-

pling limit:

Sint =

∫
dηd3x

1

η

(g1

3!
φ′3 +

g2

2
φ′(∂iφ)2

)
. (3.16)

We start by studying an exchange diagram constructed from two copies of the φ′3 ver-

tex. As in our previous example, we can prove that the dispersion formula reconstructs this

exchange diagram without ambiguities by studying the bulk Feynman diagram,

ψφ
′3

4 (ka, s, t) = −g2
1

0∫
−∞

dη1dη2 Gφ(
√
s, η1, η2)∂η1

(
η−1

1 K
′
φ(k1, η1)K′φ(k2, η1)

)
∂η2
(
η−1

2 K
′
φ(k3, η2)K′φ(k4, η2)

)
. (3.17)

To derive the dispersive representation of ψφ
′3

4 , we use the bulk dispersion formula (2.28) in

(3.17) and then switch the orders of integration. This gives,

ψφ
′3

4 (ka, s, t) =
1

2πi

∞∫
0

ds′

s′ − s+ iε
discs′ψ

φ′3

4 (ka, s
′, t). (3.18)

9The same contour integrals were used in [32, 33, 36, 38] to study gauge and graviton correlators in AdS4.
10As emphasized in [26], there exist theories which are local, but not manifestly so. For example, if we

minimally couple a scalar to gravity and integrate out the constrained fields, then we generate powers of ∂−2
i .
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To compute the above discontinuity, we need the three-point wavefunction coefficient for the

φ′3 interaction,

ψφ
′3

3 = 2g1
e2

3

e3
1

. (3.19)

Using (2.31), we find that the discontinuity of ψφ
′3

4 is,

discsψ
φ′3

4 (ka, s, t) = 8g2
1(k1k2k3k4)2s3/2

(
3(k1 + k2)2 + s

) (
3(k3 + k4)2 + s

)
((k1 + k2)2 − s)3 ((k3 + k4)2 − s)3 . (3.20)

To evaluate the integral in (3.18), we follow the same procedure used to evaluate ψφφ
′2

4 : We

make the change of variables s′ = p2, extend the integration of p to (−∞,∞), and then close

the contour in either the upper or lower half-plane. This yields,

ψφ
′3

4 (ka, s, t) =
1

2πi

∞∫
−∞

dp

p2 − s+ iε

8g2
1k

2
1k

2
2k

2
3k

2
4p

4
(
3(k1 + k2)2 + p2

) (
3(k3 + k4)2 + p2

)
((k1 + k2)2 − p2)3 ((k3 + k4)2 − p2)3

=
4g2

1k
2
1k

2
2k

2
3k

2
4

E3
LE

3
Rk

5
T

(
s
(
6E2

LE
2
R + k3

T (EL + ER) + k2
T (EL + ER)2

+ 3ELERkT (EL + ER) + k4
T

)
− 6E3

LE
3
R

)
, (3.21)

where EL,R are the partial energies in the s-channel,

EL = k1 + k2 +
√
s, ER = k3 + k4 +

√
s, (3.22)

and kT = k1 + . . .+ k4 is the total energy at four points. We can note that the poles in p in

the first line of (3.21) are in the same location as in (3.10). In the next section we will show

that this pattern holds to all orders in the EFT of inflation.

As a consistency check, the result (3.21) passes the manifest locality test (3.15) [26] and

is regular in the folded limit. Once again, it is expected that these consistency conditions

hold since we have directly rewritten the Feynman diagram expression (3.17) using the bulk

dispersion formula (2.28).

A more non-trivial example is the exchange diagram constructed from two φ′(∂iφ)2 ver-

tices. In this case we will show that the dispersion formula and Feynman diagram results differ

by a finite sum of quartic contact diagrams. To start, we need the three-point wavefunction

coefficient for the φ′(∂iφ)2 interaction,

ψ
φ′(∂iφ)2

3 (k1, k2, k3) =
g2

2e3
1

(
e6

1 − 3e4
1e2 + 11e3

1e3 − 4e2
1e

2
2 − 4e1e2e3 + 12e2

3

)
. (3.23)
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We can then use the factorization condition (2.31) to fix the discontinuity of the exchange

diagram in terms of the discontinuity of the three-point function (3.23),

discsψ
φ′(∂iφ)2

4 (ka, s, t) = P3/2(
√
s)discsψ

φ′(∂iφ)2

3 (k1, k2,
√
s)discsψ

φ′(∂iφ)2

3 (k3, k4,
√
s),

(3.24)

discsψ
φ′(∂iφ)2

3 (k1, k2,
√
s) =

g2s
3/2

((k1 + k2)2 − s)3

(
s3 − s2

(
7k2

1 + 6k1k2 + 7k2
2

)
+ s

(
11k4

1 + 36k3
1k2 + 54k2

1k
2
2 + 36k1k

3
2 + 11k4

2

)
− (k1 + k2)2

(
5k4

1 + 20k3
1k2 − 14k2

1k
2
2 + 20k1k

3
2 + 5k4

2

))
.

(3.25)

For this diagram there is a new subtlety when evaluating the dispersion integral,

ψ
φ′(∂iφ)2

4,disp (ka, s, t) =
1

2πi

∞∫
0

ds′

s′ − s+ iε
discs′ψ

φ′(∂iφ)2

4 (ka, s
′, t). (3.26)

The subtlety is that discsψ
φ′(∂iφ)2

4 does not decay in the large s limit,

lim
s→∞

discsψ
φ′(∂iφ)2

4 (ka, s, t) ≈ g2
2

(
s3/2

2
− 2s1/2(k2

1 + k2
2 + k2

3 + k2
4)

)
, (3.27)

where on the right hand side we have only kept the growing terms. Therefore, the original

integral (3.26) does not converge as currently defined. The right hand side of (3.27) is analytic

in a subset of the external momenta ka and is therefore semi-local in position space. That

is, it has support when a subset of the external points are coincident.11 The semi-local terms

in (3.27) appear because we set η0 = 0 when computing the three-point function (3.23).

One way to remove these growing terms is to instead work with three-point functions that

are regulated by a non-zero, late-time cutoff, η0 6= 0. When we compute the discontinuity

discsψ
φ′(∂iφ)2

4 with the regulated three-point functions, we find that the dispersion integral

(3.26) converges. We discuss this computation in Appendix B.

An alternative option is to define the integral (3.26) by analytic continuation. To do this

properly, we should add and subtract a finite number of terms until the integral becomes

well-defined. In Appendix B we will carry out this procedure and show that the two ways

of regularizing the dispersion integral, either by using a hard cutoff or through analytic

continuation, differ by a finite sum of contact diagrams. In practice, defining the integral by

analytic continuation is equivalent to making the same change of variables as before, s′ = p2,

11For more discussion of semi-local terms in CFTs see [57, 72, 73].
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closing the p-contour in the lower half-plane, and dropping the arc at infinity. This gives,

ψ
φ′(∂iφ)2

4,disp (ka, s, t) =
1

2πi

∞∫
−∞

dp

p2 − s+ iε
pdiscp2ψ

φ′(∂iφ)2

4 (ka, p
2, t)

= −
(

Res
p=k1+k2

+ Res
p=k3+k4

+ Res
p=
√
s−iε

)
p

p2 − s+ iε
discp2ψ

φ′(∂iφ)2

4 (ka, p
2, t).

(3.28)

We will give the full result for (3.28) in Appendix A.

As a consistency check, we can show that ψ
φ′(∂iφ)2

4,disp differs from the result computed in [26],

which we label as ψ
φ′(∂iφ)2

4,MLT , by a finite sum of contact diagrams. Their result was found by

using a combination of the Cosmological Optical theorem, a partial energy recursion relation,

and the manifestly local test [26]. Their result in turn differs from the Feynman diagram

result ψ
φ′(∂iφ)2

4,Feyn by a finite sum of contact diagrams. Therefore, the output of the dispersion

formula (3.28) will also differ from the Feynman diagram result by a linear combination of

contact diagrams.

The four-point wavefunction coefficient found in [26] is given by,

ψ
φ′(∂iφ)2

4,MLT = −1

2
ψ
φ′(∂iφ)2

Res + g2
2

(
5kT s+

12s
(
k2

1k
2
2 + k2

3k
2
4

)
k3
T

− 25

4
s3/2 − 4s2

kT

)
, (3.29)

where ψ
φ′(∂iφ)2

Res can be found in Appendix C of [26].12 After summing over s-, t-, and u-channel

exchange we find,

ψ
φ′(∂iφ)2

4,disp − ψφ
′(∂iφ)2

4,MLT + (crossed-channels) = g2
2

(
18ψφφ

′3

4 − 2ψ
φ2(∂iφ)2

4 − 18ψφ
2φ′2

4 − 27ψφ
′4

4

)
.

(3.30)

This proves that our result for the φ′(∂iφ)2 exchange diagram is consistent with the result of

[26]. We give the explicit form of the contact diagrams that appear on the right hand side of

(3.30) in Appendix A.

Finally, we can also use the factorization condition (2.31) and dispersion formula (2.32)

to compute the two exchange diagrams that are constructed from one φ′3 vertex and one

φ′(∂iφ)2 vertex. The discontinuity of these two diagrams is,

discsψ
cross
4 (ka, s, t) = P3/2(

√
s)discsψ

φ′3

3 (k1, k2,
√
s)discsψ

φ′(∂iφ)2

3 (k3, k4,
√
s)

+ (k1, k2)↔ (k3, k4). (3.31)

The computation of the full wavefunction coefficient using the dispersion formula is unchanged

in comparison to the previous examples. The explicit form of ψcross
4 is given in Appendix A.

12To convert notations recall that shere = s2there. The overall minus sign multiplying ψ
φ′(∂iφ)

2

Res is due to a

difference in conventions for the wavefunction. We also multiplied by a factor of 1/2 to be consistent with

the Cosmological Optical theorem [24] or equivalently (2.31). We thank the authors of [26] for confirming this

overall factor.
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3.2.2 All Orders

We will now explain how to generalize the previous results to all orders in the EFT of inflation.

Our starting point is the following ansatz for the three-point wavefunction coefficient of a

single, massless, self-interacting scalar φ [26]:

ψ
(r)
3 (k1, k2, k3) =

1

er1

b r+3
3
c∑

n=0

b r+3−3n
2
c∑

m=0

Cmne
3+r−2m−3n
1 em2 e

n
3 . (3.32)

The form of this ansatz is fixed by using a set of boostless bootstrap rules [25]. The label

r in ψ
(r)
3 corresponds to the strength of the total energy pole. Here we recall that e1 is the

total energy variable at three points, e1 = k1 + k2 + k3. The previous examples considered

in this section correspond to different linear combinations of (3.32) for r ≤ 3. For r = 0 the

ansatz (3.32) needs to be modified to include a logarithmic term that appears in φ3 theory.13

Here we are interested in interactions that break dS boosts, so we will ignore any logarithmic

modification of the ansatz (3.32).

In [26] they used the manifestly local test to derive recursion relations for the coefficients

Cmn. This test can be used to find all three-point wavefunction coefficients that come from

a manifestly local Lagrangian in dS. In this section we will not need the explicit form of the

coefficients Cmn, but we will use the manifestly local test to classify what poles contribute to

the dispersion integral.

The discontinuity of a general exchange diagram in the EFT of inflation takes the form,

discsψ
(r1,r2)(ka, s, t) = P3/2(

√
s)discsψ

(r1)
3 (k1, k2,

√
s)discsψ

(r2)
3 (k3, k4,

√
s). (3.33)

From (3.32) we see that the right hand side of (3.33) has poles at,

s = (k1 + k2)2, (3.34)

s = (k3 + k4)2. (3.35)

One may also expect a singularity at s = 0 since P3/2(
√
s) ∝ s−3/2, but it was shown in

[26] that the right hand side of (3.33) vanishes as s → 0. To show this, one uses that the

ansatz (3.32) for ψ
(r)
3 (k1, k2, k3) has a Taylor series expansion around k3 = 0. The manifestly

local test implies that the linear term in this expansion vanishes,

∂k3ψ
(r)
3 (k1, k2, k3)

∣∣∣∣
k3=0

= 0. (3.36)

In addition, taking the discontinuity of ψ
(r)
3 (k1, k2, k3) in k2

3 projects out terms that are even

in k3. These two conditions imply the following small-s scaling,

lim
s→0

discsψ
(r)
3 (k1, k2,

√
s) ∼ s3/2. (3.37)

13A local non-Gaussianity gives a rational three-point function with r = 0 [26].
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This shows that the right hand side of (3.33) scales like s3/2 as s→ 0. Therefore, (3.33) only

has poles at the locations (3.34) and (3.35).

Next we study the dispersion integral,

ψ
(r1,r2)
disp (ka, s, t) =

1

2πi

∞∫
0

ds′

s′ − s+ iε
discs′ψ

(r1,r2)(ka, s
′, t). (3.38)

From the ansatz (3.32) and the general form of the discontinuity (3.33), we see that the inte-

grand only contains half-integer powers of s. After making the standard change of variables,

s′ = p2, we find that the integrand is an even function of p and can be rewritten as,

ψ
(r1,r2)
disp (ka, s, t) =

1

2πi

∞∫
−∞

dp

p2 − s+ iε
pdiscp2ψ

(r1,r2)(ka, p
2, t). (3.39)

Finally, we can close the p-contour in the lower half-plane and pick up the poles at,

p = k1 + k2, (3.40)

p = k3 + k4, (3.41)

p =
√
s− iε, (3.42)

where we recall that the ka implicitly have a small, negative imaginary part. This yields,

ψ
(r1,r2)
disp (ka, s, t) = −

(
Res

p=k1+k2
+ Res
p=k3+k4

+ Res
p=
√
s−iε

)
p

p2 − s+ iε
discp2ψ

(r1,r2)(ka, p
2, t)

= −
(

Res
p=k1+k2

+ Res
p=k3+k4

+ Res
p=
√
s−iε

)
p

p2 − s+ iε
P3/2(p)discp2ψ

(r1)
3 (k1, k2, p)

× discp2ψ
(r2)
3 (k3, k4, p).

(3.43)

This expression holds for arbitrary r1 and r2. If the original dispersion integral (3.38) diverges

and needs to be regularized, then the expression (3.43) corresponds to defining the integral

by analytic continuation. More details on this procedure can be found in Appendix B.

As an example, we can consider a diagram involving two φφ′′2 interactions. The three-

point wavefunction coefficient and its discontinuity are given by,

ψφφ
′′2

3 (k1, k2, k3) =
e3

2e1 + 3e2
2e3 − 3e2e3e

2
1

e4
1

, (3.44)

discsψ
φφ′′2

3 (k1, k2,
√
s) =

2s3/2

((k1 + k2)2 − s)4

(
3s2
(
k2

1k
2
2 − k4

1 − k4
2

)
+
(
k6

1 + 6k5
1k2 + 10k3

1k
3
2

+ 6k1k
5
2 + k6

2

)
(k1 + k2)2 + 2s

(
k6

1 + 12k5
1k2 + 24k4

1k
2
2 + 28k3

1k
3
2

+ 24k2
1k

4
2 + 12k1k

5
2 + k6

2

))
. (3.45)

– 18 –



The four-point wavefunction coefficient is then,

ψφφ
′′2

4,disp(ka, s, t) = −
(

Res
p=k1+k2

+ Res
p=k3+k4

+ Res
p=
√
s−iε

)
p

p2 − s+ iε
P3/2(p)discp2ψ

φφ′′2

3 (k1, k2, p)

× discp2ψ
φφ′′2

3 (k3, k4, p).

(3.46)

It is now straightforward to compute the φφ′′2 exchange diagram using the above three-point

function. In this example, the dispersion integral (3.38) converges and does not require an

additional regularization.

3.3 Five-Point Function

As a final example, we will consider a five-point diagram constructed from three φ′3 vertices.

This was recently computed in [28] and we will show how to recover their result using the

dispersion formula.

The full Feynman diagram is,

ψφ
′3

5 (ka, s12, s45) =

= − (ig1)3

0∫
−∞

dη1dη2dη3

η1η2η3
K′φ(k1, η1)K′φ(k2, η1)∂η1∂η2Gφ(

√
s12, η1, η2)

K′φ(k3, η2)∂η2∂η3Gφ(
√
s45, η2, η3)K′φ(k4, η3)K′φ(k5, η3),

(3.47)

where we use a prime to denote ∂η where it is unambiguous. The only s12 dependence comes

from the propagator and therefore it is trivial to write down a dispersion formula for (3.47)

using the bulk dispersion formula (2.28):

ψφ
′3

5 (ka, s12, s45) =
1

2πi

∞∫
0

ds′12

s′12 − s12 + iε
discs′12ψ

φ′3

5 (ka, s
′
12, s45). (3.48)

Taking the discontinuity in s12 at fixed ka and s45 factorizes the five-point diagram into a

product of three- and four-point diagrams,

discs12ψ
φ′3

5 (ka, s12, s45) = P3/2(
√
s12)

= P3/2(
√
s12)discs12ψ

φ′3

3 (k1, k2,
√
s12)discs12ψ

φ′3

4 (
√
s12, k3, k4, k5,

√
s45).

(3.49)
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The discontinuity (3.49) can be computed using the known results for the three-point function,

(3.19), and the four-point exchange diagram, (3.21). Using these results, we find:

discs12ψ
φ′3

5 = 4g3
1(k1k2k3k4k5)2q1

(
1

(k1 + k2 + q1)3
− 1

(k1 + k2 − q1)3

)
{

6

(k3 + k4 + k5 + q1)5
− 6

(k3 + k4 + k5 − q1)5
+

1

(k4 + k5 − q2)3(k4 + k5 + q2)3[
q2

2

(
3(k4 + k5)2 + q2

2

(k3 + k4 + k5 + q1)3
+

3(k4 + k5)2 + q2
2

(k3 − q1 + q2)3
− 3(k4 + k5)2 + q2

2

(k3 + k4 + k5 − q1)3

− 3(k4 + k5)2 + q2
2

(k3 + q1 + q2)3
+

6(k4 + k5 − q2)2(k4 + k5 + q2)2

(k3 + k4 + k5 + q1)5
− 6(k4 + k5 − q2)2(k4 + k5 + q2)2

(k3 + k4 + k5 − q1)5

+
6(k4 + k5)(k4 + k5 − q2)(k4 + k5 + q2)

(k3 + k4 + k5 + q1)4
− 6(k4 + k5)(k4 + k5 − q2)(k4 + k5 + q2)

(k3 + k4 + k5 − q1)4

)]}
,

(3.50)

where we defined q1 =
√
s12 and q2 =

√
s45 to make the expression more compact. The result

(3.50) agrees with what was found in [28] using a different discontinuity.

To evaluate the dispersion integral (3.48), we perform the change of variables s′12 = p2

and rewrite the dispersion integral as a contour integral:

ψφ
′3

5 (ka, s12, s45) =
1

2πi

∞∫
−∞

dp

p2 − s12 + iε
pdiscp2ψ

φ′3

5 (ka, p
2, s45). (3.51)

The integrand of (3.51) has poles in p at:

p = ±(k1 + k2), (3.52)

p = ±(k3 + k4 + k5), (3.53)

p = ±(k3 +
√
s45), (3.54)

p = ±
√
s12 − iε. (3.55)

Closing the contour in the lower half-plane yields,

ψφ
′3

5 = −
(

Res
p=k1+k2

+ Res
p=k3+k4+k5

+ Res
p=k3+

√
s45

+ Res
p=
√
s12−iε

)
p

p2 − s12 + iε
discp2ψ

φ′3

5 . (3.56)

We can then compute the five-point diagram using (3.50) and (3.56), although we will not

write out the full expression here.

4 An AdS Perspective

In this section we will explain how the dS unitarity methods studied in the previous sections

are related by analytic continuation to AdS unitarity methods.
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4.1 AdS/CFT Perturbation Theory

We will study a single scalar field Φ(x, z) in the Poincaré patch of AdSd+1,

ds2
AdS =

1

z2
(dz2 + ηµνdx

µdxν), (4.1)

where ηµν is the d-dimensional Minkowski metric and we set the AdS radius to one, RAdS = 1.

The radial direction z lies in the range z ∈ (zc,∞), where zc is the bulk IR cutoff. The mass

m of the bulk field Φ is related to the dimension ∆ of the boundary CFT operator φ by:

∆(∆− d) = m2. (4.2)

In this section we will assume that ∆ is real. As in dS, we will parameterize the conformal

dimensions using ∆ = d/2 + ν.

We will study time-ordered correlation functions in momentum space, 〈T [φ(k1) . . . φ(kn)]〉.
Here T is the time-ordered product. It is convenient to factor out the overall momentum con-

serving δ-function using a double-bracket notation,

〈T [φ(k1) . . . φ(kn)]〉 = (2π)dδ(k1 + . . .+ kn)〈〈T [φ(k1) . . . φ(kn)]〉〉. (4.3)

The bulk-to-boundary and bulk-to-bulk propagators for a scalar in the Poincaré patch are,

KAdS
ν (k, z, zc) =

(
z

zc

) d
2 Kν(kz)

Kν(kzc)
, (4.4)

GAdS
ν (k, z1, z2, zc) =− i(z1z2)

d
2

(
θ(z1 − z2)Kν(kz1)Iν(kz2) + θ(z2 − z1)Kν(kz2)Iν(kz1)

−Kν(kz1)Kν(kz2)
Iν(kzc)

Kν(kzc)

)
, (4.5)

where Iν and Kν are the modified Bessel functions of the first and second kind, respectively.

The last term in (4.5) comes from imposing the Dirichlet boundary conditions at z = zc. In

(4.4) and (4.5) we have set the speed of propagation in the radial direction to one, cr = 1.

This is the analog of setting cs = 1 in the dS action (2.6). As in Section 2.1, we can always

restore the dependence on the radial speed cr by using dimensional analysis.

The AdS propagators used to compute time-ordered correlators are related by analytic

continuation in k to the dS propagators used to compute the wavefunction [55, 62, 74–76],14

KAdS
ν (k, z, zc)

∣∣∣∣
d=3

= KdS
ν (e−

iπ
2 k,−z,−zc), (4.6)

GAdS
ν (k, z1, z2, zc)

∣∣∣∣
d=3

= −GdS
ν (e−

iπ
2 k,−z1,−z2,−zc), (4.7)

where −π/2 < arg k ≤ π. In the remainder of this section we will drop the explicit dependence

on the cutoffs zc and η0.

14Note that here we are relabelling the variable, η → −z, and are not analytically continuing in η.
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It is also possible to continue the analogy with Section 2.1 by writing down interactions

which preserve scale and Poincaré invariance in the dual QFT, but break special conformal

transformations. These types of interactions appear in the EFT of slow holographic RG flows

[77, 78].15 They have the same schematic form as (2.12),

Sint =

∫
dzddx z

∑
aNa−d−1∂N1Φ . . . ∂NnΦ. (4.8)

The only difference is that here ∂ denotes a derivative with respect to z or xµ. As before in

dS, Na counts the total number of derivatives acting on the fields and the power of z is fixed

by imposing scale invariance. There is then a one-to-one correspondence between interactions

that appear in the EFT of inflation and the EFT of slow holographic RG flows [77, 78].

4.2 AdS Dispersion Formulas

In this section we will prove the analogs of the tree-level factorization condition (2.31) and

dispersion formula (2.32) in AdS for generic boost-breaking interactions. The proof of the

tree-level cutting rules in AdS will be identical in form to the dS proof given in Section 2 and

the previous AdS arguments of [56, 57], so we will keep this discussion brief. We will then

prove the tree-level dispersion formula in pure AdS by using Bessel function identities. We

will give a more general proof of the dispersion formula in asymptotically AdS spacetimes in

Appendix C.

To derive the analog of (2.31) in AdS, we study the discontinuity of the AdS bulk-to-bulk

propagator. Using either the explicit form of the bulk-to-bulk propagator (4.5) or its relation

to the dS propagator (4.7), we can show:

discs−GAdS
ν (k, z1, z2) = PAdS

ν (k)discs−KAdS
ν (k, z1)discs−KAdS

ν (k, z2), (4.9)

where as a reminder s− = −k2.16 The discontinuity in s− is defined by,

discs−f(s−) ≡ f(s− + iε)− f(s− − iε). (4.10)

Finally, the AdS “power spectrum” is defined by,

PAdS
ν (k) =

π

4
zdcH

(1)
ν

(
e
iπ
2 kzc

)
H(2)
ν

(
e
iπ
2 kzc

)
. (4.11)

The bulk AdS identity (4.9) is related by analytic continuation to the bulk dS identity (2.20).

As in dS, we can use (4.9) to show that the discontinuity of an AdS exchange diagram is

15As with inflation, in the EFT of slow holographic RG flows scale invariance is only an approximate

symmetry. It is broken by the analog of slow-roll effects [77, 78]. For a review on scale vs conformal invariance

see [79].
16To keep the notation compact, we will use k and

√
−s− interchangeably where it is unambiguous.
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proportional to a product of three-point functions,

discs− = PAdS
ν (k) , (4.12)

where O is the CFT primary operator dual to the bulk exchanged field and we use dashed

lines to denote the discontinuity of the appropriate propagator. Analytic continuation maps

the AdS factorization condition (4.12) to the corresponding dS factorization condition (2.31).

The benefit of working in AdS is that we can explain why the discontinuity of the AdS

bulk-to-bulk propagator factorizes in (z1, z2) using general operator identities. To show this,

we recall that the AdS bulk-to-bulk propagator is defined in terms of a time-ordered, free-field

two-point function:

GAdS
ν (x12, z1, z2) = 〈T [Φ(x1, z1)Φ(x2, z2)]〉free, (4.13)

where xij = xi − xj . In local, causal, unitary theories, the discontinuity of the non-

perturbative, time-ordered two-point function is equal to a sum of Wightman two-point

functions,

discs−〈〈T [Φ(k, z1)Φ(−k, z2)]〉〉 = 〈〈Φ(k, z1)Φ(−k, z2)〉〉+ (k, z1)↔ (−k, z2). (4.14)

The operators on the right hand side of (4.14) are ordered as written. We can always factorize

the Wightman two-point functions 〈Φ1Φ2〉 by inserting a complete set of states between the

two operators. In free-field theory the identity (4.14) reduces to the previous expression

(4.9).17

We will now prove the analog of the tree-level dispersion formula (2.32) for boost-breaking

AdS theories. We will study the following general, scalar exchange diagram for 〈φφφφ〉,

WFeyn
O (ka, s−, t−) = −

∫
dz1dz2

zd+1
1 zd+1

2

VLVRKAdS
φ (k1, z1)KAdS

φ (k2, z1)GAdS
O (
√
−s−, z1, z2)

KAdS
φ (k3, z2)KAdS

φ (k4, z2), (4.15)

where VL,R are the left and right vertex factors and O is a generic, scalar primary. This is the

same Witten diagram drawn on the left hand side of (4.12). The dispersive representation of

17For a review of how to derive (4.14) in flat-space, see [57] and references therein. The corresponding proof

in the AdS Poincaré patch is identical, except that we need to keep track of an additional radial variable.
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this exchange diagram is,

W disp
O (ka, s−, t−) =

1

2πi

∞∫
0

ds′−
s′− − s− − iε

discs′−W
Feyn
O (ka, s

′
−, t−), (4.16)

discs−W
disp
O (ka, s−, t−) = −

∫
dz1dz2

zd+1
1 zd+1

2

VLVRKAdS
φ (k1, z1)KAdS

φ (k2, z1)

discs−GAdS
O (
√
−s−, z1, z2)KAdS

φ (k3, z2)KAdS
φ (k4, z2).

(4.17)

We want to show that the difference between WFeyn
O and W disp

O is a sum of contact Witten

diagrams. To prove this, we will use that the vertex factors VL,R are polynomials in ka ·kb and

differential operators in z1,2. The exchange Witten diagram (4.15) then has the schematic

form,

WFeyn
O (ka, s−, t−) = −

∫
dz1dz2

zd+1
1 zd+1

2

DL,z1DR,z2
(
KAdS
φ (k1, z1)KAdS

φ (k2, z1)KAdS
φ (k3, z2)KAdS

φ (k4, z2)
)

Poly(ka, s−)GAdS
O (
√
−s−, z1, z2). (4.18)

Here DL,R are differential operators in z associated to the vertex factors, VL,R. We have

integrated by parts so the z-derivatives only act on the bulk-to-boundary propagators. The

term Poly(ka, s−) is a general polynomial in the external Lorentz invariants, {ka, s−}.18 We

can assume without loss of generality that Poly(ka, s−) is a monomial, sm−
∏
a k

na
a . In that

case, the difference between WFeyn
O and W disp

O is,

WFeyn
O (ka, s−, t−)−W disp

O (ka, s−, t−)

=−
∏
a

knaa

∫
dz1dz2

zd+1
1 zd+1

2

DL,z1DR,z2
(
KAdS
φ (k1, z1)KAdS

φ (k2, z1)KAdS
φ (k3, z2)KAdS

φ (k4, z2)
)

(
AFeyn
O (s−, z1, z2)−Adisp

O (s−, z1, z2)
)
, (4.19)

where we have defined the amputated diagrams,

AFeyn
O (s−, z1, z2) = sm− GAdS

O (
√
s−, z1, z2), (4.20)

Adisp
O (s−, z1, z2) =

1

2πi

∞∫
0

dp

p2 − s− − iε
p2m+1 discp2GAdS

O (p, z1, z2). (4.21)

In (4.21) we have made the change of variables s′− = p2.

To show that WFeyn
O −W disp

O is equal to a sum of contact Witten diagrams, it is sufficient

to show:

discs−

(
AFeyn
O (s−, z1, z2)−Adisp

O (s−, z1, z2)
)

= 0, (4.22)

AFeyn
O (s−, z1, z2)−Adisp

O (s−, z1, z2) = 0, if z1 6= z2. (4.23)

18The polynomials are independent of t− because we are studying scalar exchange diagrams.
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The first condition, (4.22), says that in position space the difference AFeyn
O −Adisp

O is localized

at x1 = x2. That is, the difference between the amputated diagrams is proportional to

δ(x12) and its derivatives. The second condition, (4.23), similarly says that the difference

between the two amputated diagrams is localized at z1 = z2. Therefore, if the above two

conditions hold, then AFeyn
O −Adisp

O only has support at a single bulk point in position space,

(x1, z1) = (x2, z2), and (4.19) is equal to a linear combination of contact diagrams.

To prove (4.22) and (4.23), we will make the simplifying assumption that the radial cutoff

is taken to zero, zc → 0.19 If ν is real, then the zc → 0 limit of (4.24) can be written as [81],

GAdS
ν (k, z1, z2) = −i(z1z2)

d
2

∞∫
0

dpp
Jν(pz1)Jν(pz2)

p2 + k2 − iε
. (4.24)

The identity (4.24) is the Källén-Lehmann spectral representation for the bulk-to-bulk prop-

agator in the Poincaré patch. Using (4.24) in (4.19) we find,

AFeyn
O (s−, z1, z2)−Adisp

O (s−, z1, z2) = −i(z1z2)
d
2

∞∫
0

dp

p2 − s− − iε
p
(
sm− − p2m

)
Jν(pz1)Jν(pz2)

= i(z1z2)
d
2

∞∫
0

dppPoly′(s−, p
2)Jν(pz1)Jν(pz2), (4.25)

where Poly′(s−, p
2) is defined by,

sm− − p2m = (s− − p2)Poly′(s−, p
2). (4.26)

Here we used a prime to distinguish this polynomial from the one that appears in the Witten

diagram (4.18). From (4.25) we see that the difference between the two amputated diagrams

has a vanishing s-channel discontinuity. This proves the first condition, (4.22).

To prove (4.23) we use the following completeness relation,

∞∫
0

dppJν(pz1)Jν(pz2) =
δ(z1 − z2)

z1
. (4.27)

In order to prove that (4.25) only has support at z1 = z2, we need to extend (4.27) by allowing

for general, odd powers of p in the integrand. To do this, we can use the identity,

∂z
(
zνJν(pz)

)
= pzνJν−1(pz), (4.28)

to increase the power of p in the left hand side of (4.27) by even integers. For example,

∞∫
0

dpp3Jν(pz1)Jν(pz2) = (z1z2)−(ν+1)∂z1∂z2

∞∫
0

dpp(z1z2)ν+1Jν+1(pz1)Jν+1(pz2)

= (z1z2)−(ν+1)∂z1∂z2

[
(z1z2)ν+1/2δ(z1 − z2)

]
. (4.29)

19In the absence of a radial cutoff, we will regularize IR-divergent Witten diagrams using dimensional

regularization [80].
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We can repeat this procedure iteratively to prove that

∞∫
0

dpp2m+1Jν(pz1)Jν(pz2) = 0, if z1 6= z2, (4.30)

for arbitrary m ∈ Z≥0. This proves the second condition, (4.23), or that the difference

between the dispersion formula result and the Feynman diagram is proportional to δ(z1− z2)

and its derivatives. This completes the proof that (4.19) is equal to a linear combination of

contact Witten diagrams,20

WFeyn
O (ka, s−, t−) = W disp

O (ka, s−, t−) + (contact diagrams). (4.31)

After analytic continuation in k, (4.31) proves our earlier claim for dS wavefunction

coefficients, (2.32), when the exchanged dS field is light (m2 < 9/4 in dS4). Here we are

restricted to light fields because we need to assume that ν is real in order to use (4.24). For

heavy fields in dS, or tachyons in AdS, ν is imaginary and there are additional terms when

we take the zc → 0 limit of the bulk-to-bulk propagator, (4.5). In Appendix C we give an

alternative proof of (4.31) that does not require removing the radial cutoff and can be used

to prove (2.32) for heavy dS fields.

5 Discussion

In this work we developed unitarity methods for wavefunction coefficients in inflationary

spacetimes. In Section 2 we explained how to derive tree-level cutting rules and dispersion

formulas for dS wavefunction coefficients by using the analyticity properties of the dS bulk-

to-bulk propagator. In Section 3 we used the cutting equation (2.31) and dispersion formula

(2.32) to study generic, boost-breaking exchange diagrams that appear in the EFT of inflation.

In Section 4 we showed that the dS unitarity methods studied here can be understood as

an analytic continuation of analogous methods in AdS. Specifically, the bulk dS and AdS

identities used in this work follow from the definition of the AdS propagator in terms of a time-

ordered two-point function, or equivalently from the Källén-Lehmann spectral representation.

We did not need to assume that the bulk theory preserved boost symmetry, or equivalently

that the boundary correlators were invariant under special conformal transformations. We

did assume that the boundary correlators are scale invariant because primordial fluctuations

are known to be approximately scale invariant [5]. However, this assumption was not required

in principle.

There are many natural open questions to consider on how to extend our results to one

loop and higher. For example, are there cutting rules for discsψ at higher loops? In [56] it was

shown that the discontinuity of higher-loop AdS Witten diagrams can be computed using a set

of cutting rules which are closely related to the flat space cutting rules [82, 83]. However, the

20The sum over contact diagrams is finite if we assume that the two interaction vertices VL,R each involve

a finite number of derivatives.
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AdS cutting rules involve θ-functions with respect to the intermediate Lorentzian momenta

and therefore they cannot be analytically continued to dS. One resolution to this problem is

to use unitarity to compute higher-loop, AdS Witten diagrams and then analytically continue

the final result to dS. While this does give a method to compute higher-loop wavefunction

coefficients, including in boost-breaking theories, it would be interesting to understand if

discsψ has a direct connection to dS unitarity beyond tree level. In unitary local CFTs, the

momentum-space discontinuity of a time-ordered four-point function computes an advanced

double-commutator [56, 57, 84], which is the same out-of-time-ordered correlator that appears

in the Lorentzian CFT inversion and dispersion formulas [85, 86]. It is then tempting to

conjecture that discsψ, or perhaps the discontinuity of an in-in correlator, plays a similar role

in cosmology.

Recently, in [16, 27] a set of dS loop-level cutting rules were derived for a different

discontinuity than the one studied here. At tree level, the dS cutting rules of [16, 27] and the

AdS cutting rules of [56] have the same effect: in both cases a cut bulk-to-bulk propagator

factorizes in terms of a product of bulk-to-boundary propagators. However, the two sets of

cutting rules start to differ at one loop. In AdS each cut factorizes a loop-level diagram into

two disjoint halves while in dS one must include cuts that do not completely factorize the

diagram.21 It would be interesting to understand how the two sets of cutting rules might be

related and more generally what the dS cutting rules can teach us about AdS/CFT and vice

versa.

One can also consider extending the methods studied here to other spacetimes and to

correlation functions of spinning operators. For example, it should be possible to extend this

work to more general FLRW spacetimes using the domain-wall/cosmology correspondence

[75]. It would also be interesting to study correlation functions involving gauge bosons and

gravitons and to understand their analytic structure in more detail at four points and higher.

Correlators of gauge bosons and gravitons are particularly interesting because they obey

Ward-Takahashi identities, which imply that we need multiple exchange channels and specific

contact diagrams to obtain a consistent correlator. However, the dispersion formula studied

here only reconstructs the full correlator if it vanishes in the momentum space Regge limit.

If not, it will generically only capture two out of the three exchange channels (specifically

the s- and u-channels) and will have ambiguities associated to contact diagrams. It would

be interesting to understand the space of dS correlators which vanish in the Regge limit and

are completely reconstructible from the dispersion formula studied here.22 In addition, it

would be interesting to apply the unitarity methods studied here to interactions which are

not manifestly local.

Finally, we have used cutting rules and dispersion formulas to simplify dS perturbation

theory. In flat space [89] and AdS [90] one can go further and use dispersion formulas to derive

21A similar set of non-factorizing cuts appear in the Feynman tree theorem [87, 88]. See Appendix C of [56]

for an AdS generalization.
22Alternatively, for Yang-Mills theory or Einstein gravity in pure (A)dS one could use the BCFW-like

recursion relations developed in [30–33] to compute the full correlator.
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rigorous bounds on the space of low-energy EFTs.23 It would be interesting to understand

whether our methods also hold non-perturbatively and can be used to constrain models of

inflation in dS using causality and unitarity, perhaps along the lines of [101, 102]. This

would give a method to chart out the space of consistent inflationary models and begin to

understand their UV completions. To derive rigorous bounds, it may also be useful to develop

a non-perturbative bootstrap for the in-in correlators, as these are the physical observables

measured in experiment.

In this work we have explained how tree-level, n-point wavefunction coefficients in quasi-

dS spacetimes can be bootstrapped from lower-point coefficients. Both the dS unitarity

methods studied here and the analogous AdS methods studied in [56, 57] are based on the

unitarity methods developed in the original S-matrix bootstrap [103]. We expect that fur-

ther investigations of unitarity and causality in approximate (A)dS spacetimes will teach us

more about both holography in realistic spacetimes and the structure of non-Gaussianities in

phenomenologically interesting models of the early universe.
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A Four-Point Diagrams

A.1 Quartic Interactions

In this appendix we compute quartic, contact diagrams in dS for a massless scalar φ (νφ = 3/2

or ∆φ = 3),

ψcontact(ka, s, t) = , (A.1)

corresponding to the following interactions

Lquartic ⊃ φ′4, a(η)φφ′3, a2(η)φ2φ′2, a2(η)φ2(∂iφ)2. (A.2)

The scale factor in dS is a(η) = −1/(Hη). Here we continue to set H = 1. In (A.2) we have

combined factors of a(η) that come from the measure term,
√
−g, and those that come from

the interactions themselves. For IR finite contact diagrams we will set η0 = 0.

23For recent works on bounding EFTs in flat space and AdS see [91–97] and [98–100], respectively.
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The wavefunction coefficients are given by,

ψφ
′4

4 = i

0∫
−∞

dη a(η)K′φ(k1, η)K′φ(k2, η)K′φ(k3, η)K′φ(k4, η)

=
24k2

1k
2
2k

2
3k

2
4

(k1 + k2 + k3 + k4)5
, (A.3)

ψφφ
′3

4 = i

0∫
−∞

dη a2(η)K′φ(k1, η)K′φ(k2, η)K′φ(k3, η)Kφ(k4, η) + (symm)

=
2k2

1k
2
2k

2
3(k1 + k2 + k3 + 4k4)

(k1 + k2 + k3 + k4)4
+ (symm), (A.4)

ψφ
2φ′2

4 = i

0∫
−∞

dη a2(η)K′φ(k1, η)K′φ(k2, η)Kφ(k3, η)Kφ(k4, η) + (symm)

=
k2

1k
2
2

(
k2

1 + 2k1k2 + 3k1(k3 + k4) + k2
2 + 3k2(k3 + k4) + 2

(
k2

3 + 3k3k4 + k2
4

))
(k1 + k2 + k3 + k4)3

+ (symm),

(A.5)

ψ
φ2(∂iφ)2

4 = −i
η0∫
−∞

dη a2(η)Kφ(k1, η)Kφ(k2, η)Kφ(k3, η)Kφ(k4, η)(k1 · k2 + symm)

=

∑
a k

2
a

2(k1 + k2 + k3 + k4)3

(
6k1k2k3k4 +

4∑
a=1

k4
a + 3

∑
a6=b

k3
akb + 4

4∑
a<b

k2
ak

2
b + 6

∑
a6=b,c
j<l

k2
akbkc

)

− i
∑

a k
2
a

η0
,

(A.6)

where we summed over symmetrizations where relevant. The last diagram, ψ
φ2(∂iφ)2

4 , is IR

divergent but can be regularized by subtracting off the local, power-law divergence,

ψ
φ2(∂iφ)2

4,reg = ψ
φ2(∂φ)2

4 + i

∑
a k

2
a

η0
. (A.7)

A.2 Exchange Diagrams

In this appendix we give the full results for four-point exchange diagrams computed using

the dispersion formula. To simplify the notation, we will set all overall couplings to one.

– 29 –



φφ′2 × φφ′2

The exchange diagram constructed from two copies of the φφ′2 vertex is,

ψφφ
′2

4,disp =
s3/2

((k1 + k2)2 − s)2 ((k3 + k4)2 − s)2
(
k41 + 4k31k2 − s

(
k21 + k22

)
+ 4k21k

2
2 + 4k1k

3
2 + k42

)
×
(
−k43 − 4k33k4 + k23

(
s− 4k24

)
− 4k3k

3
4 − k44 + k24s

)
+

{
1

((k1 + k2)2 − s)2 (k1 + k2 − k3 − k4)3(k1 + k2 + k3 + k4)3[ (
(k1 + k2)2 − s

) (
2k1k2

(
k21 + k1k2 + k22

)
(k1 + k2)3

(
k23 + k24

)
(k1 + k2 − k3 − k4)

(k1 + k2 + k3 + k4) +
(
−(k1 + k2)2

(
k23 + k24

)
+ k43 + 4k33k4 + 4k23k

2
4 + 4k3k

3
4 + k44

)( (
k21 + k22

)
(k1 + k2)3(k1 + k2 − k3 − k4)(k1 + k2 + k3 + k4) + k1k2

(
k21 + k1k2 + k22

)
(k1 + k2)

(
(k1 + k2)2 + 3(k3 + k4)2

) ))
+ 2k1k2

(
k21 + k1k2 + k22

)
(k1 + k2)3(k1 + k2 − k3 − k4)

(k1 + k2 + k3 + k4)
(
−(k1 + k2)2

(
k23 + k24

)
+ k43 + 4k33k4 + 4k23k

2
4 + 4k3k

3
4 + k44

) ]
+ (k1, k2)↔ (k3, k4)

}
. (A.8)

Despite appearances, this expression is regular in the folded limits s→ ±(k1 +k2),±(k3 +k4)

as well as in the limit k1 + k2 − k3 − k4 → 0.

φ′3 × φ′3

The exchange diagram made from two φ′3 vertices was given previously in (3.21).

φ′3 × φ′(∂iφ)2

Here we study s-channel exchange diagrams constructed from a φ′3 and φ′(∂iφ)2 vertex. There

are two such diagrams, depending on which side we place each vertex. The exchange diagram

where the momenta (k1,k2) flow into the φ′3 vertex and the momenta (k3,k4) flow into the

φ′(∂iφ)2 vertex is,
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ψ
φ′3×φ′(∂iφ)

2

4,disp =
k21k

2
2s

3/2
(
3(k1 + k2)2 + s

)
((k1 + k2)2 − s)3 ((k3 + k4)2 − s)3

(
s2
(
7k23 + 6k3k4 + 7k24

)
− s

(
11k43 + 36k33k4 + 54k23k

2
4 + 36k3k

3
4 + 11k44

)
+ (k3 + k4)2

(
5k43 + 20k33k4 − 14k23k

2
4 + 20k3k

3
4 + 5k44

)
− s3

)
−
{

k21k
2
2(k1 + k2)

(k1 + k2 − k3 − k4)5(k1 + k2 + k3 + k4)5 ((k1 + k2)2 − s)3(
(k1 + k2)2(k1 + k2 − k3 − k4)2

(
(k1 + k2)6 − 7k23(k1 + k2)4 − 7k24(k1 + k2)4 − 6k3k4(k1 + k2)4

+ 11k43(k1 + k2)2 + 11k44(k1 + k2)2 + 36k3k
3
4(k1 + k2)2 + 54k23k

2
4(k1 + k2)2 + 36k33k4(k1 + k2)2

− 5k63 − 5k64 − 30k3k
5
4 − 31k23k

4
4 − 12k33k

3
4 − 31k43k

2
4 − 30k53k4

) (
3(k1 + k2)2 + s

)
(k1 + k2 + k3 + k4)2

− (k1 + k2 − k3 − k4)
(
4(k1 + k2)4(k1 + k2 − k3 − k4)(k1 + k2 + k3 + k4)(3(k1 + k2)4

− 14k23(k1 + k2)2 − 14k24(k1 + k2)2 − 12k3k4(k1 + k2)2 + 11k43 + 11k44 + 36k3k
3
4 + 54k23k

2
4 + 36k33k4)

− 6(k1 + k2)2
(
(k1 + k2)6 − 7k23(k1 + k2)4 − 7k24(k1 + k2)4 − 6k3k4(k1 + k2)4 + 11k43(k1 + k2)2

+ 11k44(k1 + k2)2 + 36k3k
3
4(k1 + k2)2 + 54k23k

2
4(k1 + k2)2 + 36k33k4(k1 + k2)2 − 5k63 − 5k64 − 30k3k

5
4

− 31k23k
4
4 − 12k33k

3
4 − 31k43k

2
4 − 30k53k4

) (
(k1 + k2)2 + (k3 + k4)2

) ) (
(k1 + k2)2 − s

)
(k1 + k2 + k3 + k4)

+

(
(k1 + k2 − k3 − k4)2(k1 + k2 + k3 + k4)2

(
15(k1 + k2)4 − 42k23(k1 + k2)2 − 42k24(k1 + k2)2

− 36k3k4(k1 + k2)2 + 11k43 + 11k44 + 36k3k
3
4 + 54k23k

2
4 + 36k33k4

)
(k1 + k2)2

− 6(k1 + k2 − k3 − k4)(k1 + k2 + k3 + k4)
(
3(k1 + k2)4 − 14k23(k1 + k2)2 − 14k24(k1 + k2)2

− 12k3k4(k1 + k2)2 + 11k43 + 11k44 + 36k3k
3
4 + 54k23k

2
4 + 36k33k4

) (
(k1 + k2)2 + (k3 + k4)2

)
(k1 + k2)2

+ 3
(
(k1 + k2)6 − 7k23(k1 + k2)4 − 7k24(k1 + k2)4 − 6k3k4(k1 + k2)4 + 11k43(k1 + k2)2 + 11k44(k1 + k2)2

+ 36k3k
3
4(k1 + k2)2 + 54k23k

2
4(k1 + k2)2 + 36k33k4(k1 + k2)2 − 5k63 − 5k64 − 30k3k

5
4

− 31k23k
4
4 − 12k33k

3
4 − 31k43k

2
4 − 30k53k4

)
(2k41 + 8k2k

3
1 +

(
12k22 + 5(k3 + k4)2

)
k21

+ 2k2
(
4k22 + 5(k3 + k4)2

)
k1 + 2k42 + (k3 + k4)4 + 5k22(k3 + k4)2)

)(
(k1 + k2)2 − s

)2 )
+ (k1, k2)↔ (k3, k4)

}
. (A.9)

The exchange diagram with the two vertices flipped is,

ψ
φ′(∂iφ)2×φ′3
4,disp = ψ

φ′3×φ′(∂iφ)2

4,disp

∣∣∣∣
(k1,k2)↔(k3,k4)

. (A.10)

As a consistency check, one can show that each diagram is regular in the folded limits

s→ ±(k1 + k2)2, ±(k3 + k4)2 and k1 + k2 − k3 − k4 → 0. In addition, each diagram satisfies

the manifestly local test [26],

∂kaψ
φ′3×φ′(∂iφ)2

4,disp

∣∣∣∣
ka=0

= 0. (A.11)
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φ′(∂iφ)2 × φ′(∂iφ)2

Here we give the dispersive representation for the exchange diagram constructed from two
φ′(∂iφ)2 vertices. We find the following expression,

ψ
φ′(∂iφ)

2

4,disp =−
s3/2

4 ((k1 + k2)2 − s)3 ((k3 + k4)2 − s)3(
s2
(
7k21 + 6k1k2 + 7k22

)
− s

(
11k41 + 36k31k2 + 54k21k

2
2 + 36k1k

3
2 + 11k42

)
+ (k1 + k2)2

(
5k41 + 20k31k2 − 14k21k

2
2 + 20k1k

3
2 + 5k42

)
− s3

)(
s2
(
7k23 + 6k3k4 + 7k24

)
− s

(
11k43 + 36k33k4 + 54k23k

2
4 + 36k3k

3
4 + 11k44

)
+ (k3 + k4)2

(
5k43 + 20k33k4 − 14k23k

2
4 + 20k3k

3
4 + 5k44

)
− s3

)
−
{

1

4(k1 + k2)(k1 + k2 − k3 − k4)5(k1 + k2 + k3 + k4)5
(
k21 + 2k2k1 + k22 − s

)3(
− 8k1k2(k1 + k2 − k3 − k4)(k1 + k2 + k3 + k4)

(
6k1k2(k1 + k2 − k3 − k4)(k1 + k2 + k3 + k4)(

3(k1 + k2)4 − 2
(
7k23 + 6k4k3 + 7k24

)
(k1 + k2)2 + 11k43 + 11k44 + 36k3k

3
4 + 54k23k

2
4 + 36k33k4

)
(k1 + k2)2

+
(
(k1 + k2)6 −

(
7k23 + 6k4k3 + 7k24

)
(k1 + k2)4 +

(
11k43 + 36k4k

3
3 + 54k24k

2
3 + 36k34k3 + 11k44

)
(k1 + k2)2

− (k3 + k4)2
(
5k43 + 20k4k

3
3 − 14k24k

2
3 + 20k34k3 + 5k44

) )
(k41 − 6k2k

3
1 −

(
14k22 + (k3 + k4)2

)
k21

− 2k2
(
3k22 + 5(k3 + k4)2

)
k1 + k22

(
k22 − (k3 + k4)2

)
)
) (
k21 + 2k2k1 + k22 − s

)
(k1 + k2)4

+ 12k21k
2
2(k1 + k2 − k3 − k4)2(k1 + k2 + k3 + k4)2

(
(k1 + k2)6 −

(
7k23 + 6k4k3 + 7k24

)
(k1 + k2)4

+
(
11k43 + 36k4k

3
3 + 54k24k

2
3 + 36k34k3 + 11k44

)
(k1 + k2)2 − (k3 + k4)2

(
5k43 + 20k4k

3
3 − 14k24k

2
3 + 20k34k3 + 5k44

) )(
3k21 + 6k2k1 + 3k22 + s

)
(k1 + k2)4 +

(
12k21k

2
2(k1 + k2 − k3 − k4)2(k1 + k2 + k3 + k4)2(15(k1 + k2)4

− 6
(
7k23 + 6k4k3 + 7k24

)
(k1 + k2)2 + 11k43 + 11k44 + 36k3k

3
4 + 54k23k

2
4 + 36k33k4)(k1 + k2)4

+ 8k1k2(k1 + k2 − k3 − k4)(k1 + k2 + k3 + k4)
(
3(k1 + k2)4 − 2

(
7k23 + 6k4k3 + 7k24

)
(k1 + k2)2 + 11k43 + 11k44

+ 36k3k
3
4 + 54k23k

2
4 + 36k33k4

)(
k41 − 6k2k

3
1 −

(
14k22 + (k3 + k4)2

)
k21 − 2k2

(
3k22 + 5(k3 + k4)2

)
k1

+ k22
(
k22 − (k3 + k4)2

) )
(k1 + k2)4 −

(
(k1 + k2)6 −

(
7k23 + 6k4k3 + 7k24

)
(k1 + k2)4 + (11k43 + 36k4k

3
3

+ 54k24k
2
3 + 36k34k3 + 11k44)(k1 + k2)2 − (k3 + k4)2

(
5k43 + 20k4k

3
3 − 14k24k

2
3 + 20k34k3 + 5k44

) )(
− 18k21(k1 + k2)

(
5k41 + 20k2k

3
1 + 10

(
3k22 + (k3 + k4)2

)
k21 + 20k2

(
k22 + (k3 + k4)2

)
k1 + 5k42 + (k3 + k4)4

+ 10k22(k3 + k4)2
)
k22 + k1

(
2k31 + 7k2k

2
1 + 7k22k1 + 2k32

)
(k1 + k2 − k3 − k4)(k1 + k2 + k3 + k4)(

7k21 + 14k2k1 + 7k22 + 5(k3 + k4)2
)
k2 + (k1 + k2)

(
4k41 + 6k2k

3
1 + 3k22k

2
1 + 6k32k1 + 4k42

)
(k1 + k2 − k3 − k4)2

(k1 + k2 + k3 + k4)2
)
(k1 + k2)

) (
k21 + 2k2k1 + k22 − s

)2 )
+ (k1, k2)↔ (k3, k4)

}
. (A.12)

This expression is also finite in the folded limits and passes the manifestly local test,

∂kaψ
φ′(∂iφ)2

4,disp

∣∣∣∣
ka=0

= 0. (A.13)

Furthermore, as demonstrated by (3.30), our result differs from the result found in [26] by a

finite sum of contact diagrams.

B Regularizing Dispersion Integrals

In this appendix we discuss two different ways of regularizing divergent dispersion integrals

in dS: either by cutting off the η integral or by defining divergent integrals through analytic

continuation. We will only discuss the exchange diagram constructed from two φ′(∂iφ)2 ver-

tices, although our analysis carries over to general diagrams. We show that for this diagram,

the difference between the two regularizations is given by a sum of quartic, contact diagrams.
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Hard Cutoff

To use the hard cutoff regularization, we need to compute the three-point function associated

to φ′(∂iφ)2 at non-zero η0,

ψ
φ′(∂iφ)2

3,reg (k1, k2, k3) = ig2k2 · k3

η0∫
−∞

dη

η
K′φ(k1, η)Kφ(k2, η)Kφ(k3, η) + (symm)

=
k2

1k2 · k3

(η0k1 − i)(η0k2 − i)(η0k3 − i)(k1 + k2 + k3)3(
i
(
k2

1 + 3k1(k2 + k3) + 2
(
k2

2 + 3k2k3 + k2
3

))
− η0(k1 + k2 + k3)

(
k1(k2 + k3) + k2

2 + 4k2k3 + k2
3

)
− iη2

0k2k3(k1 + k2 + k3)2

)
+ (symm),

(B.1)

where we sum over symmetrizations. We can now plug this result into the dispersion formula,

ψ
φ′(∂iφ)2

4,reg (ka, s, t) =
1

2πi

∞∫
0

ds′

s′ − s+ iε
discs′ψ

φ′(∂iφ)2

4,reg (ka, s
′, t)

=
1

2πi

∞∫
0

ds′

s′ − s+ iε
P3/2(

√
s′)discs′ψ

φ′(∂iφ)2

3,reg (k1, k2,
√
s′)discs′ψ

φ′(∂iφ)2

3,reg (
√
s′, k3, k4).

(B.2)

In this case we find the discontinuity vanishes in the large s limit,

discsψ
φ′(∂iφ)2

4,reg (ka, s, t) ∼ s−1 for s� 1, (B.3)

and the dispersion integral (B.2) converges. To evaluate the dispersion integral, we make the

change of variables s′ = p2, extend the p-contour to (−∞,∞), and then close the contour in

the lower half-plane,

ψ
φ′(∂iφ)2

4,reg (ka, s, t) =
1

2πi

∞∫
−∞

dp

p2 − s+ iε
pdiscp2ψ

φ′(∂iφ)2

4,reg (ka, p
2, t)

=−
(

Res
p=k1+k2

+ Res
p=k3+k4

+ Res
p=
√
s−iε

+ Res
p=i/η0

)
p

p2 − s+ iε
discp2ψ

φ′(∂iφ)2

4,reg (ka, p
2, t).

(B.4)

The new feature in comparison to the cases studied in Section 3 is that we now have a pole

at p = i/η0. In the limit η0 → 0−, the first three poles give the same result as before (A.12),

ψ
φ′(∂iφ)2

4,disp (ka, s, t) = − lim
η0→0

(
Res

p=k1+k2
+ Res
p=k3+k4

+ Res
p=
√
s−iε

)
p

p2 − s+ iε
discp2ψ

φ′(∂iφ)2

4,reg (ka, p
2, t).

(B.5)
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The difference between the two results, (A.12) and (B.4), then comes from the pole at p = i/η0,

ψ
φ′(∂iφ)2

4,disp (ka, s, t)− ψφ
′(∂iφ)2

4,reg (ka, s, t) = Res
p=i/η0

p

p2 − s+ iε
discp2ψ

φ′(∂iφ)2

4,reg (ka, p
2, t)

=
i

8η3
0

−
i
(
6k2

1 + 6k2
2 + 6k2

3 + 6k2
4 − s

)
8η0

− 1

4

(
k3

1 + k3
2 + k3

3 + k3
4

)
+O(η0), (B.6)

where we have dropped terms that vanish in the limit η0 → 0−.

The first two terms in (B.6) are analytic in all of the external momenta and correspond

to ultra-local contact terms in position space, that is they only have support when all four

external points are coincident, x1 = x2 = x3 = x4. These can be removed by adding local

counterterms. The third term is semi-local in position space since it is analytic in a subset of

the momenta. For example, k3
1 is non-analytic in k1, but is analytic in k2,3. The third term

in (B.6) comes from the following combination of contact diagrams,

ψφ
2φ′2

4 (ka, s, t)− ψφ
2(∂iφ)2

4,reg (ka, s, t) =
1

2
(k3

1 + k3
2 + k3

3 + k3
4). (B.7)

Finally, we find that the difference between (A.12) and (B.4) is a linear combination of contact

diagrams,

ψ
φ′(∂iφ)2

4,disp (ka, s, t)− ψφ
′(∂iφ)2

4,reg (ka, s, t) = −1

2

(
ψφ

2φ′2

4 (ka, s, t)− ψφ
2(∂iφ)2

4,reg (ka, s, t)
)
. (B.8)

Analytic Continuation

In this section we explain how to define divergent dispersion integrals by analytic continuation.

Specifically, we will compute,

ψ
φ′(∂iφ)2

4,disp (ka, s, t) =
1

2πi

∞∫
0

ds′

s′ − s+ iε
discs′ψ

φ′(∂iφ)2

4 (ka, s
′, t). (B.9)

First we recall that if we use the unregulated three-point functions as input, then discsψ
φ′(∂iφ)2

4

grows at large s, see (3.27). For convenience we have copied the expression below with g2 = 1,

lim
s→∞

discsψ
φ′(∂iφ)2

4 (ka, s, t) ≈

(
s3/2

2
− 2s1/2(k2

1 + k2
2 + k2

3 + k2
4)

)
. (B.10)

We can then define a subtracted integrand by,

Iφ
′(∂iφ)2

4 (ka, s, t) = discsψ
φ′(∂iφ)2

4 (ka, s, t)−

(
s3/2

2
− 2s1/2(k2

1 + k2
2 + k2

3 + k2
4)

)
. (B.11)
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Using Iφ
′(∂iφ)2

4 we can rewrite the dispersion integral (B.9) as,

ψ
φ′(∂iφ)2

4,disp (ka, s, t) =
1

2πi

∞∫
0

ds′

s′ − s+ iε
Iφ
′(∂iφ)2

4 (ka, s
′, t)

+
1

2πi

∞∫
0

ds′

s′ − s+ iε

(
s′3/2

2
− 2s′1/2(k2

1 + k2
2 + k2

3 + k2
4)

)
, (B.12)

where we have simply added and subtracted the power law terms. The integral in the first

line of (B.12) converges and can be computed in the standard way by making the change of

variables s′ = p2 and evaluating the p integral using Cauchy’s theorem. To define the second

line we need to compute the dispersive transform of a pure power-law,

Sa(s) =
1

2πi

∞∫
0

ds′

s′ − s+ iε
s′a = i

eiπa

2 sin(πa)
(s− iε)a. (B.13)

The integral (B.13) only converges for −1 < a < 0, but we can define it for generic a by

analytic continuation. Then the full dispersive integral is,

ψ
φ′(∂iφ)2

4,disp (ka, s, t) =
1

2πi

∞∫
0

ds′

s′ − s+ iε
Iφ
′(∂iφ)2

4 (ka, s
′, t)

+

(
1

2
S3/2(s)− 2S1/2(s)(k2

1 + k2
2 + k2

3 + k2
4)

)
. (B.14)

In (B.14) both the first and second line are well-defined and this gives an expression whose

s-channel discontinuity factorizes correctly.

We can also check that (B.14) agrees with what we would have found had we turned the

original dispersion integral (B.9) into a contour integral in p and dropped the arc at infinity.

To show this we use the following basic identity,

− Res
p=
√
s−iε

1

p2 − s+ iε
p2a+1 = −1

2
(s− iε)a, (B.15)

where we included the overall minus sign because this pole is located in the lower half-plane.

If we set a to be a half-integer, a = n+ 1/2 with n ∈ Z, then this agrees with Sa(s),

Sn+1/2(s) = − Res
p=
√
s−iε

1

p2 − s+ iε
p2(n+1). (B.16)

Therefore, we could equivalently have found (B.14) by rewriting the dispersion integral as

a contour integral and dropping the arc at infinity. This trick is also valid for all exchange

diagrams in the EFT of inflation which are constructed from rational three-point functions

of the form (3.32).
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C Dispersion Formula Ambiguities

In this appendix we will give an alternative proof of (4.31), or that the dispersion formula

reconstructs exchange Witten diagrams from their cuts, up to contact diagram ambiguities.

Our starting point is the identity (4.19), which we reproduce below:

WFeyn
O (ka, s−, t−)−W disp

O (ka, s−, t−)

=−
∏
a

knaa

∫
dz1dz2

zd+1
1 zd+1

2

DL,z1DR,z2
(
KAdS
φ (k1, z1)KAdS

φ (k2, z1)KAdS
φ (k3, z2)KAdS

φ (k4, z2)
)

(
AFeyn
O (s−, z1, z2)−Adisp

O (s−, z1, z2)
)
, (C.1)

where the amputated diagrams are defined by,

AFeyn
O (s−, z1, z2) = sm− GAdS

O (
√
s−, z1, z2), (C.2)

Adisp
O (s−, z1, z2) =

1

2πi

∞∫
0

ds′−
s′− − s− − iε

s′m− discs−GAdS
O

(√
s′−, z1, z2

)
. (C.3)

We will next Fourier transform each amputated diagram to position space. We want to show

that the difference between the amputated diagrams is localized at a single bulk point,

AFeyn
O (x12, z1, z2)−Adisp

O (x12, z1, z2) = 0 if (x1, z1) 6= (x2, z2). (C.4)

The amputated Feynman diagram is given by,

AFeyn
O (x12, z1, z2) = ∂2m

x12
GAdS
O (x12, z1, z2)

= ∂2m
x12
〈T [Φ(x1, z1)Φ(x2, z2)]〉free, (C.5)

where we used the definition of the AdS propagator in terms of a time-ordered two-point

function (4.13). Similarly the amputated, “dispersive” diagram in position space is,

Adisp
O (x12, z1, z2) = θ(x0

12)∂2m
x12
〈Φ(x1, z1)Φ(x2, z2)〉free + (1↔ 2). (C.6)

To prove (C.6) we first Fourier transform (C.3),

Adisp
O (x12, z1, z2) =

1

2πi

∫
ddk

(2π)d
e−ik·x12

∞∫
0

ds′−
s′− − s− − iε

s′m− discs′−G
AdS
ν (k′, z1, z2), (C.7)

where s′− = −k′2 and similarly for the unprimed variables. Depending on the sign of x0
12,

we can either close the k0 integral in the lower or upper half-plane.24 The difference in how

24There can be additional δ-function terms localized at x12 = 0 which we will ignore here.
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we close the contour can be accounted for by inserting different δ- and θ-functions in the

integrand,

Adisp
O (x12, z1, z2) =

∫
ddk

(2π)d
e−ik·x12

∞∫
0

ds′− δ(s
′
− − s−)

(
θ(x0

12)θ(−k0) + θ(x0
21)θ(k0)

)
s′m− discs′−G

AdS
ν (k′, z1, z2)

= θ(x0
12)∂2m

x12
〈Φ(x1, z1)Φ(x2, z2)〉free + (1↔ 2). (C.8)

To arrive at the second line, which is exactly (C.6), we evaluated the trivial s′− integral and

used (4.14) to express the final result in terms of Wightman functions. We also used that the

vacuum is the lowest energy state in the theory,

Φ(k, z)|0〉 = 0, if k0 < 0 or k2 > 0. (C.9)

As a reminder we are using the mostly plus AdS metric.

Finally, we see that the difference between the two amputated diagrams is,

AFeyn
O (x12, z1, z2)−Adisp

O (x12, z1, z2) =
(
∂2m
x12
θ(x0

12)− θ(x0
12)∂2m

x12

)
〈[Φ(x1, z1),Φ(x2, z2)]〉.

(C.10)

The right hand side of (C.10) vanishes whenever (x1, z1) 6= (x1, z2). If the two operators are

spacelike separated, then the commutator vanishes. On the other hand, if the two operators

are timelike separated, then the derivatives commute with the θ-functions and (C.10) is again

zero. Therefore, (C.10) is at most proportional to δ(x12)δ(z1 − z2) and its derivatives. This

proves (C.4), or that the difference between the amputated diagrams is localized at a single

bulk point. This in turn implies (4.31), which we reproduce below:

WFeyn
O (ka, s−, t−) = W disp

O (ka, s−, t−) + (contact diagrams). (C.11)

Note that in this appendix we did not need to use the explicit form of the bulk-to-

bulk propagator. Therefore this argument will also be valid in general asymptotically AdS

spacetimes which preserve Poincaré invariance of the dual QFT. For example, we can consider

general metrics of the form,

ds2 = e2A(z)(dz2 + ηµνdx
µdxν), (C.12)

where A(z) is the warp factor which asymptotes to the AdS warp factor at z → 0 and z →∞.

We also did not need to take the radial cutoff zc to zero. We did however use that the AdS

theory is local, causal and unitary. For example, we used that the vacuum is stable and

that operators commute at spacelike separation. For this reason, the arguments used in this

section only apply directly to exchange diagrams in unitary AdS theories. That being said,

we can extend (C.11) to dS exchange diagrams, including those involving heavy fields, by

analytically continuing in both k and ν. It would be interesting to understand if the tree-

level dispersion formula (2.32) can also be derived by invoking non-perturbative dS unitarity

directly.
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