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Abstract

Inference of genetic clusters is a key aim of population genetics, sparking development of numerous analytical methods.

Within these, there is a conceptual divide between finding de novo structure versus assessment of a priori groups. Recently

developed, Discriminant Analysis of Principal Components (DAPC), combines discriminant analysis (DA) with principal

component (PC) analysis. When applying DAPC, the groups used in the DA (specified a priori or described de novo) need to

be carefully assessed. While DAPC has rapidly become a core technique, the sensitivity of the method to misspecification of

groups and how it is being empirically applied, are unknown. To address this, we conducted a simulation study examining

the influence of a priori versus de novo group designations, and a literature review of how DAPC is being applied. We found

that with a priori groupings, distance between genetic clusters reflected underlying FST. However, when migration rates were

high and groups were described de novo there was considerable inaccuracy, both in terms of the number of genetic clusters

suggested and placement of individuals into those clusters. Nearly all (90.1%) of 224 studies surveyed used DAPC to find de

novo clusters, and for the majority (62.5%) the stated goal matched the results. However, most studies (52.3%) omit key run

parameters, preventing repeatability and transparency. Therefore, we present recommendations for standard reporting of

parameters used in DAPC analyses. The influence of groupings in genetic clustering is not unique to DAPC, and researchers

need to consider their goal and which methods will be most appropriate.

Introduction

Inference of genetic clusters and knowledge of their

divergence and distribution are important for many

aspects in evolutionary biology and population genetics

including studies of speciation (Sousa and Hey 2013),

inferring disease spread risk (Hampton et al. 2004; Cas-

sirer et al. 2018), as well as applications in conservation

and forensics (Funk et al. 2012; Coates et al. 2018). As

such, many methods have been developed for determining

genetic clusters and quantifying divergence among them.

These range from admixture and Bayesian clustering

analyses (e.g., STRUCTURE (Pritchard et al. 2000;

Falush et al. 2003); ADMIXTURE (Alexander et al.

2009); and LEA (Frichot and François 2015)), phyloge-

netic approaches (Yang and Rannala 2012) and principal

components analyses (PCA; Patterson et al. 2006; Reich

et al. 2008), to F-statistics (Weir and Cockerham 1984)

and analysis of molecular variance (AMOVA; Excoffier

et al. 1992; Meirmans 2012).

Within all of these methods, there is a conceptual divide

between assessing a priori (predefined) populations, versus

finding clusters de novo. The former can help visualize

differentiation between hypothesized groups or jurisdic-

tions, while the latter is a test for population structure in a

dataset. Both are valid questions; however, misspecification

of groups can have serious consequences, especially for

species of conservation concern. On the one hand, mis-

specification may lead to artificially large populations with

Wahlund-like effects of apparent depressed heterozygosity

(Wahlund 1928), and such inflated population size estimates

can prevent legal protections thereby increasing the risk of

extinction for one (or more) of the “cryptic” genetic clus-

ters. On the other hand, misspecification may lead to over
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splitting populations that should be combined, potentially

resulting in wasted resources engaging in translocations to

increase population numbers, or undertaking habitat

restoration to unnecessarily promote gene flow (Weeks

et al. 2011; Aitken and Bemmels 2016). Commonly used

methods for assessing genetic clusters differ in how they

address finding de novo genetic clusters versus visualizing a

priori groupings (Table 1) with some requiring a priori

designations of groups (Fst, AMOVA), while others only

describe de novo population structure (PCA).

Discriminant Analysis of Principal Components (DAPC)

brings together two analysis methods to assess population

structure (Jombart et al. 2009, 2010; Jombart and Ahmed

2011). In this approach, implemented in the R package

adegenet (Jombart 2008), multilocus genotype data are

transformed using principal component (PC) analysis to

derive the uncorrelated variables that serve as input for

discriminant analysis (DA). The DA aims to maximize

among‐group variation and minimize within‐group varia-

tion. Results are depicted as scatterplots with individuals as

points, and often have inertial ellipses around groups.

DAPC does not make assumption of underlying population

genetic processes (e.g., linkage equilibrium,

Hardy–Weinberg equilibrium) common to other methods

used to detect population structure. In addition, since it is

based on PC analyses, DAPC can analyze genomic datasets

relatively quickly and efficiently.

While there are fewer underlying assumptions about

processes of population evolution, there are key parameters

that need to be carefully assessed during application of

DAPC. Most importantly, the groups that will be used in the

DA, as well as the number of PCs retained for DA. Groups

can be defined in two ways: a priori population designa-

tions, or de novo description via clustering methods, most

often k-means clustering within the adegenet package itself

(Jombart 2008; Jombart and Ahmed 2011; Jombart and

Collins 2015). Once the clusters have been defined, users

must then determine the number of PCs to retain such that

there is discriminatory power, but not too many such that

separation between groups is inflated and individual

assignment to groups becomes unstable (Jombart and Col-

lins 2015).

Given the lack of assumptions and ability to process

large datasets, DAPC has rapidly become a core technique

for many population genetic studies. But as the use of

DAPC has continued to rise we have noticed authors not

reporting how they are applying the method to address their

question of interest. This has significant implications if

authors are using a priori population designations when the

goal of the paper is to determine the number of genetic

Table 1 Conceptual breakdown of how commonly used clustering methods address finding de novo genetic clusters versus visualizing a priori

groupings.

de novo a priori

Admixture analysis Novel genetic clusters discovered through analysis of

allele frequencies among “K” groups (Pritchard et al.

2000; Frichot et al. 2014)

Prior groupings can be specified to visualize or assist

with clustering (e.g., usepopinfo flag in

STRUCTURE (Hubisz et al. 2009) or supervised in

ADMIXTURE (Alexander et al. 2009))

Analysis of molecular variance

(AMOVA)

Novel genetic clusters are discovered through k-means

clustering, then assessed using hierarchical F-statistics

such that variance is minimized within groups but

maximized among them (Meirmans 2012)

Prior groupings used to assess the proportion of

molecular variance is assigned among them

(Excoffier et al. 1992)

Assignment tests N/A Prior groupings specify known individuals from

which population allele frequencies are calculated,

novel individuals are then assigned to these

populations based on the likelihood of their genotype

in the various populations (Paetkau et al. 2004; Piry

et al. 2004)

DAPC Novel genetic clusters are discovered through k-means

clustering then visualized via discriminant analyses

(Jombart et al. 2010)

Prior groupings are taken and visualized via

discriminant analyses (Jombart and Collins 2015)

F-statistics N/A Prior groupings used to assess the genetic distance

among them (Weir and Cockerham 1984)

Phylogenetic approaches Novel genetic clusters discovered through grouping

based on sequence similarity or genetic distance

among individuals

Prior genetic clusters can be specified (e.g., forced

monophyly) in a series of trees and then tested

against one another to see which is more statistically

likely (Goldman et al. 2000)

Principal components

analysis (PCA)

Novel genetic clusters discovered through eigen vector

decomposition of allele frequencies among individuals

(Patterson et al. 2006)

N/A
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groups in a dataset. In addition, it is not known how robust

or sensitive the method is to misspecification of the goal. To

address this, we have taken a two-pronged approach: (1) a

simulation study to explicitly examine at what point a priori

cluster designations override lack of genetic structure in

DAPC analyses; (2) a literature review of studies that used

DAPC to quantify how the program is being applied, and if

authors are accurately reporting their methods. We conclude

by making recommendations for the parameters that should

be reported in papers implementing DAPC analyses to

ensure transparency and reproducibility.

Methods

Simulation study

We generated simulated datasets for both microsatellite and

SNP loci. For both marker types we simulated two ran-

domly mating, diploid populations with equal numbers of

males and females. Simulations were run for 20,000 gen-

erations starting at the minimum diversity; we ensured the

models reached stability by examining the trend-line for

FST. For the microsatellite sets we modeled genotypes at 15

loci where the mutation model was a combination of the

single-step mutation (SSM: 75%), and K-allele model

(KAM: 25%) with 20 variable states (μ= 0.001) using

Easypop 1.7 (Balloux 2001). This number of loci was

chosen as it was the average number seen in a previous

review of papers applying STRUCTURE for determining

genetic clusters (Janes et al. 2017). We created two sets of

simulations differing in the starting population pools (Nc):

in the first set the two populations contained 100 individuals

each, and in the second set they contained 500 individuals

each. From each set, we simulated 50 replicates from five

scenarios which differed in the amount of migration

between populations (m= 0.0001, 0.001, 0.005, 0.01, 0.5),

resulting in a total of 500 population replicates.

For the SNP sets we modeled genotypes at 2000 loci,

representing a “genome-scale” dataset produced by reduced

representation methods (e.g., Peterson et al. 2012) or a low-

density SNP chip (e.g., Hagen et al. 2013; Malenfant et al.

2015). Here the mutation model was a KAM model with

two variable states (μ= 0.0001) using Easypop 2.0.1

(Balloux 2001). In the interest of computational efficiency,

we restricted our simulations to Nc= 500, and 50 replicates

of the five migration rates (m= 0.0001, 0.001, 0.005, 0.01,

0.5), resulting in a total of 250 population replicates.

From each simulation replicate, of both microsatellites and

SNPs, we sampled 10 individuals per population for use in

DAPC analyses. DAPC analyses were conducted twice on

each replicate using the R package adegenet version 2.1.1

(Jombart 2008). In the first analysis a priori population

assignments were used as the population identifier. In the

second analysis the find.clusters() method was used to assign

samples to groups which were then used as the population

identifier. To automate the assignment procedure, we used

the “diffNgroup” criterion which automatically determines

the “best” number of populations (K) based on Bayesian

information criterion (BIC) differences between successive

values of K. We tested K values from 1 to 10. While BIC has

been shown to perform well at determining the best K when

K is <5 (Verity and Nichols 2016), it is important to note that

the find.clusters() method was not intended to find K= 1

(Jombart 2013) and our empirical experience found that

using the “diffNgroup” criterion will cause the program to

assign larger K values to unstructured datasets. Thus, we

used two metrics to assess the performance of the clustering.

First, the number of clusters returned, and second the accu-

racy of the individuals assigned to each cluster. We noted

cases where: (a) the find.clusters() method assigned a K > 2 to

a replicate, and (b) replicates where K= 2, but the number of

individuals per cluster was different than the number sampled

from each simulated population (N= 10). For both a priori

and de novo clustering methods an initial DAPC was run

considering 30 PCs, after which the optim.a.score() was used

to assess the optimal number of PCs to retain. Once the

optimal number of PCs was determined, a second DAPC

analysis was conducted using this value. For replicates which

successfully clustered (i.e. had K= 2 and 10 individuals in

each group), we calculated the distance between clusters

using Euclidean geometry based on the “grp.coord” values

from the second DAPC analysis. For all replicates, we cal-

culated FST (Weir and Cockerham 1984) between the a priori

groups using hierfstat version 0.04-22 (Goudet 2005). In

cases where an FST estimate was <0 we rounded it to 0. We

used generalized linear models with a binomial error struc-

ture to examine the relationship between clustering success

(dependant variable) and FST, as well as possible covariates

of marker type and Nc. We considered three models: (1) FST

only, (2) FST and marker type, and (3) FST and Nc. Models

were compared with the package MuMIn version 1.43.6

(Bartoń 2018) and we used AICc to assess which was the

best fit. All results were visualized with ggplot2 version 3.0.0

(Wickham 2016). All analyses using R were conducted in R

studio version 1.1.423 (RStudio Team 2016) using R version

3.6.0 (R Core Team 2019).

Literature review

We searched Web of Science for all citations to Jombart

et al. (2010) which describes the DAPC method (search

conducted on April 17, 2019). By choosing this publication

we acknowledge that this may miss authors who implement

DAPC but cite the adegenet package (Jombart 2008;

Jombart and Ahmed 2011) and not this method paper.
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However, the pool of citations generated will be repre-

sentative of the greater body of literature.

From this initial pool we considered all papers from three

journals that represent a broad cross-section of the pub-

lishing landscape: Molecular Ecology (a leader in the field

of molecular ecology and the journal with the most papers

citing the focal publication, N= 119), Heredity (a society

journal, N= 22), and Ecology and Evolution (an open

access publication, N= 65). To be included in our analyses,

papers had to analyze empirical genetic or genomic data for

evidence of population structure (not clustering of multi-

gene families, e.g., MHC). From each paper that met this

criterion we recorded the following information if it was

present in the main text (we did not assess supplementary

materials): (1) year of publication. (2) The stated goal of the

analysis (i.e., finding de novo structure or visualizing a

priori groups). Note that this goal was determined after

reading only the abstract and introduction. (3) Did the goal

match the analyses conducted (i.e., if the goal was to group

samples was the find.clusters() function used)? (4) Did the

authors determine the optimal number of genetic clusters in

their data? (5) Did the authors explicitly state how the

optimal number of clusters was chosen (i.e. find.clusters(),

k-means clustering method, or report use of BIC scores)?

(6) Did the authors include how the number of PCs retained

was chosen (yes or no)? (7) If yes, which method of

choosing PCs was used? (8) Did the authors include how

many PCs were retained? (9) Were other clustering methods

implemented? Here we considered three general categories:

PCA, admixture (e.g. STRUCTURE (Pritchard et al. 2000;

Falush et al. 2003), ADMIXTURE (Alexander et al. 2009),

LEA (Frichot and François 2015), etc.), phylogeny (e.g. NJ

tree), as well as an “other” category (e.g. AMOVA or

isolation-by-distance analysis). (10) Were there Supple-

mentary Materials associated with the paper. In cases where

a paper analyzed multiple taxa, or multiple (sub)sets of

samples or loci from the same taxa we consider these as

independent “studies”.

From this database we generated summary statistics

including the number of studies using DAPC for de novo

structure versus visualizing a priori groups. The proportion

of studies where the stated goal matched what was pre-

sented in the results, as well as if run parameters were

reported. We also quantified how many studies used mul-

tiple methods for clustering genetic data. In addition, we

looked for trends over time in the information reported.

Specifically focusing on studies where the goal was finding

de novo structure, we examined the percentage of studies

published each year for the following metrics: (1) authors

stated they searched for the optimal number of genetic

clusters in their data, (2) authors stated the method used to

determine the optimal number of PC to retain, and

(3) authors stated the final number of PCs used in the DA.

For each of these metrics we conducted two weighted linear

regressions of percentage of studies against year, with

weights corresponding to the total number of studies in that

year. In the first regression, year was assessed directly as a

continuous variable; while in the second, it was fit as a

second-order polynomial to allow for nonlinear changes

over time. The model pairs for each metric were compared

with the package MuMIn as described above to assess if the

second-order polynomial increased model fit. Finally, for

the subset of studies which did report the method used to

determine the optimal number of PCs to use in the DA we

examined if there were trends in the use of specific methods.

Our goal here was to see if the community has settled on a

specific method. Note that three methods appeared in a

single study each and therefore were not included, and for

three studies which used multiple methods we added both

counts to the totals of the individual method.

Results

Simulation study

When groups were specified a priori, a Euclidean distance

>0 between cluster centroids was nearly always found

regardless of marker type or census size. In some replicates

at the highest levels of migration, the distance between

groups was several orders of magnitude larger than even the

largest estimate from the replicates with the lowest migra-

tion rate (e.g., 2.741 × 1016 versus 51.731). This was both

for microsatellite replicates with Nc of 100 (n= 7) and Nc of

500 (n= 7) as well as SNP replicates (N= 9). Given that at

high levels of migration we would expect lower distances

between clusters, these outlier replicates were discarded

from comparisons of the distance between clusters and FST.

For the remaining replicates, the distances between DAPC

clusters decreased with increasing migration rate and were

positively associated with FST between groups (Fig. 1a).

In contrast, when groups were not specified a priori,

clusters were unsuccessfully resolved for many replicates.

For both marker types and Nc values, clusters were suc-

cessfully detected for nearly all replicates of the two lowest

migration rates (95% and 91% of microsatellite replicates at

Nc of 100 and 500, respectively, and 100% of SNP repli-

cates). For the microsatellite replicates, where accurate

clusters were not resolved (N= 14), the majority (N= 9)

were due to individuals not being correctly assigned

between the two clusters. However, at the three highest

migration rates the vast majority of replicates were not

successfully clustered (73.3% and 99.3% of microsatellite

replicates at Nc of 100 and 500, respectively, and 100% of

SNP replicates). For microsatellite replicates, the reason for

unsuccessful clustering depended on the Nc. With Nc= 100,
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misclustering events were nearly equally divided between

the k-means clustering method suggesting that the optimal

K > 2 (42.7%), and incorrect assignment of individuals to

clusters at K= 2 (57.3%). In contrast, with Nc= 500 almost

all of the misclustering was due to the k-means clustering

identifying the optimal K as >2 (95.3%). For all of the SNP

replicates, misclustering was due to the k-means clustering

indicating that the optimal K > 2. For replicates where

clusters were successfully resolved de novo, the distances

between the clusters were positively correlated with FST

between groups (Fig. 1b) as was seen when groups were

specified a priori.

Our generalized linear models showed that clustering

success increased with increasing FST between populations

(Table 2), a pattern which did not significantly differ

between the marker types but did differ between Nc values

(Table 2 and Fig. 2). For Nc= 100, the average FST of

successfully clustered replicates was over five times that of

failed ones (0.471 versus 0.095), but the range of FST values

for both successfully and unsuccessfully clustered replicates

was very large (0.000–0.832 and 0.000–0.729,

respectively). For Nc= 500, the average FST of the suc-

cessful and unsuccessful replicates showed a similar dis-

parity (0.321 versus 0.026) and range of values

(0.056–0.589 and 0.000–0.321, respectively). Together, this

suggests that for the demographic scenarios and sample

sizes we explored the method used by find.clusters() does

not reliably work when FST between groups is <0.1, espe-

cially for small census sizes.

Literature review

Our survey of the literature resulted in a dataset of

263 studies (representing 206 publications), of which

224 studies unambiguously met the criterion for inclusion.

We classified the main goal of 204 studies as finding de

novo structure, 18 as visualization of a priori groups, and 2

as both. For the majority of studies, the stated goal matched

what was presented in the results (140, 62.5%). While in

47 studies (21.0%) the stated goal did not match what was

presented in the results and in the remaining 37 (16.5%)

studies it was unclear if the goals matched the results

BA

Fig. 1 Scatterplots of Euclidean distance between DAPC clusters versus FST from our simulated datasets. Plots distinguish if DAPC clusters

were specified a priori (a) or determined de novo though k-means clustering (b) as well as the marker sets within each.

Table 2 Results of generalized

linear models examining factors

associated with clustering

success. Effect estimates are

shown along with their standard

errors.

Intercept FST Marker Nc df AICc

FST with Nc −4.78 (0.42)* 25.97 (2.02)* 1.44 (0.33)* 3 356.0

FST with marker type −3.72 (0.26)* 23.88 (1.87)* 0.54 (0.29) 3 373.7

FST only −3.51 (0.26)* 23.57 (1.85)* 2 375.1

*Term significant with p < 2 × 10−16.

The influence of a priori grouping on inference of genetic clusters: simulation study and literature. . . 273



presented. This lack of clarity often came from omission of

key run parameters. In studies where the primary goal was

finding de novo structure, only 39.3% (N= 81) stated that

the optimal K value was found using the find.clusters()

command, k-means clustering method, or report of a BIC

score. Similarly, other run parameters needed to ensure

repeatability of the analyses were often not presented.

Across all studies considered, less than half (47.7%, N=

107) reported the method by which the optimal number of

PCs for DA were retained. Even fewer studies (N= 78)

reported the final number of PCs. Given the large propor-

tion of studies missing information, we examined the sup-

plementary materials for 40 studies with missing run

parameters and contained supplementary materials. This

ensured that our choice to focus on the main text of papers

did not bias our results. We found only three studies con-

taining relevant additional information in their supplemen-

tary materials. Therefore, it does not appear that details of

DAPC analyses were placed in supplemental material and

therefore missed by our review. We also reduced our dataset

to one data-point per publication to assess if pseudo-

replication at the level of publication was driving the pat-

terns we observed. This reduced dataset showed similar

patterns for: whether the stated goal matched analyses

presented (59%, N= 100), indicating how the optimal

K value was found (35.5%, N= 54), and reporting the

method by which the optimal number of PCs were selected

(51.3%, N= 73).

The vast majority of studies used at least one additional

clustering method to assess population structure (204,

91.1%). Among the four broad categories we considered

(PCA, admixture analysis, phylogeny, and other) 35.3% of

studies used two methods, and 22.0% of studies used three

or more methods.

The percentage of studies reporting that the authors

searched for the optimal number of genetic clusters in their

data and the percentage stating the final number of PCs used

when conducting DAPC analyses has remained essentially

flat for the period of time we consider (2011 through April

2019; Fig. 3a). For these two metrics, fitting year as linear

rather than polynomial was chosen, but the effect was not

significant (optimal number of clusters: F1,7= 3.78, p=

0.10; number of PCs F1,7= 0.214, p= 0.66). In contrast, a

second-order polynomial was a better fit to the change over

time in the proportion of studies stating the method used to

determine the optimal number of PCs to retain (F2,6=

11.86, p= 0.008). Specifically, there was initially a very

high proportion of studies reporting the PC selection

method, but this decreased from 2011 to 2016. Whereas

since 2016 the proportion of studies reporting their PC

selection method has increased steadily, reaching a high of

80% in 2019.

Only three methods for determining the optimal number

of PCs to retain met our criterion for analysis: cross-

validation (xval), a-score, and cumulative variance. The

cumulative variance approach was the only method used in

2011 and 2012. However, since 2012 its use has decreased

(Fig. 3b). Use of xval did not start until 2015 (corre-

sponding with release of adegenet 2.0 and its associated

tutorial (Jombart and Collins 2015)); and since then, has

Fig. 2 Scatter plot of

relationship between FST from

our simulated datasets and if a

cluster was successfully

formed by find.clusters() for

either Nc values of 100 (black

crosses) or 500 (gray circles).

Curves show predictions from

binomial generalized linear

models for Nc values of 100

(black curve) or 500 (gray

curve).
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had relatively steady application (between 33 and 47% of

studies). Similarly, the a-score method was not applied until

2013 where it represented 67% of uses, however since 2015

its application has been on par with the xval method ranging

between 32 and 67%.

Discussion

With the continued increase in application of DAPC to

assess population genetic structure we set out to examine

the sensitivity of the method to recover (lack of) genetic

clusters over a range of migration rates, for both micro-

satellite datasets and genomic SNPs, as well as the influence

of whether or not groups were specified a priori. In addition,

we surveyed the literature to examine how authors are

reporting their use of DAPC.

When groups are specified a priori, find.clusters() will

nearly always return a distance between the specified

groups, regardless of marker type or original census size.

Encouragingly, we found that this distance is correlated to

underlying FST. The ability of the method to describe

structure over a wide range of differentiation is perhaps not

surprising given the DA is meant to maximize among

group differentiation. However, it has obvious implica-

tions for how authors assess the presence of genetic

clusters in their data, and compels transparent reporting of

how groups were defined in order for the research com-

munity to assess their validity.

In contrast, when groups are searched for de novo, find.

clusters() has highly variable success. At low migration

rates accuracy is high and distance between clusters con-

tinues to reflect underlying differentiation. At higher

migration rates there is considerable inaccuracy, both in

terms of the number of genetic clusters suggested, and

placement of individuals into those clusters. Our simula-

tions highlighted that for the migration scenarios and sam-

ple sizes we used, the breakdown of this method began

when FST values were <0.1 (migration rate= 0.005).

However, similar to what has been done for other clustering

methods (Latch et al. 2006; Patterson et al. 2006; Janes

et al. 2017; Cullingham et al. 2020), exploration of more

migration scenarios with different numbers of sampled

individuals and loci will be needed to firmly establish a

detection threshold. The likelihood of inaccurate clustering

was dependant on underlying census size, not marker type,

with larger populations showing a starker transition in dif-

ferentiation between successful and unsuccessful replicates.

The majority of failures were due to unsuccessful selection

of K= 2, suggesting that the method will miss-assign or not

detect populations in the face of low levels of differentia-

tion. This has implications for finding subtle structure (e.g.,

on small spatial scales (Benestan et al. 2015; Viengkone

et al. 2016)) as well as for use in organisms with naturally

high migration rates (e.g., wind pollinated plants, broadcast

spawners).

By necessity we did not look at the BIC or scatterplots

resulting from our simulations, but inspection of these may

give more evidence for (lack of) structure regardless of how

groups were specified (Box 1). It is also important to bear in

mind that our sampling was even and limited to ten indi-

viduals per population. Future studies could investigate how

Fig. 3 Temporal trends in

reported parameters from our

literature review of studies

using the DAPC method.

a Trends in the yearly proportion

of studies reporting if the

authors stated their method for

determining the optimal number

of clusters (solid line with

squares), the method used to

determine the optimal number of

PCs to retain (dotted line with

triangles), and reporting the final

number of PCs retained (dashed

line with circles). b Trends in

the yearly proportion of studies

reporting use of either the a-

score (solid line with squares),

xval (dotted line with triangles),

or cumulative variance (dashed

line with circles) approach to

determine the optimal number of

PCs to retain.
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accuracy may differ when more individuals are sampled per

population, or when sampling is uneven between genetic

groups. The latter of which has been shown to influence the

results of other genetic clustering methods (Puechmaille

2016; Wang 2017).

The influence of a priori groupings on recovery of bio-

logically meaningful clusters is not unique to DAPC. Other

methods relying on a priori group designations (e.g., FST,

AMOVA) will similarly return values for between group

differentiation in the face of “effective panmixia.” Often

though, these analyses will provide a measure of sig-

nificance for the estimate (Excoffier et al. 1992). Similarly,

in a phylogenetics analysis, constraining topologies to

represent different a priori groups can be enforced, with the

“best” relationship among individuals/groups assessed via

the approximately unbiased test (Shimodaira 2002) or other

tree comparison method (Goldman et al. 2000). In Bayesian

admixture analyses predefined populations can be used to

Box 1: Exemplar DAPC analyses

Here we present a series of analyses on two of our simulated SNP datasets. Plots labeled A correspond to a simulation with a migration rate of

0.001 (FST= 0.16), plots labeled B to a simulation with a migration rate of 0.01 (FST= 0.02).

PCA

In these scatterplots we can see that samples from each population can be differentiated in both datasets, with distance between clusters along

PCl reflecting differentiation between populations. Some intrapopulation variation is seen on PC2.
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In this case, density plots (rather than scatterplots) are shown as the majority of variation is present on one PC. Again, samples from each

population can be differentiated in both datasets with distance between clusters along the x-axis l reflecting differentiation between populations.

BIC plots from de novo DAPC clustering

When assessing de novo population structure with DAPC the optimal number of genetic groups (K) is often determined as that with the lowest

BIC values from find.clusters(). In A we see a clear “elbow” pattern with the lowest BIC value at K= 2. In B there is no elbow, rather the BIC

values continuously increase from K= 1. This pattern may cause researchers to suggest that K= 1, leading to under-splitting of differentiated

groups. Alternatively, researchers could select K= 2, but when examining empirical datasets they would not be able to assess the accuracy of

these groups or the individuals placed into them.
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help detect “subtle population structure” (Hubisz et al.

2009; Alexander et al. 2009) and multiple methods have

been developed to assess the validity of different clustering

solutions (e.g., Evanno et al. 2005; Puechmaille 2016). It is

important to remember that use of a priori groups is

necessary for estimating migration rates among locations

(Yamamichi and Innan 2012) as well as implementation of

assignment tests (Paetkau et al. 2004), which are key for

forensic applications (Manel et al. 2002; Ogden and Linacre

2015).

Determining the number of genetic clusters in a dataset

de novo is a nontrivial task. Our review of the literature

suggests that such analyses are more common than inves-

tigating predefined groups. As such, a number of programs

have been developed to address this goal (Table 1), with

associated methods for assessing the validity of the clusters.

However, all methods for determining de novo genetic

structure will face detection limits when differentiation

between groups is low. For instance, Latch et al. (2006)

found that STRUCTURE did not accurately detect popu-

lations when FST was <0.03. While in their work describing

PCA as a tool for detecting population structure Patterson

et al. (2006) showed that the ability to differentiate groups

with this method depends on the number of markers and

individuals considered such that populations will not be

detected when FST <
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

NM�Nind

p , where NM is the number of

markers and Nind is the number of individuals genotyped.

For the SNP sets in our study this FST should have been

0.005. In addition, assessing lack of population structure

has remained an issue in population genetic studies (Janes

et al. 2017; Cullingham et al. 2020). Thus, we urge

researchers to think carefully about which methods are

appropriate for the specific question they are addressing and

explicitly state when a priori groups are enforced.
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The optimal number of groups determined above are then used for DAPC. With the stronger differentiation seen in the first simulation, plot A

is essentially identical to that produced with a priori groups. In contrast, with groupings selected by find.clusters() and using the “diffNgroup”

criterion (K= 10), plot B shows multiple groups with no connection to the simulated populations.
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Our review of the literature showed that the majority of

studies use DAPC for finding de novo structure and,

encouragingly, we found that the stated goal often matches

the methods and results. However, there were still a non-

trivial number of studies where the stated goal did not

match the reported results (21.0%), and a similar proportion

where it was not clear if the methods and stated goal mat-

ched (16.5%). In addition, across all studies a number of

key run parameters were not being reported. In particular,

how the optimal number of genetic clusters was determined,

how the optimal number of PCs wereas determined, and

what that final number of PCs retained was. This final

parameter is especially troubling as determination of the

optimal number of PCs is necessary to avoid overfitting of

the data and creating artificially large separation between

groups (Jombart and Collins 2015). This lack of reporting

has not changed over time, despite the increased use of

DAPC. For studies that did report the method used for

determining the optimal number of PCs retained, the xval

and a-score procedures are used at about equal frequency

suggesting that there is no clear standard operating proce-

dure. Finally, we found that almost all studies that used

DAPC applied at least one additional method for clustering

genetic data, most often a Bayesian admixture analysis. So,

while we are focusing on DAPC here, in practice

researchers are not relying solely on this method.

Accurate and thorough reporting of run parameters, along

with archiving of raw data, are essential to ensure repeat-

ability and transparency of research. While detailing these

parameters can seem burdensome when researchers are

faced with page limits, such practices have become standard

for many comparable methods. An apt parallel is with the

program STRUCTURE where almost all papers now routi-

nely report key information for repeatability of STRUC-

TURE runs (e.g., number of MCMC iterations, number of

genetic clusters [K] explored, number of repetitions of each

K, and how optimal K was selected). This reporting has

likely been spurred after a period where best practices were

developed and discussed in the literature (Pritchard et al.

2000; Evanno et al. 2005; Gilbert et al. 2012; Puechmaille

2016; Janes et al. 2017; Wang 2017; Cullingham et al.

2020). Therefore, it may be that standard reporting metrics

have not been crystallized for the relatively newer DAPC

method. To help the research community develop this

standard reporting we present recommendations for doc-

umenting parameters used in DAPC analyses in Box 2.

As new methods for determining the number of genetic

clusters in a dataset are continuously being introduced (e.g.,

Bradburd et al. 2018; Wang 2019) and best practices for

others refined (e.g., Gilbert et al. 2012; Verity and Nichols

2016; Janes et al. 2017; Cullingham et al. 2020) researchers

are turning to a “total evidence approach,” using multiple

analysis methods on their data. In this midst of such ana-

lyses, it is important to step back and assess assumptions

underlying these methods as well as our ultimate goals

when applying them (Meirmans 2015; Allendorf 2017).

Here we have highlighted the conceptual divide between

assessing predefined populations versus finding novel

clusters, and how this can influence the results of one such

clustering method. Clearly, both visualization of a priori

groups and de novo discovery are important, valid goals in

population genetics. However, our results emphasize the

need for researchers to be transparent in stating both their

goal, and the precise methods used to achieve them.

Box 2: Recommended standard reporting for DAPC analyses

Our literature review of 263 empirical studies showed that many did not report run parameters necessary for transparency and rateability of

analyses. In addition, based on those studies which did report such parameters, it was clear that no “standard operating procedure” has

crystalized among researchers applying this method. Therefore, we developed the following list of parameters which should be reported in all

DAPC analyses:

(1) Explicitly state the clusters or clustering method used: were groups defined a priori or determined de novo using find.clusters()?

(2) State how optimal number of K was chosen: when find.clusters() is used, how was the optimal number of clusters (K) chosen (e.g.,

lowest point of BIC graph or automated detection)?

(3) Include documentation for selection of K: when using BIC, include the BIC plot or values for each K.

(4) State the method used to determine how many PCs to retain: often a-score or xval; given that there is no “preferred” method when

determining the number of PCs retained, including this data this is especially important for repeatability.

(5) State the final number of PCs applied: this can appear either in the main text or figure legend showing the DAPC plot; inclusion of these

values is essential for repeatability of the results presented.

Example of minimum adequate reporting

Methods: DAPC analyses were conducted twice to examine the influence of a priori groupings on the results. In the first analysis, sampling

locations were used as a priori groups. In the second analysis, the find.clusters() function was used to determine the number of groups (K) de

novo, with optimal K selected as that with the lowest BIC value. For both analyses, the optimal number of PCs to use in the DAPC was

determined using the optim.a.score() command.

Results: when sampling locations were used as a priori groups, the optimal number of PCs retained were Y. Without predefined groups, the

optimal K was found to be W (see Supplementary Fig. Q for BIC plot), and the optimal number of PCs retained for analysis were Z.
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Data archiving

The R script used to conduct DAPC analyses, measure FST,

and conduct regression analyses in the simulation study

along with the database of papers used in the literature

review and associated statistics have been deposited in

Dryad https://doi.org/10.5061/dryad.4tmpg4f76.
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