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RESEARCH Open Access

The influence of a short-term gluten-free
diet on the human gut microbiome
Marc Jan Bonder1†, Ettje F. Tigchelaar1,2†, Xianghang Cai3†, Gosia Trynka4, Maria C. Cenit1, Barbara Hrdlickova1,

Huanzi Zhong3, Tommi Vatanen5,6, Dirk Gevers5, Cisca Wijmenga1,2, Yang Wang3† and Alexandra Zhernakova1,2*†

Abstract

Background: A gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment
for coeliac disease and is also often followed by individuals to alleviate gastrointestinal complaints. It is known there is an
important link between diet and the gut microbiome, but it is largely unknown how a switch to a GFD affects the human
gut microbiome.

Methods: We studied changes in the gut microbiomes of 21 healthy volunteers who followed a GFD for four weeks. We
collected nine stool samples from each participant: one at baseline, four during the GFD period, and four when they
returned to their habitual diet (HD), making a total of 189 samples. We determined microbiome profiles using 16S rRNA
sequencing and then processed the samples for taxonomic and imputed functional composition. Additionally, in all 189
samples, six gut health-related biomarkers were measured.

Results: Inter-individual variation in the gut microbiota remained stable during this short-term GFD intervention.
A number of taxon-specific differences were seen during the GFD: the most striking shift was seen for the family
Veillonellaceae (class Clostridia), which was significantly reduced during the intervention (p = 2.81 × 10−05). Seven
other taxa also showed significant changes; the majority of them are known to play a role in starch metabolism.
We saw stronger differences in pathway activities: 21 predicted pathway activity scores showed significant
association to the change in diet. We observed strong relations between the predicted activity of pathways and
biomarker measurements.

Conclusions: A GFD changes the gut microbiome composition and alters the activity of microbial pathways.

Keywords: Microbiome, Gluten-free diet, Biomarker, Observation study

Background

Gluten is a major dietary component of wheat, barley, and

rye. In genetically susceptible individuals, the consumption

of gluten triggers the development of coeliac disease – an

autoimmune disorder commonly seen in populations of

European ancestry (with a frequency of approximately 1 %)

[1]. In the absence of any medication, the only treatment is

a life-long gluten-free diet (GFD), which is effective and

well tolerated by the majority of patients. Non-coeliac glu-

ten sensitivity, another common disorder linked to the

consumption of gluten-containing food and resulting in a

range of symptoms of intestinal discomfort (such as diar-

rhea and abdominal pain), has also been shown to improve

on a GFD [2, 3]. More recently, a GFD is being considered

as a way to ameliorate symptoms in patients with irritable

bowel syndrome (IBS) [4].

However, beyond these medical indications, more and

more individuals are starting on a GFD to improve their

health and/or to control weight. The diet’s popularity has

risen rapidly in the last few years, making it one of the most

popular diets worldwide, along with a low-carbohydrate

diet and a fat-free diet. The numbers of those adopting the

diet for non-medical reasons now surpass the numbers

of those who are addressing a permanent gluten-related

disorder [3].

Several studies have reported the effect of a GFD on

the composition of the gut microbiome in coeliac disease
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patients [5–7]. In these studies, the microbiome compos-

ition in coeliac patients on a GFD was compared with un-

treated patients and healthy individuals. The most

consistent observation across these studies is the differ-

ence in the abundance and diversity of Lactobacillus and

Bifidobacterium in the treated and untreated coeliac dis-

ease patients. It should be noted that these studies were

relatively small (seven to 30 participants in each group).

Specifically, De Palma et al. [8] assessed the effect of a

one-month GFD on ten healthy individuals, but the study

was limited to the use of non-sequence based methods,

including FISH and qPCR. Their study described how Bifi-

dobacterium, Clostridium lituseburense, Faecalibacterium

prausnitzii, Lactobacillus, and Bifidobacterium longum

were decreased during GFD, whereas Escherichia coli,

Enterobacteriaceae, and Bifidobacterium angulatum were

increased. To the best of our knowledge, there has been

no comprehensive analysis of the effect of a GFD on the

entire gut microbiome composition using a next-generation

sequencing approach.

The effect of other diet interventions on the micro-

biome composition was recently studied using the 16S

rRNA sequencing method [9]. In particular, it was shown

that a short-term animal-based diet led to an increased

abundance of bile-tolerant microorganisms (Alistipes,

Bilophila, and Bacteroides) and a decreased abundance of

Firmicutes, which metabolize dietary plant polysaccha-

rides (Roseburia, Eubacterium rectale, and Ruminococcus

bromii) [9].

In this work we assessed the effect of a GFD on gut

microbiota using the next-generation 16S rRNA sequen-

cing method. The analysis was performed in 189 samples,

representing up to nine time points for 21 individuals. We

investigated the diet-related changes both on the level of

taxonomic units as well as on the predicted bacterial path-

ways. Next to this, we assessed a set of selected bio-

markers to assess the gut health in relation to changes in

bacterial composition and their association to a GFD. Our

study offers insights into the interaction between the gut

microbiota and a GFD.

Methods

Study design

We enrolled 21 participants (nine men and twelve

women), without any known food intolerance and without

known gastrointestinal disorders, in our GFD study for

13 weeks (Fig. 1). After baseline measurements (T = 0), all

the participants started a GFD for four weeks (T = 1–4),

followed by a “wash-out” period of five weeks. Subse-

quently, data were collected when they returned to their

habitual diets (HD, gluten-containing) for a period of four

weeks (T = 5–8) (Fig. 1). Fecal samples were collected at all

time points. Blood was collected at baseline, at T = 2 and

T = 4 on GFD, and at T = 6 and T = 8 on HD.

The participants were aged between 16 and 61 years

(mean age, 36.3 years). Mean BMI was 24.0 and 28.6 %

(n = 6) of participants were smokers. The majority of

participants were European (n = 19), two participants

were South American, and one was Asian. Except for

one, none of the participants had taken an antibiotic

treatment for the year prior to the study start. In both diet

periods (GFD, HD), participants kept a detailed three-day

food record. All 21 participants completed the GFD

period; for 17 participants all data points were available.

An overview of the participants’ characteristics can be

found in Additional file 1: Figure S1.

Written consent was obtained from all participants and

the study followed the sampling protocol of the LifeLines-

DEEP study [10], which was approved by the ethics

committee of the University Medical Centre Groningen,

document no. METC UMCG LLDEEP: M12.113965.

Gluten-free diet and dietary intake assessment

Methods to assess GFD adherence and dietary intake

have been described previously by Baranska et al. [11] In

short, before the start of the study, the participants were

given information on gluten-containing food products

by a dietician and they were instructed how to keep a

three-day food record. The food records were checked

for completeness and the macronutrient intake was cal-

culated. Days on which a participant had a daily energy

intake below 500 kcal or above 5000 kcal were excluded

from our analysis (n = 2). Of 21 participants, 15 (71 %)

completed the dietary assessments; three were excluded

from food intake analysis because of incomplete food re-

cords. We used the paired t-test to compare group

means between GFD and HD.

Blood sample collection

Participants’ blood samples were collected after an over-

night fast by a trained physician assistant. We collected

two EDTA tubes of whole blood at baseline (T0) and dur-

ing the GFD period at time points T2 and T4; during the

HD period one EDTA tube was collected at time points

T6 and T8. Plasma was extracted from the whole blood

within 8 h of collection and stored at −80 °C for later

analysis.

Fig. 1 Timeline of GFD study, including number of participants and

collected samples
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Microbiome analysis

Fecal sample collection

Fecal samples were collected at home and immediately

stored at −20 °C. At the end of the 13-week study

period, all samples were stored at −80 °C. Aliquots were

made and DNA was isolated with the QIAamp DNA

Stool Mini Kit. Isolated DNA was sequenced at the

Beijing Genomics Institute (BGI).

Sequencing

We used 454 pyrosequencing to determine the bacterial

composition of the fecal samples. Hyper-variable region

V3 to V4 was selected using forward primer F515

(GTGCCAGCMGCCGCGG) and reverse primer: “E.

coli 907-924” (CCGTCAATTCMTTTRAGT) to exam-

ine the bacterial composition.

We used QIIME [12], v1.7.0, to process the raw data

files from the sequencer. The raw data files, sff files, were

processed with the defaults of QIIME v1.7.0, however we

did not trim the primers. Six out of 161 samples had fewer

than 3000 reads and were excluded from the analysis. The

average number of reads was 5862, with a maximum of

12,000 reads.

OTU picking

The operational taxonomic unit (OTU) formation was

performed using the QIIME reference optimal picking,

which uses UCLUST [13], version 1.2.22q, to perform the

clustering. As a reference database, we used a primer-

specific version of the full GreenGenes 13.5 database [14].

Using TaxMan [15], we created the primer-specific ref-

erence database, containing only reference entries that

matched our selected primers. During this process we

restricted the mismatches of the probes to the references

to a maximum of 25 %. The 16S regions that were cap-

tured by our primers, including the primer sequences,

were extracted from the full 16S sequences. For each of

the reference clusters, we determined the overlapping

part of the taxonomy of each of the reference reads in

the clusters and used this overlapping part as the taxo-

nomic label for the cluster. This is similar to the pro-

cesses described in other studies [9, 15–18].

OTUs had to be supported by at least 100 reads and

had to be identified in two samples; less abundant OTUs

were excluded from the analysis.

Estimation of gene abundance and pathway activity

After filtering the OTUs, we used PICRUSt [19] to esti-

mate the gene abundance and the PICRUSt output was

then used in HUMAnN [20] to calculate the bacterial

pathway activity. First, the reference database was clus-

tered based on 97 % similarity to the reference sequence

to better reflect the normal GreenGenes 97 % database

required for PICRUSt. Three out of 1166 OTUs did not

contain a representative sequence in the GreenGenes

97 % set and were therefore excluded from the analysis.

Since merging the reference database at 97 % similarity

level led to merging of previously different clusters, for

the pathway analysis we chose to permute the cluster

representative names in the OTU-table 25 times; this

was to be sure that our OTU picking strategy would not

cause any problems in estimating the genes present in

each micro-organism. Next, we ran PICRUSt on the 25

permuted tables and calculated the average gene abun-

dance per sample. The average correlations between the

permutations within a sample was higher than 0.97

(Pearson r). Hence, we averaged the PICRUSt output,

which was then used to calculate the pathway activity in

HUMAnN.

Changes in the gut microbiome or in gene abundance due

to diet

To identify differentially abundant taxa, microbial bio-

markers, and differences in pathway activity between the

GFD and HD periods, we used QIIME and MaAsLin

[21]. QIIME was used for the alpha-diversity analysis,

principal coordinate analysis (PCoA) over unifrac dis-

tances, and visualization. In the MaAsLin analysis we

corrected for ethnicity (defined as continent of birth)

and gender. MaAsLin was used to search for differen-

tially abundant taxonomic units to discriminate between

the GFD and HD time points. Additionally, we tested for

during transition from HD to GFD (T0–T4). MaAsLin

uses a boosted, additive, general linear model to discrim-

inate between groups of data.

In the MaAsLin analysis we did not test individual

OTUs, but focused on the most detailed taxonomic label

each OTU represented. Using the QIIMETOMAASLIN

[22] tool, we aggregated the OTUs if the taxonomic label

was identical and, if multiple OTUs represented a higher

order taxa, we added this higher order taxa to the ana-

lysis. In this process, we went from 1166 OTUs to 114

separate taxonomic units that were included in our ana-

lysis. Using the same tool, QIIMETOMAASLIN, we nor-

malized the microbial abundance using acrsin square

root transformation. This transformation leads to the

percentages being normally distributed.

In all our analyses we used the Q-value calculated using

the R [23] Q-value package [24] to correct for multiple

testing. The Q-value is the minimal false discovery rate at

which a test may be called significant. We used a Q-value

of 0.05 as a cutoff in our analyses.

Biomarkers

Six biomarkers related to gut health were measured in

the “Dr. Stein & Colleagues” medical laboratory

(Maastricht, the Netherlands). These biomarkers in-

cluded: fecal calprotectin and a set of plasma cytokines as

Bonder et al. Genome Medicine  (2016) 8:45 Page 3 of 11



markers for the immune system activation [25–27];

fecal human-β-defensin-2 as a marker for defense

against invading microbes [28, 29]; fecal chromogranin

A as a marker for neuro-endocrine system activation

[30–32]; fecal short-chain fatty acids (SCFA) secretion

as a marker for colonic metabolism [33]; and plasma

citrulline as a measure for enterocyte mass [34, 35].

The plasma citrulline level and the panel of cytokines

(IL-1β, IL-6, IL-8, IL-10, IL-12, and TNFα) were mea-

sured by high-performance liquid chromatography

(HPLC) and electro-chemiluminescence immunoassay

(ECLIA), respectively. In feces, we measured calpro-

tectin and human-β-defensin-2 levels by enzyme-

linked immunosorbent assay (ELISA), chromogranin

A level by radioimmunoassay (RIA), and the short-

chain fatty acids acetate, propionate, butyrate, valerate,

and caproate by gas chromatography–mass spectrom-

etry (GC-MS). All biomarker analyses were performed

non-parametrically, with tie handling, because of the

high number of samples with biomarker levels below

the detection limit. We used the Wilcoxon test to

compare the average biomarker levels between the diet

periods and the Spearman correlation to search for re-

lations between the microbiome or gene activity data

and the biomarker levels.

Results

Food intake

We first investigated if a GFD had a significant effect on

the daily intake of macronutrients by analyzing the GFD

and HD food records from participants (Additional file 2:

Table S1). Mean (SD) daily intakes of energy, protein, fat,

and carbohydrate during GFD and HD are shown in

Table 1. We observed slightly higher carbohydrate intake

and a slightly lower fat intake on GFD; however, none of

the differences in energy or macronutrient intake were

significantly different. We therefore concluded that dietary

macronutrient composition was not significantly changed

by following a GFD.

Microbial differences due to diet

In total we used 155 fecal samples, originating from 21

individuals, for the microbiota analysis and we observed

114 different taxonomic units. We first checked if GFD

influenced the number and proportion of bacteria in in-

dividual participants, for which we investigated differ-

ences in alpha diversity between the GFD and HD time

points using several alpha diversity measures (Observed

species, Shannon, Chao1, and Simpson indexes). We

found no differences in the alpha diversity in any of

these tests. Therefore, we concluded that a change in

diet did not influence the bacterial diversity within a

sample.

Next, we tested if there was any difference in the bacter-

ial diversity related to variation in diet between participants

(beta-diversity) by comparing the unweighted unifrac dis-

tance in sample groups. We observed a strong difference

when comparing different time points from a single indi-

vidual to all other individuals, regardless of diet type,

Wilcoxon p value <2.2 × 10−16. When we compared the

diet-induced differences within the same individual, we

saw a small but significant change, Wilcoxon p value =

0.024, although the same diet time points were slightly

more alike (Additional file 3: Figure S2).

In the PCoA analysis over the unweighted unifrac dis-

tance (Fig. 2a), we also saw that the main driver of the

diversity is the inter-individual difference, with partici-

pants clustering together, both during and after the

dietary intervention. In the first ten principal coordi-

nates, which explain more than half of the total vari-

ation, we observed changes between the time points for

individual participants, although there was no single

component, or combination of components, capturing

the difference between the GFD versus HD time points

in the first ten components.

We therefore concluded that a GFD has a significant

effect on the diversity between the groups, but that the

inter-individual effect on the variation of the micro-

biome is stronger than the effect of diet.

We further investigated changes in beta-diversity in

relation to the time points (Fig. 2b). When we plotted

PCo1 versus the time points, we observed a separation

into two groups. Since PCo1 describes the difference

in alpha-diversity between samples, we concluded that

this separation is based on richness. The richness

separates all but one participant into either a clear

high-richness or low-richness group (Fig. 2b). There is

a significant difference in richness between the two

groups, Wilcoxon p value = 0.0016, excluding the one

participant who seems to be an intermediate. How-

ever, unlike the study by Le Chatelier et al. [36], we

did not see any significant difference in stability, i.e. in

variation in richness, between the low- and high-

richness groups.

Table 1 Mean and standard deviation (SD) of energy, protein,
carbohydrates, and fat intake during the gluten-free diet (GFD)
and habitual diet (HD). g = grams, en% = energy %

GFD (n = 12) HD (n = 12)

Nutrient Mean SD Mean SD p value

Energy (kcal) 1709.5 344.0 1811.5 433.9 0.243

Protein (g) 73.1 18.4 78.1 18.2 0.401

Protein (en%) 17.1 17.2

Carbohydrates (g) 211.1 50.3 199.9 63.2 0.275

Carbohydrates (en%) 49.4 44.1

Fat (g) 63.7 18.1 72.5 24.3 0.109

Fat (en%) 33.6 36.0
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Differentially abundant taxa

When comparing the HD and GFD time points, corrected

for age and ethnicity in MaAsLin, we observed eight sig-

nificant microbial changes (Fig. 3 and Table 2). The stron-

gest association was found to the family Veillonellaceae, of

which the abundance in the gut dropped significantly on a

GFD (p = 2.81 × 10−05, q = 0.003) (Fig. 3b and Additional

file 4: Figure S3). Other species that decreased on a GFD

included Ruminococcus bromii (p = 0.0003, q = 0.01) and

Roseburia faecis (p = 0.002, q = 0.03). While families Victi-

vallaceae (p = 0.0002, q = 0.01), Clostridiaceae (p = 0.0006,

q = 0.015), and Coriobacteriaceae (p = 0.003, q = 0.035),

order ML615J-28 (p = 0.001, q = 0.027), and genus Slackia

(p = 0.002, q = 0.01) increased in abundance on a GFD.

Next, we tested for trends during the diet change;

however, we did not observe a time-dependent change

in the microbiome composition. Since we observed two

different groups based on richness in the PCoA analysis,

we tested for different reactions to the change in diet in

the high-richness- and low-richness groups. However,

no significant associations were found in this analysis.

Since six out of the 28 participants smoked, we tested for

overlap between smoke-associated bacteria and diet-related

bacteria. We did not find any overlap; Additional file 5:

Table S2 shows the bacteria associated with smoking.

Imputation of bacterial function

Next to the taxonomic associations, we also aimed to

study differences in pathway composition in relation to

GFD. We applied PICRUSt and HUMAnN for pathway

annotation, as described in Methods. In total, 161 path-

ways and 100 modules were predicted, all of the pathways

and modules were found in at least 1 % of the samples.

We used MaAsLin to identify differences in the path-

way composition and conducted the same tests – GFD

versus HD and the time-series test – as for the microbial

Fig. 2 PCoA plot showing the differences in the samples. a Samples plotted on PCoA 1 and 2, percentage of explained variation is given in the

legends. Each color represents an individual, the larger and less opaque spheres are gluten-free diet time points, and the smaller spheres in the same color
are habitual diet time points. b The differences in the first component over the time points. There are two groups based on richness, i.e. high versus low,
one individual had samples in both groups. The sample belonging to both richness groups has a bolder color

Fig. 3 a Cladogram showing the differentially abundant taxa. This plot shows the different levels of taxonomy. Gray indicates bacteria higher in
the habitual diet and red indicates those higher in the gluten-free diet. The different circles represent the different taxonomic levels. (From inside

to outside: Kingdom, Phylum, Class, Order, Family, Genus, and Species). b Comparison of the abundance of Veillonellaceae* in the gluten-free diet
vs. habitual diet. In the plot, the aggregate “overall weeks” including correction is shown. * Veillonellaceae is placed in the order Clostridiales in

GreenGenes 13.5. However, according to the NCBI classification, it belongs to order Negativicutes
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composition. The data were again corrected for age and

ethnicity. We observed that 19 KEGG pathways and two

KEGG modules (Table 3) were different in abundance

between GFD and HD. We did not observe associations

related to the transition from GFD to HD (T0–T4). Four

out of five top associations, all with a Q-value <0.0003,

are related to metabolism changes: tryptophan metabol-

ism, butyrate metabolism (Fig. 4a), fatty acid metabol-

ism, and seleno-compound metabolism.

Biomarkers in relation to diet changes

Biomarkers related to GFD versus HD

We measured four biomarkers in feces: calprotectin,

human-β-defensin-2, chromogranin A, and a set of five

short-chain fatty acids (acetate, propionate, butyrate, val-

erate, and caproate). In addition, we measured citrulline

levels and a panel of cytokines (IL-1β, IL-6, IL-8, IL-10,

IL-12, and TNFα) in blood. The Wilcoxon test was used

to test biomarker level differences between the average

Table 2 GFD-induced changes in taxonomic composition

Taxonomic unit Coefficient N.not.0/N p value Q-value

p_Firmicutes|c_Clostridia|o_Clostridiales|f_Veillonellaceaea 0.0424 155/155 2.81 × 10−5 0.0030

p_Lentisphaerae|c_Lentisphaeria|o_Victivallales|f_Victivallaceae −0.0093 89/155 2.30 × 10−4 0.0105

p_Firmicutes|c_Clostridia|o_Clostridiales|f_Ruminococcaceae|g_Ruminococcus|s_bromii 0.0151 99/155 2.94 × 10−4 0.0105

p_Firmicutes|c_Clostridia|o_Clostridiales|f_Clostridiaceae −0.0121 150/155 5.69 × 10−4 0.0152

p_Tenericutes|c_RF3|o_ML615J-28 −0.0095 82/155 1.30 × 10−3 0.0277

p_Firmicutes|c_Clostridia|o_Clostridiales|f_Lachnospiraceae|g_Roseburia|s_faecis 0.0065 100/155 1.88 × 10−3 0.0326

p_Actinobacteria|c_Coriobacteriia|o_Coriobacteriales|f_Coriobacteriaceae|g_Slackia −0.0044 43/155 2.14 × 10−3 0.0326

p_Actinobacteria|c_Coriobacteriia|o_Coriobacteriales|f_Coriobacteriaceae −0.0137 155/155 2.67 × 10−3 0.0357

A positive coefficient means more of the microbe was present during the habitual diet, while a negative coefficient means less of the microbe was present during the

habitual diet. All associations were to the kingdom bacteria, for readability the kingdom label is not presented. aVeillonellaceae is placed in the order Clostridiales in

GreenGenes 13.5. However, according to the NCBI classification, it belongs to order Negativicutes

Table 3 GFD-induced changes in pathway and module activity

Feature Coefficient N.not.0/N p value Q-value

KO00380: Tryptophan metabolism −0.0011 155/155 2.45 × 10−5 0.002

KO00650: Butyrate metabolism −0.0014 155/155 2.72 × 10−5 0.002

KO00071: Fatty acid metabolism −0.0011 155/155 4.74 × 10−5 0.002

KO00450: Selenocompound metabolism 0.0009 155/155 9.23 × 10−5 0.003

KO00630: Glyoxylate and dicarboxylate metabolism −0.0010 155/155 2.53 × 10−4 0.007

KO00520 Amino sugar and nucleotide sugar metabolism 0.0009 155/155 2.83 × 10−4 0.007

M00064: ADP-L-glycero-D-manno-heptose biosynthesis 0.0066 155/155 4.12 × 10−4 0.023

KO00643: Styrene degradation −0.0013 155/155 4.29 × 10−4 0.008

M00077: Chondroitin sulphate degradation Chondroitin sulphate degradation −0.0037 76/155 5.81 × 10−4 0.023

KO00760: Nicotinate and nicotinamide metabolism 0.0008 155/155 6.79 × 10−4 0.012

KO00620: Pyruvate metabolism −0.0012 155/155 0.002 0.023

KO00253: Tetracycline biosynthesis −0.0027 155/155 0.002 0.024

KO00471: D-Glutamine and D-glutamate metabolism 0.0012 155/155 0.002 0.024

KO04122: Sulphur relay system −0.0020 155/155 0.002 0.024

KO00633: Nitrotoluene degradation −0.0022 155/155 0.002 0.024

KO00072: Synthesis and degradation of ketone bodies −0.0020 155/155 0.003 0.028

KO00310: Lysine degradation −0.0007 155/155 0.003 0.031

KO00624: Polycyclic aromatic hydrocarbon degradation 0.0006 155/155 0.005 0.043

KO00561: Glycerolipid metabolism −0.0012 155/155 0.005 0.043

KO00680: Methane metabolism −0.0006 155/155 0.006 0.047

KO00550: Peptidoglycan biosynthesis 0.0011 155/155 0.007 0.047

A positive coefficient means more activity of the pathway/module during the habitual diet, while a negative coefficient means less activity of the pathway/module during

the habitual diet
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values and the GFD and HD period values. We saw no

significant change in biomarker levels in relation to GFD

(Table 4A and B).

Correlations between fecal biomarkers and microbiome

We correlated the fecal biomarker levels to the micro-

biome composition as well as to the microbiome predicted

pathways and modules. After multiple testing correction,

we observed many statistically significant correlations

between the levels of biomarkers and microbiome/

pathway abundances; the absolute correlation, Spearman

Rho, was between 0.14 and 0.59. An expected observation

was the correlation of the butyrate pathway activity to the

butyrate biomarker, as we had previously observed a

significant correlation between the predicted butyrate

pathway activity and diet change (Table 3). When correlat-

ing the actual butyrate measurements with the predicted

activity of the butyrate metabolism, we observed a low but

significant correlation of −0.269 (p = 0.0009, q = 0.0012,

Additional file 6: Figure S4). However, there was no

Table 4 Median and 25 %/75 % quantiles of the measured biomarkers

Habitual diet Gluten-free diet Wilcoxon test p value

A) Plasma

Citrullin (mol/L) 45.60 (38.15–51.50) 48.00 (36.35–56.85) 0.9328

IL 1 Beta (g/L) 1.60 (0.68–2.10) 1.23 (0.79–1.68) 0.8870

IL 6 (g/L) BDL (BDL–1.60) BDL (BDL–0.38) 0.1240

IL 8 (g/L) 6.04 (2.89–12.61) 5.41 (3.34–11.19) 0.9030

IL 10 (g/L) 0.83 (0.74–1.01) 0.83 (0.74–0.97) 0.9322

IL 12P70 (g/L) 1.53 (0.95–1.78) 1.53 (0.95–2.11) 0.2131

TNF Alpha (g/L) 0.56 (BDL–4.33) BDL (BDL–5.13) 0.9761

B) Feces

Chromogranin A (nmol/g) 10.85 (7.69–23.09) 11.44 (7.37–27.18) 0.8128

Beta Defensin 2 (ng/g) 24.90 (18.78–35.03) 26.10 (20.03–46.90) 0.5256

Calprotectin (g/g) 21.55 (BDL–42.88) 13.05 (BDL–31.28) 0.0528

Acetate (mol/g) 24.37 (17.35–34.34) 23.61 (18.58–35.12) 0.8651

Propionate (mol/g) 7.55 (4.24–10.98) 6.84 (4.67–9.07) 0.6986

Butyrate (mol/g) 6.86 (3.53–10.63) 6.48 (4.27–10.40) 0.8882

Valerat (mol/g) 1.09 (0.74–1.76) 1.24 (0.79–1.70) 0.6824

Caproat (mol/g) 0.28 (0.05–0.85) 0.21 (0.04–0.66) 0.2488

None of the differences were statistically significant. BDL = below detection limit

Fig. 4 Box plot of predicted activity of butyrate metabolism per diet period (a) and the butyrate levels (mol/g) per diet period (b). There was a

significant increase in activity in butyrate metabolism (q = 0.001877), but no change in butyrate level was observed
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significant difference in butyrate levels in the two diet

periods (Fig. 4b and Table 4). Another interesting correl-

ation was found between the predicted pyruvate metab-

olism pathway and the levels of propionate (mol/g),

since propionate can be oxidized to pyruvate [37], for

which we observed a correlation of −0.54 (p = 9.44 ×

10–13, q = 1.48 × 10–10, Additional file 7: Figure S5). A

complete list of the significant correlations between

the fecal biomarkers and the microbiome composi-

tions, the predicted KEGG pathway activity scores, and

predicted activity of KEGG modules can be found in

Additional file 8: Tables S3, Additional file 9: Table S4,

and Additional file 10: Table S5.

Discussion

We investigated the role of a four-week GFD on micro-

biome composition in healthy individuals and identified

moderate but significant changes in their microbiome

compositions and even stronger effects on the imputed

activity levels of bacterial pathways.

On a taxonomic level we identified eight bacteria that

change significantly in abundance on GFD: Veillonella-

ceae, Ruminococcus bromii, and Roseburia faecis de-

creased on GFD, and Victivallaceae, Clostridiaceae,

ML615J-28, Slackia, and Coriobacteriaceae increased on

GFD. The strongest effect was seen in the decrease of

Veillonellaceae during GFD, Gram-negative bacteria

known for lactate fermentation. This is the first time

that the Veillonellaceae family has been associated to a

dietary intervention, but it was recently shown to be de-

creased in autistic patients [38]. Remarkably, the patients

in that study were more often on a GFD (9/10) than the

control group (5/10). Our findings suggest that GFD, ra-

ther than autism, can be the cause of a lower abundance

of Veillonellaceae in these patients, thus highlighting the

importance of including dietary information in analyses

of microbiota in relation to diseases. Veillonellaceae is

considered to be a pro-inflammatory family of bacteria; an

increase in Veillonellaceae abundance was consistently re-

ported in IBD, IBS, and cirrhosis patients [39–41]. It is

conceivable that a decrease in Veillonellaceae abundance

might be one of the mediators of the GFD’s beneficial ef-

fect observed in patients with IBS and gluten-related

disorders.

Several of the associated bacteria have been previously

linked to diet changes and starch metabolism. In par-

ticular, Ruminococcus bromii is important for the deg-

radation of resistant starch in the human colon [42] and

is increased when on a resistant starch diet [43]. It is

also known that degradation of cellulose by Ruminococ-

cus results in the production of SCFA and hydrogen gas

[44]; a decrease in abundance of Ruminococcus and its

fermentation products might explain the beneficial effect

of a GFD that is experienced by some IBS patients as

previously reported by Aziz et al. [45]. Both Ruminococ-

cus bromii and Roseburia faecis were recently reported

to be influenced by switching from a vegetarian to a

meat-containing diet [9]. It is likely that changes in these

bacteria observed in relation to GFD are the conse-

quences of the different starch composition of a GFD

versus HD. Moreover, stool consistency could influence

the results of microbiome composition [46]; unfortu-

nately, data on stool composition were not collected in

our study.

The five bacteria for which we found an increased abun-

dance on GFD are less well characterized although the

Slackia genus, its family Coriobacteriaceae, and the family

Clostridiaceae have been previously linked to gastrointes-

tinal diseases in humans – inflammatory bowel disease,

celiac disease, and colorectal cancer [47–49]. The Victival-

laceae family and ML615J-28 order have not been previ-

ously associated to diet change or phenotypic change in

human. However, in general, it could be hypothesized that

these bacteria benefit from a change in available substrates

as a result from the change in diet, which could in turn re-

sult in altered metabolite production and related gastro-

intestinal complaints.

In this study we found a stronger effect of diet on the

imputed KEGG pathways than on the taxonomic level. So,

although the changes in the overall microbiome were

moderate, there were more profound effects on the path-

way activities of the microbiome.

The strength of our study lies in our analysis of the

microbiome at multiple time points for the same indi-

viduals. We identified that the inter-individual variability

is the strongest determinant of sample variability, sug-

gesting that in healthy individuals the gut microbiome is

stable, even with short-term changes in the habitual diet.

We did not observe differences in the downstream effect

of GFD in relation to high or low richness, which con-

tradicts previous observations [50]. The study by David

et al. [9] identified a profound effect of short-term diet

change from a vegetarian to an animal-based diet and

vice versa. This profound short-term diet effect was not

observed in our study when changing from a gluten-

containing to a gluten-free diet. Induced by the diet

change, David et al. [9] found significant differences in

macronutrient intake between meat-based and plant-

based diet, whereas macronutrient intake in this study

was not changed during the diets. These results suggest

that changing the main energy source (meat vs. plant)

has a more profound effect on the microbiome than

changing the carbohydrate source (gluten). Although

De Palma et al. [8] did observe a reduction in polysac-

charide intake for GFD in healthy individuals, we were

unable to reproduce their finding because we could not

distinguish between different classes of carbohydrates

in our dataset as the food composition data on GFD
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foods lacked this information. Further, it is possible that

changes in nutritional intake other than those driven by

gluten exclusion might influence microbiome changes.

For our selection of blood and stool biomarkers, we ob-

served no significant associations with the diet change. All

the selected biomarkers are markers of inflammation or

metabolic changes and remained in the normal range in

all our participants, with a high proportion of the values

of blood inflammatory markers being below the detection

limit. Overall, we conclude that a GFD and its down-

stream effects on the microbiome do not cause major

inflammatory or metabolic changes in gut function in

healthy participants. However, the lower abundance of

Veillonellaceae, the pro-inflammatory bacterium linked to

Crohn’s disease and other gut disease phenotypes, sug-

gests a reduction in gut inflammatory state. This change

in bacterial composition might be linked with a beneficial

effect of GFD for patients with gut disorders such as

gluten-related disorders and/or IBS.

Conclusions

We have identified eight taxa and 21 bacterial pathways

associated with a change from a habitual diet to a GFD

in healthy individuals. We conclude that the effect of

gluten intake on the microbiota is less pronounced than

that seen for a shift from a meat-based diet to a vegetar-

ian diet (or vice versa). However, a GFD diet clearly in-

fluences the abundance of several species, in particular

those involved specifically in carbohydrate and starch

metabolism. Our study illustrates that variations in diet

could confound the results of microbiome analysis in re-

lation to disease phenotypes, so dietary variations should

be carefully considered and reported in such studies.

The short-term GFD did not influence the levels of in-

flammatory gut biomarkers in healthy individuals. Fur-

ther research is needed to assess the impact of a GFD

on inflammatory and metabolic changes in gut function

in individuals with gastrointestinal conditions such as

IBS and gluten-related disorders.
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