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ABSTRACT 
Motivation – To investigate ways to support human-
automation teams with real-world, imperfect automation 
where many system failures are the result of systematic 
failure. 

Research approach – An experimental approach was 
used to investigate how variance in agent reliability may 
influence human’s trust and subsequent reliance on 
agent’s decision aids. Sixty command and control (C2) 
teams, each consisting of a human operator and two 
cognitive agents, were asked to detect and respond to 
battlefield threats in six ten-minute scenarios. At the end 
of each scenario, participants completed the SAGAT 
queries, followed by the NASA TLX queries.  

Findings/Design – Results revealed that teams with 
experienced human operators accepted significantly less 
inappropriate recommendations from agents than teams 
with inexperienced operators. More importantly, the 
knowledge of agent’s reliability and the ratio of 
unreliable tasks have significant effects on human’s 
trust, as manifested in both team performance and 
human operators’ rectification of inappropriate 
recommendations from agents. 

Originality/Value – It represents an important step 
toward uncovering the nature of human trust in human-
agent collaboration.  

Take away message – This research has shown that 
given even minimal basis for understanding when the 
operator should and should not trust the agent 
recommendations allows operators to make better 
AUDs, to have better situation awareness on the critical 
issues associated with automation error, and to establish 
better trust in intelligent agents. 
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INTRODUCTION 
Humans and agents are generally thought to be 
complementary: while humans are more flexible, 
adaptable, and creative in responding to unforeseen 
situations, agents are superior in resource-consuming 
and computation-intensive activities such as information 
processing, learning, and planning. This has inspired the 
research on human-centered teamwork (Bradshaw et al. 

2002; Lennox et al. 1999). As a subarea of Multi-agent 
teamwork (Cohen & Levesque 1991), human-centered 
teamwork argues for stronger interaction between 
software agents and their human peers. Within 
teamwork, both humans and agents are jointly 
responsible for establishing mutual situation awareness 
(Endsley 1995), developing shared mental models as 
situations evolve (Fan & Yen 2007), and adapting to 
mixed-initiative activities. 

While human-centered teamwork promises better 
overall system performance (e.g., making better 
decisions that take advantage of information with 
greater accuracy and finer granularity (Lennox et al. 

1999; Fan et al. 2006)), it could be the other case if 
inappropriate task allocation policies were adopted or 
problematic situations emerged due to lack of trust. 

Trust is one of the attitudes presented in the “belief-
attitude-intention-behavior” sequence; it affects an 
agent in forming the intention to rely on another agent. 
Many studies (Parasuraman & Riley 1997; Dzindolet et 
al. 2003; Lee & See 2004) have demonstrated that trust 
is a meaningful concept to describe human-human 
interaction and a useful construct to understand human’s 
reliance on automation.  For instance, it is reported 
(Dzindolet et al. 2003) that humans tended to distrust an 
automated decision aid (agent) when observing the 
agent make errors (exhibit unreliable behavior), and 
knowing why the aid might err increased their trust in 
the agent. 

From the multi-agent systems perspective, developing 
trustable technology is a critical factor in the success of 
agent systems for supporting human-centered 
teamwork, especially in domains characterized by 
uncertainty, time-stress, safety and security (e.g., 
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command and controls in battlefield). However, despite 
the abundant research on trust in organizational and 
sociological disciplines, little practical guidance is 
available to assist designers in developing trust-aware 
and trust-adjustable agent systems. Part of the reason is 
that it is extremely challenging to establish the trust 
symmetry between humans and agents as it appears in 
interpersonal trust (in which the trustor and trustee are 
each aware of the other’s behavior and intents (Deutsch 
1960)). 

In particular, the relationship between trust and agent 
(automation) reliability merits further investigation in 
order to address the issue of trust symmetry between 
humans and agents. Much of the existing research has 
examined situations in which automation reliability 
varied, but in ways that seemed random to the human 
operator. Actual automation reliability varies, but often 
for well-defined systematic reasons that are 
comprehensible to human operators. For instance, 
sensor reliability may vary with atmospheric or weather 
conditions or with detection distance, which is logical to 
human operators monitoring such systems. On the other 
hand, cognitive agents, empowered with naturalistic 
decision making models (Klein 1997),  have been 
developed and used to support humans in making 
decisions under time stress (Norling, Sonenberg, & 
Ronnquist 2000; Norling 2004; Fan et al. 2006). 
However, little research has been aimed to explore the 
trust issue when cognitive agents act as human’s 
teammates and decision aids. Therefore, in this research, 
we investigate the influence of systematic failures of a 
cognitive agent on operators’ trust in the agent. 

The rest is organized as follows. In Section 2 we review 
research on trust in automation and introduce the R-
CAST agent architecture. Detailed in Section 3 is a task, 
which is to be used in a human-in-the-loop experiment 
as described in Section 4 to study the influence of agent 
reliability on human trust. Section 5 reports experiment 
results and Section 6 concludes the paper. 

BACKGROUND 

Trust in Automation 
Trust can be defined as the attitude that an agent will 
help achieve an individual’s goals in a situation 
characterized by uncertainty and vulnerability (Lee & 
See 2004). When a person’s cognitive resources are not 
available to support a calculated rational choice due to 
uncertainty or complexity, trust combining with other 
attitudes (e.g., effort to engage, self-confidence) will 
allow the person to form the intention to rely on an 
agent. For instance, when a human’s self confidence is 
high and trust in an agent is low, he/she is more inclined 
to override tasks done by the agent. 

Trust is a generalized expectancy that is independent of 
specific interaction experiences and based on the 
generalization of a large number of diverse experiences 
(Lee & See 2004). Studies indicate that trust is a 
dynamic attitude that evolves along with the interaction 
(Dzindolet et al. 2003). For example, a person may 
initially consider the decision recommendation from an 
agent trustworthy and reliable. After failure events, 

his/her trust would decline rapidly and slowly increase 
again as the agent performs without making errors. 

Automation usage decisions (AUDs) can be one of the 
most important decisions a human operator can make, 
particularly in time-critical situations. However, biases 
in trust can lead to misuse or disuse of automation 
(Parasuraman & Riley 1997; Kaber & Endsley 2004). 
Misuse refers to over-reliance on automation while 
disuse refers to neglect or underutilization of 
automation. For example, in misuse, a war fighter 
blindly follows the judgments made by an agent; while 
with disuse, the war fighter either ignores the agent’s 
recommendations or delays action, increasing 
vulnerability and decision time. 

The R-CAST Agent Architecture 
The R-CAST agent architecture (Fan & Yen 2007) is 
built on top of the concept of shared mental models 
(Cannon-Bowers, Salas, & Converse 1990), the theory 
of proactive information delivery (Fan, Yen, & Volz 
2005), and Klein’s Recognition-Primed Decision (RPD) 
Model (Klein 1997). The R-CAST agent architecture 
has implemented a “collaborative-RPD” decision 
process, which is intended to support close human-agent 
collaborations in relevant information sharing, decision 
progress monitoring, and expectancy-based decision 
adaptation. 

The RPD model claims that in complex situations 
human experts usually make decisions based on the 
recognition of similarities between the current decision 
situation and previous decision experiences (Klein 
1997). R-CAST uses “recognition anchors” to manage 
the process of decision refinement within a decision 
space. In particular, an R-CAST agent first starts with 
the most abstract experience in the current decision 
space. As more and more information becomes 
available, potential patterns for further situation 
evolution become more predictable, and the agent’s 
recognition of a workable experience becomes more and 
more fine-grained (reaching the lowest possible level of 
the hierarchy). During the process, an agent also 
monitors the expectancies associated with the 
recognized experience. The recognition is reinforced as 
new events emerge as expected. It is challenged when 
some expectancy becomes false as the situation evolves; 
in such a case, the agent can backtrack along the 
experience hierarchy to seek an experience that is better 
recognized. 

The use of context is of growing importance in 
developing computational systems that are more 
responsive to human needs. Specifically, with a better 
awareness of the decision context, an agent can 
proactively share information relevant to the context 
and offer trustable intervention/recommendation to its 
human user. R-CAST distinguishes decision process 
context, experience context and inference context; these 
three types of context representation together enable R-
CAST to use and integrate various contexts for 
identifying information relevant to decision making, for 
adapting decisions to a dynamic environment, and for 
facilitating reuse of context-related domain knowledge. 



R-CAST offers two approaches to achieve teamwork 
adaptability. First, it supports a richer structure of a 
functional SMM that not only covers team structures 
and team processes used by agents to infer collaboration 
needs, but also covers dynamic teamwork contexts. 
Such an enhanced representation of shared mental 
models enables an R-CAST agent to better manage its 
own ‘focal’ attention and to initiate human-agent 
collaboration in a human-appreciatable way. Second, 
non-trivial collaborative multi-agent systems need to 
continuously make decisions, which demands a group 
of agents to coordinate not only on domain-specific 
tasks but also in the decision-making process itself. 
Meshing humans’ decision making process with agents’ 
decision making process promises better human-agent 
collaboration. It, however, requires humans and agents 
to maintain a shared understanding of the decision 
making progress. To achieve this, R-CAST has 
incorporated a naturalistic decision making process 
(RPD) that may well support human decision makers 
better than more arbitrary rule-based systems. 

R-CAST has been employed as teammates and decision 
aids (Fan et al. 2006) of Command and Control (C2) 
human operators, helping address the informational 
challenges in team decision making under stress in a 
simulated battlefield environment. While the result 
indicated that R-CAST agents can significantly improve 
the tasking capacity of C2 teams in time-stressed 
situations involving multiple decision contexts, the 
study also left open the question of human-agent trust: 
What factors might have impacts on a human’s trust 
(and use) of his/her decision aids? We here take a step 
toward this direction, investigating how human’s trust 
might be affected by imperfect cognitive agents. 

TASK DESCRIPTIONS 
We have implemented a simulation environment called 
“Three-Block Challenger”, where in an urban area a 
command and control team has to frequently conduct 
humanitarian, peacemaking and combat missions in 
close proximity (e.g., within three blocks). It imposes 
challenging information and decision making demands 
associated with the command and control of urban 
operations. 

The synthetic task environment can produce three types 
of threats: Improvised Explosive Device (IEDs), 
crowds, and insurgents, which represent the targets of 
humanitarian, peacekeeping, and combat operations, 
respectively. IEDs are motionless targets, and if 
exploded, can cause damage to the nearby objects. A 
crowd represents a group of people which may contain 
activists that can be friends or foes. A crowd can be of 
medium (M) or large (L) size, and the group size of a 
crowd can change over time. Two crowds can merge 
together if they move close enough. Another type of 
movable targets is insurgents, each is associated with a 
threat level that can be L(low), M(medium), or H(high). 

Other objects of interest in the environment are main 
supply routes (MSRs) and key buildings (religious 
buildings, schools, and hospitals). There are also limited 

number of friendly units, squads and Explosive 
Ordnance Disposal (EOD) teams, under the control of a 
C2 team. 

In this study, a C2 team consists of an S2 suite 
(intelligence cell) and an S3 suite (operations cell). The 
roles of C2 operators have been simplified. S2 is 
responsible for processing incoming reports, called Spot 
reports; collecting relevant information from other 
sources; and alerting S3 of potential threats. S3 needs to 
process alerts from S2, and make decisions on which 
target to handle next and which resources (friendly 
units) to allocate toward that target. 

Table 1: Requirements on handling targets 

Targets Value Res. Req. Action 

M w/o foe 20 1U monitor 

M w foe 40(+10)* 2U disperse 

L w/o foe 40(+10)* 2U disperse 
Crowd 

L w foe 50(+10)* 3U disperse 

n=1,2,3 for L,M,H Insurgent  
(3 threat levels: L, M, H) 50+50n (n+1)U capture 

IED 60(+20)* 1U + 1E remove 

‘U’ refers to “squad unit”, ‘E’ refers to EOD team. 
*additional credit value when a target is near an MSR. 

Decision making in target selection and resource 
allocation requires the S3 suite to consider trade-offs 
among multiple factors: target type, threat level, the 
combat readiness of the available units, the unit-target 
distance, and staying time of each active target (how 
long it has been on the field). The type and threat level 
of a target determine how many friendly units will be 
needed to handle the target. Table 1 lists for each type 
of target the credit value (the reward points a C2 team 
can get if a target is handled successfully), the number 
of resources required to handle a target, and what action 
S3 should take. For example, the second entry says that 
dispersion of a medium-sized crowd with a foe needs 
two squad units, and 40 points can be credited if the 
crowd is dispersed successfully. The last entry says that 
one squad unit and one EOD team are required to 
remove an IED. If successful, 60 points can be credited 
if the IED is close to buildings only or MSRs only, 80 
points if it is close to both. 

The combat readiness of a friendly unit, represented by 
a percentage value, indicates how well the unit has 
prepared for handling threats. The readiness value 
decreases by a certain amount after a unit is applied to a 
threat, and can recover incrementally as time passes.  

A target may appear, stay on, and disappear from the 
battle field following certain temporal and spatial 
patterns unknown to human operators. The staying time 
of a target and the distance from the available units to 
the target affect decision making in target selection: 
Assuming a Poisson model of lifespan, a target that has 
a longer staying time or is farther away from the 
available units should not be selected first due to less 
chance of mission success. 

 



  
(a)                                                                                          (b) 

Figure 2: (a) The human-agent interaction display of S3 suite; (b) The map display of S3 suite. 

METHODOLOGY 
The specific objective of this study is to determine 
whether human operators’ a priori experience and their 
knowledge of agent reliability affect their trusts on a 
cognitive agent as reflected in their appropriate use of 
the decision recommendations from the agent. 

 

Figure 1: The environment 

Environment 
As shown in Figure 1, the experiment environment 
involves a Simulation Engine, S2 suite, and S3 suite, 
with a human operator in the loop.  

At each cycle, the Simulation Engine produces Spot 
reports for all the active targets and friendly units on the 
field and sends the reports to the S2 suite. The role of 
S2 suite is played by an R-CAST agent (S2 agent) 
equipped with decision making experience drawn from 
domain experts. S2 agent interacts with the simulated 
MIDB (Military Intelligence Database) to gather 
relevant information, recognizes potential threatening 
targets on the field and alerts the S3 suite of the threats. 

The role of S3 suite is played by an R-CAST agent (S3 
agent) and a human operator. The human operator has 
equipment with two monitors: a map display for 
tracking situation development, and a graphical user 
interface (GUI) for collaborating with S3 agent to 
handle threats. 

The interaction display (Fig. 2(a)) consists of a threats 
table, a tasking table, a unit control table, a command 
panel and a feedback display panel. The threats table 
shows consolidated information of the threats on the 

field: for each threat, it gives threat type, ID, status, 
crowd size, activists associated with a crowd, nearby 
buildings, priority, requirements on friendly units, 
elapsed time, and the IDs of the tasks against the threat 
if applicable. Threat priorities are color-coded: green, 
yellow, and red represent low, medium, and high 
threatening targets, respectively. Once removed, higher 
threatening targets also contribute higher rewarding 
points to the performance. 

The tasking table shows task details, including the target 
under concern, the assigned friendly units, and the task 
status, which can be ‘new’, ‘done’, ‘impossible’, or 
‘failed’. A task is futile (i.e., no reward points) if it 
becomes impossible; this happens when a target 
disappears before it is surrounded by the assigned 
friendly units. A task fails if the assigned friendly units 
have insufficient combat readiness when they fire at the 
target. The unit control table lists all the resources, the 
corresponding combat readiness, and their respective 
distance to the selected target. The units engaged in a 
task are available for reuse once the task is done, failed 
or becomes impossible. 

After resource allocation, the command panel allows the 
S3 human operator to ‘physically’ issue a task 
applicable to the target being selected. To engage 
participants in a more realistic decision-making 
situation, a secondary task is present where the S3 
human operator, when sending out friendly units, needs 
to check the key buildings nearby the selected target. 
This means that an operator has to maintain attention to 
both the interaction display and the MapDisplay.  

The feedback display panel shows some statistics about 
tasks issued, threats cleared, and reward points earned. 

In the experiment, the S3 agent offers decision aids and 
recommendations to the S3 operator. It is, however, the 
S3 operator who has the final authority for decisions on 
target selection and resource allocation.  

The MapDisplay (Fig. 2(b)) shows the snapshot 
(refreshed every 5 s) of all the active entities on the 
field. It allows a human operator to highlight the target 
of interest and trace its movement, to figure out the 



spatial relationships among threats and friendly units, 
and to project forward the location of a moving targets. 
As we mentioned above, a human operator needs to 
check the key buildings nearby the threat to be handled. 
Determining the key buildings nearby a threat simply 
based on the snapshot can be wrong because the 
snapshot is updated with incoming Spot reports every 5 
seconds whereas the threat might have moved to a 
different location in the meantime. The moving 
direction indicator associated with a target in the 
MapDisplay can be very useful to better determine 
nearby key buildings. 

EXPERIMENTAL CONDITIONS 
This experiment involved four factors: Population 
Group (PG), Knowledge of Agent Reliability (KAR) 
with two levels ‘known’ and ‘unknown’, Task 
Complexity (TC), and reliability level of agent 
recommendations (RIT).   

Subjects 
Thirty university students (23 males and 7 females) 
majored in Information Science and Technology (IST) 
with average video-game experience 5.8 hours per week 
were recruited as one group. Another thirty participants 
(28 males and 2 females) were recruited from a US 
Army ROTC (Reserve Officer Training Corps) 
organization with average video-game experience 3.7 
hours per week. Thus, two levels (ROTC vs. IST) of PG 
were considered. 

Systematic Errors of Agent 
The collaboration between S3 operator and S3 agent is 
critical to the overall performance especially when the 
human operator is cognitively overloaded under high 
time stress. Whenever S3 operator selects a target, S3 
agent helps make everything ready for tasking: check 
the nearby buildings if applicable, and allocate 
sufficient number of units that are optimal relative to 
certain constraints. 

As we mentioned before, decision making in resource 
allocation requires the consideration of trade-offs 
among multiple factors. To introduce systematic errors 
to the S3 agent so that the reliability of agent 
recommendations can be manipulated, we purposely 
configured S3 agent such that it makes 
recommendations regarding resource allocation without 
considering the combat readiness of friendly units. 

In particular, we designed the experiment scenarios such 
that only the insurgent tasks need the consideration of 
combat readiness: If the combat readiness is lower than 
80% threshold for any unit assigned to capture a key 
insurgent, the task will not succeed. Consequently, 
agent recommendations regarding crowd and IED tasks 
are always reliable while the agent makes systematic 
errors for insurgent tasks. 

Scenario Design 
We designed 6 scenarios to vary the other two 
independent variables: tasking complexity and 
reliability level. In this experiment task complexity is 
characterized by the number of active targets on the 
field: the situation is more demanding when there are 
more active targets. We defined two levels of tasking 

complexity: M (with 8 active targets) and H (with 12 
active targets). Since a target can be removed or 
disappear by itself, to ensure that there are desired 
number of active targets on the field, the scenarios were 
designed such that the disappearance of one target will 
trigger a new target to pop up. 

The reliability level was controlled by varying the ratio 
of the insurgent tasks (RIT) to the total number of tasks. 
Three ratios were considered: 1/4, 1/3, and 1/2. For 
instance, a scenario with ratio 1/3 means among all the 
targets ever appeared on the field, 1/3 of them are 
insurgents. Thus, in total we designed 6 scenarios 
reflecting the different combinations of TC and RIT 
levels. The scenarios were randomized in the settings of 
initial locations (targets, MSRs, key buildings, IEDs), 
targets’ appearance time, waypoints and velocities of 
movable targets, sizing of crowds, and threat levels of 
insurgents. Each scenario lasted 10 minutes. 

In sum, this is a mixed 2 × 2 × 2 × 3 factorial treatment 
design (PG × KAR × TC × RIT), where TC (task 
complexity) and RIT (ratio of insurgent threats) are 
within-subjects variables and KAR (knowledge of agent 
reliability) is a between-subjects variable. Fifteen 
replications of each response were collected for each 
treatment condition. 

Procedures 
Participants were initially familiarized with the domain 
tasks and the environment settings, then went through a 
training session. The instructions to participants 
included detailed descriptions of both the MapDisplay 
and the interaction display, as well as where the S3 
agent can offer decision recommendations and how to 
accept/adjust agent recommendations. His/her goal is to 
maximize the reward points by removing as many 
threats as possible.  

The training session was also used to group participants 
(randomly) into two levels of “knowledge of agent 
reliability.” For participants belonging to the ‘known’ 
group, they were told that “agent recommendations are 
highly reliable; the sole source of agent unreliability is 
combat readiness--the agent does not consider combat 
readiness in its recommendations.” For participants 
belonging to the ‘unknown’ group, they were told that 
“the reliability of agent recommendations is unknown.” 
However, regardless of condition, all participants were 
informed of the rule “If combat readiness is less than 
80% for any unit assigned to capture an insurgent, the 
task will not succeed.” 

After the training session, the participants were 
permitted to practice the tasks for 10 min. After a 5-min 
break, all participants were required to complete six 10-
min trials, each followed by the completion of the 
SAGAT queries, followed by the NASA TLX queries. 
For each participant, the six scenarios were scheduled in 
random orders. 

Dependent Measures 
Several response variables were measured on the 360 
trials of the experiment (180 runs for the 30 ROTC 
participants (expert operators) and 180 runs for the 30 
IST participants (novice operators)).  



For each experiment run i, we recorded naKi, nbKi, and 
ncKi —the numbers of key-insurgents captured with 
high, medium, and low threats respectively; naDi, nbDi, 
and ncDi—the numbers of IEDs removed with high, 
medium, and no threats respectively; and naCi, nbCi, ncCi, 
and ndCi— the numbers of crowds dispersed with high, 
slightly high, medium, and low threats respectively. Let 
nKi = naKi + nbKi + ncKi,   nDi = naDi + nbDi + ncDi, 

nCi = naCi + nbCi + ncCi + ndCi. 

The Average Performance Index (API) is defined as: 

APIi = (ΣX∈{K,D,C}(θXi/nXi))/(nKi + nDi + nCi); where 

θKi = 200naKi + 150nbKi + 100ncKi, 

θDi  = 80naDi + 60nbDi + 0ncDi, and 

θCi  = 60naCi + 50nbCi + 40ncCi + 20ndCi, 

where the weights in computing θKi, θDi, θCi are the 
credit values of the corresponding threatening targets. 
The API measure reflects a team’s overall performance 
(competency). 

Also measured are IRA (Inappropriate 
Recommendations Accepted) and IRC (Inappropriate 
Recommendations Correctly adjusted); these two 
measures are closely related to a human operator’s trust 
and reliance on the decision recommendations from the 
imperfect agent. Intuitively, the more trust an operator 
has on an agent, the more likely (number of times) that 
he/she ‘blindly’ accepts the inappropriate 
recommendations from the agent, and the less likely that 
he/she intends to correct the inappropriate 
recommendations. For the domain problem as described 
above, this means that an operator with no knowledge 
of the agent reliability might mistakenly accept 
recommendations regarding insurgent tasks (until he/she 
discovers the systematic errors made by the agent) more 
times than an operator who knows the agent reliability 
prior to a trial. 

RESULTS 

Task Performance 
We conducted four-way analysis of variance (ANOVA), 
with the significance level α = 0.05 adopted. 

The ANOVA output indicates that the ratio of insurgent 
threats (RIT) had significant effects on the performance 
as measured by API. Fig. 3(a) gives the Boxplot of API 
as RIT varies. As the ratio of insurgent threats increased 
from 1/4 to 1/3, the C2 performance index improved 
(the mean increased from 1.51 to 1.76), while as RIT 
increased to 1/2, the performance dropped significantly 
(the mean value dropped to 1.387). 

 
(a) 

  
(b) 

Figure 3: Team performance 

Further scrutiny of the data allowed us to find that when 
RIT was 1/4, the percentage of successful insurgent 
tasks was 62.27% (out of the 11.992 average number of 
attempts), while this percentage increased to 65.5% (out 
of 10.7 average number of attempts) when RIT was 1/3. 
Moreover, 69.21% of the successful insurgent tasks 
were high-level insurgent threats under the 1/3 RIT 
condition, as compared to 57.59% under the 1/4 RIT 
condition. Thus, the performance increase as RIT 
changed from 1/4 to 1/3 can be attributed to the fact that 
the 1/3 RIT condition may present a more favorable 
situation to the S3 operators, who were able to pay more 
careful attention to the insurgent threats (attempted less 
but attacked the keys). However, as more insurgent 
threats were present when RIT became 1/2, the S3 
operators on average attempted on 13.617 insurgent 
tasks, of which only 57.46% succeeded. The 
performance dropped because the S3 operators became 
cognitively overloaded when they confronted with too 
many insurgent threats. This can be revealed by the 
irrational attention allocation over the three types of 
threats. When RIT was 1/3, the attention was paid 
equally to insurgents, IEDs, and crowds (with 10.7, 
10.23, and 9.04 tasks attempted, respectively), while the 
attention was paid too much on insurgent tasks when  

 



 

(a)                                                          (b)                                                           (c) 

Figure 4: Agent reliability on human trust 

RIT was 1/2 (with 13.62, 9.72, and 7.23 tasks 
attempted, respectively). The consequence is threefold. 
When RIT changed from 1/3 to 1/2, (1) the percentage 
of successful crowd tasks dropped from 38.63% to 
27.57% due to less attention paid; (2) the percentage of 
successful insurgent tasks dropped from 65.5% to 
57.46%, while the percentage of futile tasks (attempted 
but unfinished) increased from 15.89% to 26.93%; and 
(3) although the percentage of successful IED tasks 
increased from 58.22% to 66.89%, 5.5% of which were 
actually futile (attacked harmless IEDs with no reward 
point), which, again, could be attributed to the 
unbalanced attention.  

It also indicates that there are two-way interactions 
between RIT levels and TC levels, as shown in Fig. 
3(b). While the above analysis still applies here, it is 
clear that the C2 performance were much better when 
TC is ‘M’ than when TC is ‘H’ in situations with 
medium (1/3) or low (1/4) RIT. However, the opposite 
is true when RIT is 1/2: the S3 suite had the worst 
performance when TC=‘M’ and RIT=1/2.  

Further data analysis revealed that when RIT is 1/2, the 
S3 operators could balance their attention much better 
under the condition TC=‘H’: the attempted tasks on 
insurgent, IED, and crowd threats had the distribution 
(38%, 39%, 23%), as compared to (49.8%, 25.9%, 
24.3%) when TC=‘M’. The consequence is that when 
TC=‘M’, the S3 operators wasted resources on about 
40% futile insurgent tasks and 12.7% futile IED tasks, 
and only about 21% crowd tasks were successful. One 
interpretation is that, when there were more insurgents, 
the S3 operators were allured to attack more insurgent 
threats, with most of the tasks however, turned out to be 
futile (the targets disappeared before being surrounded 
by the assigned units); while when there were too many 
insurgents, the operators simply changed their strategy: 
instead of wasting resources on insurgents beyond their 
capacity, they distributed the limited resources (time, 
units, and cognition) to all the three types of threats. In 
sum, it seems that the S3 operators tend to favor the 1/3 
RIT condition, and given the limited resources, they 
may not be able to balance their attention appropriately 
when the RIT is too high (1/2). 

Agent Reliability on Human Trust 
The S3 operators’ trust and reliance on the S3 agent can 
be revealed by analyzing the IRA (Inappropriate 

recommendations accepted) and IRC (Inappropriate 
recommendations adjusted correctly) responses.  

The ANOVA output indicates that both population 
group (PG) and ratio of insurgent threats (RIT) had 
significant effects on IRA. As RIT increased, the S3 
operators accepted more inappropriate 
recommendations from the S3 agent. More 
interestingly, as shown in Fig. 4(a), the ROTC operators 
accepted far less inappropriate recommendations than 
the IST operators. In other words, the novice operators 
tended to rely more on the agent than the operators who 
had a priori C2 operation experience. 

The ANOVA output also indicates that both the 
knowledge of agent reliability (KAR) and ratio of 
insurgent threats (RIT) had significant effects on IRC. 
As RIT increased, the S3 operators correctly adjusted 
less inappropriate recommendations from the S3 agent. 
More interestingly, knowing the agent reliability helped 
the S3 operators rectify more number of inappropriate 
recommendations (Fig. 4(b)). This seems to suggest 
that, with the knowledge of agent reliability, 
participants had more trust on the agent.  

This concurs with the NASA TLX trust survey 
conducted immediately after each participant finished a 
trial. The survey responses were recorded on a 7-point 
rating scale, ranging from 1 (agree) to 7 (disagree). The 
data indicates that the participants without the 
knowledge of agent reliability tended to agree that the 

decision aid is deceptive (µ = 3.67; δ = 1.47), while the 
participants with the knowledge tended to be neutral or 

disagree (µ = 4.57; δ = 1.55).  

There also exist two-way interactions between RIT 
levels and TC levels on IRC, as shown in Fig. 4(c). As 
RIT increased, while the S3 operators could rectify less 
inappropriate recommendations under high task 
complexity, under medium task complexity there was a 
big improvement as RIT changed from 1/3 to 1/2. Take 
the API performance (Fig. 3(b)) into consideration, 
while on average the condition where RIT=1/2 and 
TC=M allowed the S3 operators to rectify the most 
number of inappropriate recommendations, it produced 
the worst overall performance. One interpretation is that 
probably the S3 operators had paid too much attention 
on the insurgent tasks. Although the S3 operators had 



adjusted the unit allocation appropriately, many of 
which, however, turned out to be futile.   

CONCLUSION 
As the need for human-centered multi-agent systems 
increases (in domains such as battlefield, healthcare), 
trust will become increasingly important for mediating 
human-agent interactions involving uncertainty, 
security, and reliability. 

In this research, we investigated several factors 
surrounding the challenging problem of human trust on 
cognitive agents with varying levels of reliability caused 
by systematic errors. The experiment represents an 
important step forward in uncovering the nature of 
human trust in human-agent collaboration. The result 
demonstrated that while experts tend to be cautious, 
novice people tend to take more advantage of the agent 
reliability knowledge, and rely more on the agent 
recommendations in tasking. More importantly, it 
suggested that given even minimal basis for 
understanding when the operator should and should not 
trust the agent recommendations allows operators to 
make better AUDs, to have better situation awareness 
on the critical issues associated with automation error, 
and to establish better trust in intelligent agents. 

This study also reveals that people can easily become 
cognitively overloaded in high demanding situations, 
and it is desirable to develop ‘trust-aware’ agent 
technologies such that an agent could develop/learn 
trust models of its human users over time, and offer 
adjustable autonomy by monitoring users’ interaction 
attitudes and reliance patterns. 
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