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Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence

of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we

determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim

may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify

median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we

find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution;

(2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence

that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest

that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an

early radiation of species.

KEY WORDS: Adaptive radiation, balistiform, correlated evolution, disparity, generalized least squares, geometric morphomet-

rics, locomotion, Tetraodontiformes.
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TRIGGERFISH DIVERSIFICATION

Functional novelty is thought to spur diversification in eco-

morphological traits as a consequence of creating ecological

opportunity—the chance for a lineage to exploit new niches

(Schluter 2000; Gavrilets and Losos 2009; Yoder et al. 2010).

However, expectations of how functional innovations influence

the tempo of lineage, morphological, or functional diversification

are less clear. The ecological model of adaptive radiation predicts

a burst of morphological disparity and lineage diversification im-

mediately following functional innovation as lineages fill newly

available niches, then a slowing of diversification after niches fill

(Schluter 2000; Rabosky and Lovette 2006a; Rabosky and Lovette

2006a,b) or a consequence of reaching functional limits or hard

boundaries in morphospace (Blomberg et al. 2003; Freckleton and

Harvey, 2006; Harmon et al. 2010). However, some recent studies

have failed to find strong links between functional innovations and

phenotypic diversification (Slater et al. 2010) or species richness

(Alfaro et al. 2009a,b). Understanding why the consequences of

functional innovations vary so much among case studies repre-

sents a fundamental goal in macroevolutionary biology.

Within the more than 31,000 living fish species (Eschmeyer

2010) exists a tremendous diversity in locomotor morphology

and behavior including fascinating modes of swimming, gliding,

walking, crawling, and underwater flight. This variation presents

rich opportunities for the study of diversification following func-

tional innovation in locomotion strategies. However, despite an

explosion of interest in fish hydrodynamics enabled by increas-

ingly accessible three-dimensional (3D) flow visualization (e.g.,

Mittal et al. 2006; Tytell 2006; Lauder and Madden 2006; Dabiri

2009; Lauder 2010), there have been few comparative evolution-

ary studies of locomotor innovation and phenotypic diversifica-

tion. These studies have generally focused on the integration of

locomotion with other functional systems such as feeding (Rice

and Westneat 2005; Higham 2007; Collar et al. 2008) and have

found functional changes in locomotion to potentially influence

changes throughout the entire bauplan of a fish lineage. As lo-

comotion is central to a fish’s ecology, the question of whether

evolutionary change in locomotor structure following major func-

tional shifts follows the predictions of macroevolutionary theories

such as key innovation or the ecological theory of adaptive radia-

tion can be raised.

Triggerfish possess one of the more distinctive swimming

modes within fish, using coupled oscillation or undulation

of paired median fins to achieve forward thrust. This mode

of locomotion, termed balistiform swimming (Sfakiotakis et al.

1999), is found in several fish groups including flatfish

(Pleuronectiformes) and filefish (Monacanthidae), although the

greatest diversity in fin shape is found within triggerfish.

Shape diversity spans deep-bodied, large-finned species such

as Melichthys niger to shallow-bodied species with high aspect

ratio fins such as Canthideris maculata. Diversity in fin and

body shape is thought to partially reflect divergent locomotor

strategies (Lighthill and Blake 1990a; Wright 2000). Median

fin oscillators rely upon strongly tapering high aspect ratio fins

whereas undulators possess anteroposteriorly elongate fins of

more uniform depth (Lighthill and Blake 1990a,b,c,d). However,

triggerfish are not limited to this simple dichotomy of forms, and

a substantial diversity of intermediate morphologies are found

within triggerfish that have not been quantitatively examined in

hydrodynamic studies (see Wright 2000).

Triggerfish represent a good case study from which to explore

the diversification dynamics associated with functional innova-

tion for several reasons. Theoretical models assume symmetry

between dorsal and anal fins (Lighthill and Blake 1990a,b,c,d;

Wright 2000; Korsmeyer et al. 2002; Loofbourrow 2009), im-

plying that morphological evolution of the fins should be tightly

correlated. Because the ratio of fin to body depth has been demon-

strated to have a strong influence of the overall drag (Lighthill

and Blake 1990a,d), fin and some aspects of body shape evo-

lution should also be highly correlated. These predictions about

morphological evolution in triggerfish have never been tested.

Moreover, the recent reconstruction of a phylogeny and chrono-

gram from this group (Alfaro et al. 2007; Dornburg et al. 2008)

provides the framework to ask how the evolution of a major func-

tional innovation (balistiform locomotion) influenced subsequent

cladogenesis and phenotypic diversification.

Here we use a suite of phylogenetic comparative methods

to ask two classes of questions about the influence of a novel

form of locomotion on the evolutionary dynamics of triggerfish

morphology: (1) Do triggerfish median fin and body shapes ex-

hibit strong patterns of correlated evolution as would be expected

if balistiform locomotion constrains their morphological evolu-

tion, and (2) is there evidence for a rapid or adaptive character to

the diversification of triggerfish lineages, morphology, and func-

tion as would be expected if the evolution of their distinctive

locomotor type catalyzed an adaptive radiation? To address those

questions, we characterize fin shape, aspect ratio, and body shape

in two-thirds of all extant triggerfish species and analyze patterns

of morphological and functional diversification in the context of

a time-calibrated molecular phylogeny.

Methods
To investigate patterns of correlated evolution between compo-

nents of the triggerfish locomotor system and infer the historical

processes that have helped to shape their standing biodiversity,

we gathered data on morphology, function, and phylogeny. We

measured morphological and functional diversity among species,

constructed morphospaces to identify the most important axes of

variation, and quantified the relationship between phylogeny and

fin and body shape morphospace to look for evidence of lineage

clustering within the phylomorphospace (Sidlauskas 2008).

EVOLUTION JULY 2011 1 9 1 3



ALEX DORNBURG ET AL.

QUANTIFYING PHENOTYPIC DIVERSITY OF

TRIGGERFISH

We photographed 270 adult specimens comprising 26 species of

triggerfish (Appendix S1) using 8–10 megapixel digital cameras.

All specimens were photographed facing left, with individual

photos taken of each fish’s body in addition to its dorsal and anal

fins. Caudal fins could not be photographed consistently due to

frequent damage and were not included in shape analysis. For

each species, we aimed to digitize between 5 and 20 individuals,

though for both the rare Red Sea endemic Rhinecanthus assasi

and the West African Balistes punctatus only two individuals

were available.

We used landmark-based geometric morphometrics

(Bookstein 1991; Adams et al. 2004; Zelditch et al. 2004) to

capture the shapes of the fins and body. We placed four total

landmarks on the origin and insertion of the fin base and tips of

the anterior and posterior rays and used sliding semi-landmarks

(Bookstein 1997) to describe the curvature present along the dis-

tal margin (Fig. S1). The sliding semi-landmarks were placed

by outlining each distal fin margin and resampling the curve to

contain eight sliding semi-landmarks. We also placed one sliding

semi-landmark along the fin base at the midpoint between the fin

origin and insertion for a total of 13 fin landmarks (four fixed,

nine sliding semi-landmarks). To quantify body shape, we used

27 homologous landmarks (Fig. S2) and positioned five semi-

landmarks by eye to better define the curves of the body at the

midpoint of the following pairs of landmarks: (1) 3 and 9, (2) 10

and 12, placed along the body, (3) 14 and 15, placed along the

fin-ray insertion margin, (4) 17 and 18, placed along the body, and

(5) 21 and 22. All of the landmarks were placed using TpsDIG2

(Rohlf 2006).

We quantified a functional property of each fin by calcu-

lating its aspect ratio (Lighthill and Blake 1990a; Wright 2000).

Each fin was outlined in TpsDIG2 (Rohlf 2006) and the area

and semispan were computed (Fig. S3). Wright (2000) defined

the semispan as the length from the tip of the fin to the flap-

ping axis, drawn perpendicular to the x-axis (Fig. S3). Following

Wright (2000), we computed fin aspect ratios for each individual

as the semispan squared, divided by the total fin area. We also

repeated this analysis defining aspect ratio according to Walker

and Westneat (2002) as two times the length of the fin’s leading

edge squared, divided by the total fin area (Fig. S3). Mean aspect

ratio values for each species were used in further analysis. The

potential for biased error driven by allometry was assessed for

both shape and mechanical data by testing for a correlation be-

tween fin or body centroid size and partial warp scores or aspect

ratios using multivariate regression (Monteiro 1999) in TPSRegr

(Rohlf 2003).

DETERMINING THE MOST IMPORTANT AXES OF

SHAPE VARIATION

To quantify the most important axes of shape variation for each fin

or body shape dataset, we used a Procrustes fit (Rohlf and Slice

1990; see also Zelditch et al. 2004) to generate a mean shape for

each species and remove variation due to scaling, rotation, and

translation (Zelditch et al. 2000). We then used a second Pro-

crustes fit of the 26 consensus configurations combined with a

relative warps (RWs) analysis (Rohlf 1993) in TpsRelw version

1.46 (Rohlf 2007) to generate a morphospace (a series of orthog-

onal eigenvectors describing the major axes of shape variation).

Because we set alpha to 0, the RW analysis was mathematically

equivalent to a principal components analysis of the Procrustes

coordinates (Rohlf 1993). In subsequent analysis, all RW scores

were multiplied by one hundred to accommodate easier interpre-

tation (following Sidlauskas 2008).

DIVERGENCE TIME ESTIMATION

To estimate the phylogeny and timing of evolutionary divergences

in triggerfish, we assembled DNA sequence data for 28 balistid

species (Table S1), representing 11 of 12 genera, and comprising

approximately two-thirds of described triggerfish species. Most of

these data derive from Dornburg et al. (2008), although two taxa,

Pseudobalistes naufragium and Sufflamen verres, were newly col-

lected by MEA and sequenced, following the same protocols as

Dornburg et al. (2008). Our study also includes three species of

filefish (Monacanthidae), representing the closest sister group to

the balistids (Santini and Tyler, 2003; Holcroft 2005; Alfaro et al.

2007; Dornburg et al. 2008; Yamanoue et al. 2008). We were un-

able to sample sufficient morphological data for adult Sufflamen

lunula and Rhinecanthus verrucosus, and these two taxa were

subsequently pruned from our chronogram for analyses of mor-

phometric data.

We conducted a Bayesian relaxed-clock time calibrated phy-

logenetic analysis (Drummond et al. 2006) of the triggerfish using

two of the same calibration age priors as Dornburg et al. (2008).

The first based the divergence of the lineages giving rise to extant

families Balistidae and Monacanthidae on four fossil stem balis-

toids dated to 35 million years (MY): Balistomorphus orbicula-

tus, B. ovalis, B. spinosus, and Oligobalistes robustus (Tyler and

Santini 2002). We followed Alfaro et al. (2007) and assigned an

upper bound of 70 MY to this calibration that reflects the appear-

ance of several other tetraodontiform families in addition to the

first stem tetraodontiforms in the fossil record. Divergence time

analyses were repeated with the recently discovered Eocene taxa

Gornylistes prodigiosus used a calibration (Bannikov and Tyler

2008), although the change in the marginal posterior density of

crown triggerfish ages was negligible. The second calibration age

1 9 1 4 EVOLUTION JULY 2011
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prior placed a normally distributed prior age constraint on the

age of crown balistids based on Alfaro et al.’s (2007) analysis.

These prior age calibrations reflect the fossil record of balistids

as no crown balistid fossils are known to be older than the middle

Miocene (Schultz 2004), whereas stem balistids date back to at

least 35 MY (Tyler and Santini 2002). We omitted one calibra-

tion used in Dornburg et al. (2008). Although the fossil Balistes

procapriscus has been suggested to provide a minimum age on

the split between Balistes and its sister group, Pseudobalistes

(Santini and Tyler 2004), analyses of molecular datasets reveal

Pseudobalistes to be polyphyletic (Dornburg et al. 2008), making

assignment of this calibration ambiguous.

We estimated divergence times using the concatenated data

under a model of uncorrelated but log-normally distributed rates

using BEAST (Drummond et al. 2006), placing a birth–death

prior on rates of cladogenesis. All fossil constraints incorporated

soft upper bounds to avoid artificially truncating the posterior

distribution of our divergence time estimates (e.g., Yang and

Rannala 2006). Analyses were run with and without data to as-

sess the influence of the prior on the posterior distribution of age

estimates (Drummond et al. 2006). We used the nucleotide data

partitioning strategy identified as having the highest Bayes factor

support, with support being considered as Bayes factors greater

than 10, resulting in partitioning our data by gene and codon

(Kass and Raftery 1995; Brandley et al. 2005; Brown and

Lemmon 2007) using the best-fit models of nucleotide substi-

tution selected using AIC in jModelTest (Posada and Crandall

1998). We ran three independent analyses of 30 million gener-

ations and assessed convergence of the chains using Tracer 1.3

(A. Rambaut and A.J. Drummond) and AWTY (Nylander et al.

2008). The effective sample sizes (ESS) for model parameters

were assessed to ensure good mixing of each chain with ESS val-

ues above 200 indicating appropriate sampling from the posterior

distribution of each parameter. We further plotted the cumulative

split frequency for each node between runs, assessing conver-

gence of the chains by a stabilization of the cumulative posterior

probability.

LINEAGE DIVERSIFICATION

If triggerfish experienced an ecological adaptive radiation

(Schluter 2000), we predicted that species diversification rates

would be highest early in the history of the clade and then slow

through time as available niches filled (Schluter 2000; Rabosky

et al. 2007). We initially tested this assumption using a modi-

fication of the Monte Carlo constant rates (MCCR) test (Pybus

and Harvey 2000) that accounts for incomplete taxon sampling.

Although the MCCR test was implemented in Dornburg et al.

(2008), recent studies have found the gamma statistic of this test

to be sensitive to biased, nonrandom, taxon sampling strategies,

such as those employed by researchers attempting to sample all

genera or functional groups (Cusimano and Renner 2010; Brock

et al. 2011). As such, we implemented an extension of the MCCR

test that accounts for nonrandom sampling of proportionally older

splits while calculating the gamma statistic (Brock et al. 2011).

Although tests such as the MCCR test (Pybus and Harvey

2000) can detect early pulses of lineage accumulation, they can-

not distinguish if this is a consequence of shifts in speciation, ex-

tinction, or alternate models such as density-dependent speciation

(Rabosky and Lovette 2006a; Rabosky et al. 2007). For example,

a higher than expected distribution of nodes toward the root of the

tree might be the consequence of a variable rate of extinction, or

could be explained by the expectations of a multirate birth–death

model, and may not reflect a rapid initial radiation of species. To

assess the best-fit model of lineage diversification for our data, we

simultaneously compared all models using Akaike’s information

criterion (Akaike 1973) in LASER. To test this hypothesis, we

simultaneously compared the fit of several lineage diversification

models using Akaike’s information criterion (Akaike 1973) in R

using the LASER package (Rabosky 2006a,b). The pool of candi-

date models included the pure birth (Yule) and birth–death model

of speciation originally compared by Dornburg et al. (2008) as

well as seven additional models. These included two fluctuating

rate models (two rate Yule, and two rate birth death), a model al-

lowing either speciation and extinction rates to vary through time,

and two nested simpler models that held either the speciation or

extinction rates constant while allowing the other parameter to

vary through time. Finally the candidate pool also included a log-

normal and an exponential model of density-dependent lineage

diversification that posit the lineage diversification rate to slow

through time as the radiation progresses (Rabosky and Lovette

2006a,b). To account for the potential effects of incomplete taxon

sampling on these model fitting approaches to lineage diversi-

fication, we simulated 1000 random tree topologies using APE

(Paradis et al. 2004) and Geiger (Harmon et al. 2007) under a

pure-birth process using the empirical speciation rate inferred un-

der a pure-birth process. This null distribution of trees was pruned

to our level of taxon sampling (28 of 42 extant species) either ran-

domly, or using one of three strategies that preferentially pruned

younger taxa that had originated during the last 50%, 33%, or

25% of the time spanned by the phylogeny. These biased sam-

pling strategies more accurately reflected our sampling of real

triggerfish species, which was designed to sample at least one

species from all major subclades and span reasonable levels of

bias toward older bifurcations that may result from our empirical

inclusion of all major triggerfish lineages. We assessed the fit of

the lineage diversification models to this pool of pruned null trees

and compared our empirical fit to the expected distribution of AIC

score differences that result as a consequence of both random and

nonrandom incomplete taxon sampling using the LASER package

in R (Rabosky 2006b).
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CORRELATED EVOLUTION BETWEEN COMPONENTS

OF BALISTIFORM LOCOMOTOR MORPHOLOGY

We tested for evidence of correlated evolution between the most

important components of variation in our fin shape datasets while

taking the expected covariance among traits due to phylogeny

into account by using the phylogenetic generalized least squares

(PGLS) method in the APE (Paradis et al. 2004) software package

in R. As the model of evolution can affect this type of analysis,

tests were conducted under both a Brownian (random walk) and

OU (constrained) model of evolution, while comparing the AIC

fit of each model (Table S2). To assess whether elements of body

shape are integrated with the evolution of balistid locomotor mor-

phology, we used a multiple regression using body shape as the

dependent variable while taking the interactions of the fin shapes

into account. Model fitting was conducted under both a BM and

OU model of phenotypic change, with AIC values greater than

four being used to select between model fits (Burnham and An-

derson 2002).

We used partial least squares (PLS) (Rohlf and Corti 2000)

in TPSPLS (Rohlf 2005) and MorphoJ (Klingenberg 2008) to

identify pairs of axes that explain the maximum covariance be-

tween the datasets, in a manner mathematically similar to a prin-

cipal components analysis emphasizing covariance as opposed to

variance (Bookstein and Rohlf 2004; Zelditch et al. 2004). This

method can only assess covariance between pairs of datasets so

we conducted three pairs of PLS analyses for our shape data, one

for each possible combination of the fin and body shape matrices.

To test whether the shared covariance of the datasets was robust

to the influence of phylogeny, we also extracted pairs of covary-

ing PLS axes and tested them for significant correlated evolution

using PGLS.

MORPHOLOGICAL AND FUNCTIONAL

DIVERSIFICATION

Clades that have undergone an ecological adaptive radiation

(Schluter 2000) are expected to partition more ecofunctional

trait variation among rather than within subclades (Harmon

et al. 2003). We used phylomorphospace visualization (Sidlauskas

2008) and analyses of disparity through time (Harmon et al. 2003)

to investigate whether triggerfish exhibited this pattern. Phylo-

morphospaces combine morphometric and phylogenetic datasets

to provide a visual assessment of how lineages partition avail-

able morphospace and how closely phylogenetic proximity pre-

dicts morphological similarity. We plotted the three RWs explain-

ing the greatest percentage of total variance for each dataset

(body, dorsal fin, and anal fin) in 3D morphospaces, and pro-

jected the phylogeny linking these species into the same space

by reconstructing the morphological position of the internal

nodes using weighted squared change parsimony. All phylomor-

phospaces were plotted using the Rhetenor module (Dyreson

and Maddison 2003) in Mesquite (Maddison and Maddison

2008).

Assessing the relative subclade disparity among lineages has

become an integral part of macroevolutionary studies focusing on

how lineages occupy a morphospace (e.g., Foote 1997; Eble 2000;

Valentine and Jablonski 2003; Villier and Eble 2004; Jablonski

2005). If the novelty of the triggerfish locomotive system has

driven a rapid early pulse of diversification in their shape mor-

phology, triggerfish lineages should achieve higher relative sub-

clade disparity early in their history than would be expected under

a random model of evolution. We tested this hypothesis by calcu-

lating the relative subclade disparity through time for fin aspect

ratios and the most important axes of fin and body shape (Har-

mon et al. 2003). To assess whether triggerfish diversity patterns

differed from a null model of Brownian evolution, we simulated

the evolution of fin and body shape variable on the triggerfish

topology using the empirical variance for each trait 1000 times

and calculated the morphological disparity index (MDI) using the

Geiger package (Harmon et al. 2007) in R. Negative MDI values

indicate that subclades vary strongly from one another whereas

positive values indicate that subclades have converged. To account

for our level of incomplete taxon sampling of tipward taxa, we

followed Harmon et al. (2003) and restricted our analysis of MDI

values to the first 60% of the time spanned by the phylogeny.

Results
DETERMINING THE MAJOR AXES OF

MORPHOLOGICAL VARIATION

Two RW axes explained approximately 76% of the total body

shape change variation for triggerfish (Table 1). The first axis

of body shape change described an elongation of the overall

body coupled with an anteroposterior compression of the cranium

(Fig. 1). The second RW axis for body shape change described

a dorsoventral compression of body depth coupled with an an-

teroposterior elongation of the body and cranium (Fig. 1). The

combined body shape data also provide evidence for substantial

restructuring of the triggerfish cranium, with the dorsal slope of

the cranium becoming steeper and elongating.

For the dorsal and anal fins, the first three RWs explained

90% and 93% of the overall variance for each fin shape, respec-

tively (Table 1). For both the dorsal and anal fins, the first RW

Table 1. Percent of variance explained by the first three relative

warps.

Anal fin Dorsal fin Body shape

Relative Warp 1 57.18 59.72 51.94
Relative Warp 2 20.62 19.49 23.4
Relative Warp 3 12.69 13.86 7.5
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Figure 1. Dorsal fin, body shape, and anal fin shape change quantified by the first two relative warps. Positive and negative extremes

represent the maximum observed phenotypic divergence on either end of the respective RW axis.

(explaining 57–60% variance) described the change in the length

of the anterior (leading edge) fin rays (Fig. 1). The second RW

in both fins (explaining 19–21% variance) described variation in

the anteroposterior length of the fin coupled with a dorsal to ven-

tral elongation of fin rays posterior to the leading edge (Fig. 1).

The third RW axis (explaining 13–14% of the variance in shape

change) described a change in curvature along the distal margin

of the fin (image not shown).

TRIGGERFISH PHYLOGENETICS AND DIVERGENCE

TIME ESTIMATION

Our inferred phylogeny contains six major clades: (1) Canthider-

mis; (2) Sufflamen; (3) Rhinecanthus; (4) Abalistes; (5) Balistes;

and (6) all other balistids, providing strong support for the pa-

raphyly and polyphyly of multiple genera congruent with the

findings of Dornburg et al. (2008) (Fig. 2). Our results mirror

Dornburg et al. (2008), as we found Balistes to be paraphyletic,

with strong support present for nested placement of Pseudobal-

istes fuscus and P. naufragium within this clade. There was strong

support for a sister relationship between Balistoides viridescens

and P. flavimarginatus, suggesting these genera are also not mono-

phyletic. Our analysis revealed high support values (PP > 0.95)

for most nodes in the tree, with the exception of the three most

basal divergences (Fig. 2).

We estimated a crown age of balistids of approximately 10

MY, with the 95% highest posterior density (HPD) interval span-

ning approximately 7–14 MY, suggesting Balistidae to be rela-

tively young (Fig. 2). The chronogram also suggests that the stem

lineages of the six major clades identified above began to diversify

in the Late Miocene. Abalistes and Canthidermis appear to have

split relatively rapidly from the lineage that gives rise to clades 2

and 3 (∼9 MY). The confidence intervals of our age estimates are

all well within the bounds of the ages estimated by Dornburg et al.

(2008), suggesting that the placement of the additional calibra-

tion age prior based on the fossil B. procapriscus had a minimal

influence on the analysis (Table S2).

PATTERNS OF TRIGGERFISH LINEAGE

DIVERSIFICATION

The rate of lineage diversification (λG) for the triggerfish was es-

timated at approximately 0.266 lineages per million years, based

on a pure-birth (Yule) model. Similar log likelihood scores for

the fit of the Yule (−4.1363) and birth–death (−4.1360) mod-

els of lineage diversification prevented us from being able to

reject a pure-birth model as the underlying process for trigger-

fish lineage diversification. When the candidate pool of models

was expanded to include seven additional models of lineage di-

versification, a density-dependent model of speciation was in-

ferred to be the best fit, suggesting rates of lineage diversifica-

tion to have declined over the history of triggerfish evolution.

However, this pattern of declining rates of cladogenesis most

likely reflects a methodological bias as our simulations designed

to mimic various taxon sampling strategies demonstrated that

this result is within the range of the model-fit expectations

that would occur based on incomplete and nonrandom taxon

sampling (Fig. 3). Similarly, accounting for nonrandom taxon
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Figure 2. Consensus chronogram of triggerfish divergence times. Bars around nodes represent the 95% HPD. Shaded dark boxes at

nodes indicate posterior probabilities (PP) >0.95, whereas numbered nodes correlate with Appendix 2. White numbered nodes indicate

the presence of prior age constraints. Nodes with PP less than 0.5 do not contain a 95% HPD on the age estimate.

sampling in the interpretation of the gamma statistic (γ ∼ −1.99)

using modifications of the MCCR test (Brock et al. 2011) fur-

ther demonstrated how nonrandom taxon-sampling strategies that

are designed to capture older splits bias lineage diversifica-

tion rate tests toward reconstructing early bursts of cladogenesis

(Fig. S4).

CORRELATED EVOLUTION AMONG COMPONENTS OF

BALISTIFORM LOCOMOTION

PGLS analysis provided strong evidence for correlated evolution

between the two most important RWs of the dorsal fin and each of

the reciprocal RWs of the anal fin (Table 2). This suggests that the

heightening, elongation, or skewing of one of these fins is linked

to a similar change in the other (0.00001 < P < 0.05). These

results were identical under both a Brownian and constrained

(OU) model of phenotypic evolution. We observed congruent

patterns when analyzing pairs of PLS axes while accounting for

the expected covariance due to shared phylogenetic history using

PGLS (Table 3). Further, plotting dorsal fin shape RW1 against

anal fin shape RW1 reveals a striking pattern of tight correlation

between the two RWs, confirming that the two traits to have

undergone correlated evolution (Fig. S5).

Multiple regression analysis provided strong evidence for a

pattern of integrative evolution between the interacting fin shapes

and the first major body shape warp under both a BM and OU

model (r2 ∼ 0.71). Conversely, we obtained no significant corre-

lation between the second RW of body shape and the interactions

of the anal and dorsal fin shapes (r2 ∼ 0.3), supporting a decou-

pling of the evolution of dorsalventral compression of the body

from the elongation and lengthening of fin shapes.
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A B C D

Figure 3. Distribution of AIC differences (�AIC) generated by fitting a Yule and exponential density-dependent models of speciation

(DDX) to pruned trees simulated under a pure birth process. Positive �AIC indicate preferred fits for the DDX model. Dark arrows represent

empirical fit of triggerfish data. (A) Expected �AIC distribution generated by randomly sampling Yule trees (P ∼ 0.01); (B) Expected �AIC

distribution generated by preferentially pruning lineages from the more recent 50% of each tree’s length (P < 0.07); (C) Expected �AIC

distribution generated by preferentially pruning lineages from the more recent 33% of each tree’s length (P ∼ 0.09); and (D) Expected

�AIC distribution generated by preferentially pruning from the more recent 25% of each tree’s length (P ∼ 0.09).

MORPHOLOGICAL AND FUNCTIONAL

DIVERSIFICATION

We find evidence of phylogenetic clustering for both the fin

and body-shape data, with subclades occupying distinct regions

of morphospace (Fig. 4A–C). Additionally, plotting the body-

shape RW1 against either the dorsal or anal fin RW1 (Fig. 4D

and E) reveals that nearly every major clade occupies a po-

sition in morphospace that is divergent from that of its sister

clade. The only major qualitative difference between these fig-

Table 2. Testing for correlated evolution between fin shapes.

First major warp Second major warp
dorsal fin dorsal fin
R-squared/ R-squared/
P-value P-value

First major warp 0.57/<0.001 0.08/>0.10
anal fin

Second major warp 0.15/<0.05 0.16/<0.05
anal fin

Results of phylogenetic generalized least squares test for correlation be-

tween fin shapes. Results in bold indicate variables explaining significant

variation in the dependent variable. Presented are results based on a null

expectation of BM with the dorsal fin as the dependent variable, results

based on an OU process or model of OLS, or with the anal fin as the depen-

dent variable were nearly identical.

ures is the wide separation of members of lineage 5, identified

as “Balistes” sensu Dornburg et al. (2008) and the genus Can-

thidermis in the anal-fin shape/body shape phylomorphospace

(Fig. 4E).

Plots of the fin aspect ratio phylomorphospace (Fig. 4F) in-

dicate that major functional groups of triggerfish evolved early in

the group’s history, supporting the hypothesis of early functional

diversification. When combined with Figure 2 and the plots of dor-

sal fin morphospace (Fig. 4A), the fin aspect ratio visualizations

reveal that triggerfish partition the mechanospace between five

major functional groups. The majority of triggerfish taxa occupy

Table 3. Testing for correlated evolution among principal PLS

axes.

Dataset Axes P-value/slope

Dorsal fin vs. body shape first 0.0009/0.223
Dorsal fin vs. body shape second 0.0088/0.144
Anal fin vs. body shape first 0.0002/0.353
Anal fin vs. body shape second 0.0016/0.244
Dorsal fin vs. anal fin first <0.0001/1.14
Dorsal fin vs. anal fin second <0.0001/1.01

Results from the phylogenetic generalized least squares test for correlated

evolution between major axes of variation from the partial least squares

analysis. Bold P-values indicate significant results.
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D
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Figure 4. Phylomorphospace visualizations for the major relative warps. Comparisons of how lineages occupy different morphospaces:

(A) The first and second dorsal fin RWs; (B) the first and second anal fin RWs; (C) the first and second body shape RWs; (D) comparison

between the first dorsal fin RW and the first body shape RW; (E) the first anal fin and the first body shape RW; (F) the aspect ratio of the

dorsal fin and the aspect ratio of the anal fin. ∗Genus names follow the classification proposed in Dornburg et al. (2008).
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regions of functional space characterized by low aspect ratios, a

state that evolved early in their history. Transitions between high

and low aspect ratios within groups are rare, with the exception

of members of Balistes sensu Dornburg et al. (2008) (lineage 5,

Fig. 2). This lineage occupies the largest region of mechanospace,

and comprises nearly 50% of the observed functional diversity of

these fish (Fig. 4F). This partitioning of the morphospace through

time is reflected in the disparity through time plots of fin shape,

body shape, and aspect ratio evolution (Fig. 5). In each case, we

reveal a departure from a null Brownian simulation, with neg-

ative MDI statistics indicating that early crown triggerfish par-

titioned the morphospace following the evolution of balistiform

locomotion.

Discussion
Three lines of evidence suggest that the functional demands of bal-

istiform locomotion have influenced triggerfish shape evolution.

First, the evolution of the most important axes of anal and dorsal

fin shapes is highly integrated. Second, key aspects of median fin

and body shape have coevolved in triggerfish. Third, triggerfish

appear to have explored the limits of their modern phenotypic and

functional diversity early in their history. These results support

the idea that the majority of shape diversity observed in modern

triggerfish reflects an underlying early diversification of function

and are consistent with the expectation that evolutionary novelty

spurs functional diversification. However our analysis of lineage

diversification fails to find a corresponding early pulse of specia-

tion, suggesting morphological and lineage diversification to have

been decoupled during triggerfish evolution. Thus, the history of

triggerfish diversification does not conform to the expectations of

the classical adaptive radiation model.

PATTERNS OF CORRELATED SHAPE EVOLUTION

The results of every test for correlated evolution that we performed

(Tables 2 and 3) as well as the observed linear relationship be-

tween the RWs of the median fins in phylomorphospace (Fig. S7)

strongly suggest that the two major locomotor structures of trig-

gerfish, the dorsal and anal fins, evolved in lockstep. Further, the

phylomorphospace visualizations of aspect ratio (Fig. 4F) show

that mechanical evolution in triggerfish median fins closely re-

flects patterns of morphological evolution (Fig. 4A and B). The

visualizations also imply ancestral crown triggerfish to have had

a medium aspect ratio (Fig. 4F), with a subsequent history of

most lineages converging on low and medium aspect ratios (Up-

per left corner, Fig. 4F). Low aspect ratio fins are correlated with

increased maneuverability and are associated with fish that re-

main in close proximity to reefs, whereas higher aspect ratios are

associated with increased water column usage and also shallower

habitats with more wave energy (Fulton et al. 2005). These expec-

tations suggest two functional hypotheses to explain the tightly

correlated evolution of dorsal and anal fin shape and function:

(1) balistiform swimmers may be functionally constrained to

achieve propulsive forces using coupled symmetrical fins, or (2)

there may be a developmental constraint in which the dorsal and

anal fin belong to the same module. These hypotheses are not

mutually exclusive. The potential lift generated by the dorsal and

anal fins may constrain these fins to evolve in tandem for effi-

cient maneuverability in the water column, whereas developmen-

tal modules could also shape the development of the fish’s under-

lying musculature and skeletal elements (e.g., Mabee et al. 2002).

Sorenson (2007) recently found a startling degree of symmetry

between the underlying dorsal and anal fin structural elements

in Rhinecanthus rectangulus, supporting the idea of a develop-

mental module underlying the primary locomotor components of

triggerfish.

Our analyses also suggest that major features of body shape

evolve in tandem with fin shape. For example, we find that elon-

gate bodies are coupled with rounder, less-sigmoidal fins (Table 3,

Fig. S6 left panel). Fish with this body plan tend to be more reef

associated (Lieske and Myers 2001; Bean et al. 2002) suggesting

this to be an efficient body plan for maneuvering complex 3D

environments. Triggerfish lineages associated with pelagic and

open environments are also characterized by high aspect ratio

fins and bulbous reduced crania (Fig. S6). This suggests mod-

ifications of the cranial morphology to be a potentially impor-

tant and understudied aspect of the hydrodynamics of balistiform

locomotion.

WHAT DROVE FUNCTIONAL AND MORPHOLOGICAL

DIVERSIFICATION IN TRIGGERFISH?

The morphological disparity indices and the phylomorphospace

visualizations show that triggerfish colonized nearly all of their

presently occupied morphospace early in their radiation. All axes

of shape and functional change are partitioned among rather than

within lineages early in the history of the group (Fig. 4), and the ac-

cumulation of disparity among lineages appears to occur rapidly,

mostly during the first 1–2 MY of the group’s history. This pattern

is consistent with recent adaptive radiation models in which early

lineages invade disparate regions of morphospace whereas later

lineages subpartition initially colonized regions (Schluter 2000;

Harmon et al. 2003). However, triggerfish depart from these mod-

els in one important sense: they do not show the expected pattern

of initially rapid lineage diversification.

Although we recover a pattern of elevated early cladogenesis

while assuming random taxon sampling, the results of simula-

tions that account for nonrandom taxon sampling clearly demon-

strate the sensitivity of these test statistics to violations of this

assumption (e.g., Cusimano and Renner 2010; Brock et al. 2011).

Two scenarios might explain the apparent patterns of uncoupled
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Figure 5. Disparity through time plots for anal fin shape RW1 (A), Dorsal fin shape RW1 (B), body shape RW1 (C), body shape RW2 (D),

anal fin aspect ratio (E), dorsal fin aspect ratio (E). The solid curve represents the empirically inferred pattern subclade disparity through

time. The dashed curve represents the median of the Brownian simulations. All plots were generated using the Geiger (Harmon et al.

2007) package in R.
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lineage diversification and morphological evolution in triggerfish.

It is possible that these processes were in fact coupled, but the

elevated rates of extinction eroded the signature of early rapid lin-

eage diversification (Quental and Marshall 2009; Rabosky 2009).

We regard this scenario as unlikely for two reasons. First it re-

quires morphologically disparate subclades to resist total elimi-

nation even while extinction acts within them to reduce richness.

This is not a frequent outcome of standard models of high lin-

eage turnover, which tend to eliminate early branching lineages

entirely and generate very young crown clades (Raup 1985;

Sidlauskas 2007). Second, some simple violations of the assump-

tion of random extinction, such as the heritability of extinction

rates, are expected to bias methods for testing diversification rates

toward inferring an early pulse of diversification even when the

true diversification rate remains constant (Rabosky 2009). In spite

of that potential bias, we fail to recover evidence of initially rapid

diversification. Thus, although it cannot be ruled out completely,

we believe it unlikely that triggerfish experienced an invisible

burst of speciation shortly after evolving balistiform locomotion.

A second possibility is that triggerfish adaptive diversifica-

tion reflects a process where phenotypic diversification is de-

coupled from cladogenesis. Although the most prevalent model

of ecological adaptive radiation (e.g., Schluter 2000) predicts that

these processes will be linked, the most cited examples of this phe-

nomenon are clades with restricted geographic distributions such

as islands or lakes (Day and Wilkinson 2006; Seehausen 2006,

Losos 2009; Johnson et al. 2009), quite unlike the broad species

ranges that characterize most triggerfish. In widespread marine

species, long-distance larval dispersal (e.g., Palumbi 1994,

Bellwood et al. 2006) might strongly alter the expected dynamics

of linked species and phenotypic diversification following evo-

lutionary innovation by decreasing the probability of localized

ecological speciation (e.g., Rocha and Bowen 2008; Budd and

Pandolfi 2010). Instead, a constant rate of allopatric or peripatric

speciation that is governed by physical processes and therefore

unaffected by functional innovation would provide the dominant

processes generating new lineages (see also, Budd and Pandolfi

2010). After the rise of each new lineage, secondary contact and

character displacement (rather than ecological speciation) could

then act as the primary pump driving phenotypic diversification

into newly available niches (e.g., Price 2010). This model would

yield an initial steady increase in disparity at a rate governed by

the background rate of speciation. As the accumulating lineages

filled niches over time, the rate of character displacement follow-

ing instances of secondary sympatry in new lineages would slow,

until all niches opened by the original innovation were filled.

Thus, the eventual braking of the morphological diversification

rate remains the same as in the classic adaptive radiation model.

We suggest that triggerfish may have evolved under this al-

ternative model of diversification, with balistiform locomotion

serving as the functional innovation catalyzing subsequent mor-

phological diversification. As in the classic model of adaptive

radiation, the origin of balistiform locomotion likely presented

the potential for ancestral triggerfish to evolve novel fin and body

shape combinations, partly as a consequence of the locomotor

innovation providing access to novel ecological opportunities.

However, as described above, this innovation in and of itself

would not alter the background rate of species formation, as

any potential for sympatric ecological diversification would be

impeded by the presence of long-distance dispersal. Species for-

mation would have instead been dominated by allopatry/peripatry

and the primary control on morphological diversification would

have been the background rate of isolation and secondary con-

tact between lineages. Once the novel niches were filled, new

species would still arise at the unchanged background rate of al-

lopatric or parapatric speciation, but the rate of morphological di-

versification would decline and daughter species, having no open

paths across the adaptive landscape, would tend to resemble their

ancestors.

Although speculative, this model would explain the apparent

constant rate of species diversification throughout the history of

triggerfish and the inferred burst of morphological diversification

at the base of their phylogeny. Such a model might also explain

why many freshwater fish species radiations appear to be con-

sistent with the traditional model of ecological radiation (e.g.,

Barbour 1973; Witte 1984; Hunt et al. 1997; Alesandrini and

Bernardi 1999; Seehausen 2002; Day and Wilkinson 2006;

Seehausen 2006), although species rich tropical marine fish fami-

lies often are not (Santini et al. 2009; Alfaro et al. 2009a). Contin-

ued investigations of widespread tropical marine radiations will

help reveal whether the decoupling of cladogenesis and morpho-

logical change observed in the triggerfish reflects the typical con-

dition in coral reef fish groups. Filefish (Monacanthidae) that are

balistiform swimmers with long-range dispersal that also share a

close affinity with triggerfish, offer one excellent opportunity to

test that hypothesis, but a full exploration should target groups

with varied styles of locomotion and dispersal. Such future stud-

ies will aid in the conceptual development of adaptive radiation

theory and determine if the lack of tropical coral reef fish species

flocks reflects a lack of looking for them or fundamental differ-

ences in the evolutionary phenomena that shape biodiversity in

tropical marine versus freshwater habitats.
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