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ABSTRACT 
The field of Engineering Systems is distinguished from traditional engineering design in part by 
the issues it brings to the top. Engineering Systems focuses on abstractions like architecture and 
complexity, and defines system boundaries very broadly. It also seeks to apply these concepts to 
the process of creating systems. This paper summarizes the role and influence of architecture in 
complex engineering systems. Using the research literature and examples, this paper defines 
architecture, argues for its importance as a determinant of system behavior, and reviews its ability 
to help us understand and manage the design, operation, and behaviors of complex engineering 
systems. 

A. INTRODUCTION 
Typical engineering design education focuses on specific aspects of design, such as the technical 
behavior of a set of elements interconnected in a certain way. By contrast, Engineering Systems 
focuses on a number of abstract concepts first because they provide a general framework for 
guiding the development of many diverse kinds of systems, so that these systems will provide the 
desired functions in the desired ways. Among these abstract concepts is that of system 
architecture. In this paper, we explore this concept and provide a number of ways of appreciating 
system architecture’s importance in both the practical aspects of system design and in the 
intellectual aspects of understanding complex systems from a variety of viewpoints.  

The paper begins with a definition of architecture and its influence on functional behavior, extra 
desired properties like flexibility and reliability (collectively called “ilities”), complexity, and 
emergent behaviors. Architectures are not static but instead evolve over long periods as 
technologies mature. They also evolve during the normal course of designing an individual 
system. These evolutionary patterns are useful in understanding architecture’s importance.  

The paper next provides several examples of architectures and illustrates how architecture 
affects the way systems are designed, built, and operated. The examples include aircraft, 
automobiles, infrastructures, and living organisms. 

The importance of architecture is framed in three domains of importance: as a way to understand 
complex systems, to design them, to manage them, and to provide long-term rationality by means 
of standards. The abstract concepts of modularity and integrality are shown to be useful for 
categorizing systems and illustrating how architectural form can influence important system 
characteristics. Several contrasts are noted between relatively small, deliberately designed 
products and evolutionary, less-managed large infrastructures. 

Architecture’s ability to influence the functions and allied properties of systems is shown to extend 
to robustness, adaptability, flexibility, safety, and scalability. Examples from recent research are 
given to show how some of these properties might be measured using network models of 
particular architectures. 
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Finally, the paper identifies a number of important near- and long-term research challenges 
regarding the potential for understanding architecture to the point where a system’s behaviors 
can be completely determined. Among the barriers are complexity, bounded human rationality, 
and human agency.  

B. WHAT IS SYSTEM ARCHITECTURE? 
System architecture is an abstract description of the entities of a system and the relationships 
between those entities. Architecture is important in most technical fields, including not only civil 
architecture of buildings but of physical products, software, computer networks, large engineering 
systems, and infrastructures. The architecture of a system has a strong influence on its behavior. 
Every system has an architecture. Architectures may arise in the process of deliberate de novo 
design of a system; by evolution from previous designs with strong legacy constraints; by obeying 
regulations, standards, and protocols; by accretion of smaller systems with their own 
architectures; or by exploration of form and behavioral requirements via dialogue between users 
and architects, to name a few known mechanisms. While natural architectures may hold lessons 
for us, including the influence of evolution under constraints, we are mainly concerned here with 
man-made architectures of complex engineering systems. 

Man-made system architectures are created as part of the process of creating and designing 
systems. These systems are intended to have certain primary functions, plus other properties that 
we call “ilities:” durability, maintainability, flexibility, and so on. The primary functions have 
immediate value while the ilities tend to have life-cycle value. Like the ilities, the architectures 
themselves are long-lived either because they determine the design of several generations of 
products or because the resulting systems are themselves long-lived. In most cases, it is very 
challenging to design a complex system that achieves all of its primary functions and all of its 
ilities. In some instances one has to resolve tradeoffs between desirable properties for the short 
term versus desirable life-cycle properties. An example is the life-cycle property of extensibility, 
which might require including interfaces for future system elements that are not present in the 
original version. Such interfaces must be designed, will generally require additional resources, 
and might increase initial system complexity. The benefits of such architectural decisions are 
uncertain and might only be realized in the future, or not at all. Methods for evaluating uncertain 
events and providing for them in advance are discussed in De Neufville (2004). 

Some systems, such as familiar products of industry (cars, aircraft, computers) are designed 
according to a deliberate process that includes carefully thinking through what their architectures 
should be, although the thinking and the resulting architectures can vary widely in 
appropriateness for their intended purposes. Other systems, such as large infrastructures, may 
grow by accretion or annexation from smaller systems. Even when the smaller systems have 
deliberate and well-conceived architectures, the resulting agglomerated system may not have a 
cohesive or consistent architecture, a fact that may inhibit the system’s ability to function. 
Regional electric power grids are an example. 

Complex systems have behaviors and properties that no subset of their elements have. Some of 
these are deliberately sought as the product of methodical design activity. While achieving these 
behaviors, the designers often accept certain undesirable behaviors or side effects, In addition, 
systems have unanticipated behaviors commonly called emergent. Emergent behaviors may turn 
out to be desirable in retrospect, or they may be undesirable. Emergent behaviors are similar to 
incidental interactions identified in Ulrich and Eppinger (2000). Automobiles not only enabled 
personal transport but revolutionized society in many unexpected ways, such as growth of 
suburbs and shopping malls, courtship habits, and a sense of personal freedom. Other examples 
of this are in Table 1. 
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 Anticipated Emergent 
Desirable Electric power networks share 

the load. 
Hub-spokes airline routes 
shorten the length of trips. 

Blackouts are associated with 
increased births. 
Hub-spokes plus waiting time 
creates a business opportunity 
in airport malls. 

Undesirable Power networks can 
propagate blackouts. 
Hub-spokes causes huge 
swings in workload and 
resource utilization at airports. 

Blackouts are associated with 
increased births. 
Airport operators become 
dependent on mall rental 
income, making it difficult to 
modify airline route structures. 

Table 1: Examples of Desirable and Undesirable Anticipated and Emergent System 
Properties Influenced by Architecture 

The desirability/undesirability as well as the anticipated/emergent nature of these examples are 
debatable and are offered for discussion purposes only. (Hub-spokes example from Allen, 

Nightingale, and Murman 2004.) 

Finally, the architecture of a system is an important determinant of its complexity, for good or ill. 
Sometimes, architectures are designed or evolve to minimize complexity, but, as systems grow in 
size, a point is usually reached where a system’s complexity becomes overwhelming, imposing a 
limit on what one can do to operate the system, predict its behavior, or change it. Many systems 
gain both their benefits and their vulnerabilities from what would appear to be complexity, such as 
the interconnections in the nation’s electrical grid. These interconnections permit power to flow 
from regions with excess to those with shortages, a common occurrence. If each region had its 
own grid, there would be no way to share the load. But exactly the same complexity works in the 
opposite direction as well. When the shortage in one region is too great and that region’s grid 
breaks down, this breakdown can propagate along the same connections and bring down other 
parts of the grid that have no problems. Empirical evidence for the influence of complexity is 
given by Sterman (2000), who describes instances of “policy resistance:” systems whose 
behavior gets worse as people doggedly apply what they think is the correct policy. 

The above points are summarized in Figure 1. 

Architecture

Function
Behavior

Complexity

Emergent
Behavior

"ilities"

 
Figure 1: Architecture Plays a Central Role in Giving a System Its Behavior and “Ilities,” as 

Well as Generating Emergent Behavior and Complexity 
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System engineering theory teaches designers to create a hierarchy of functions and physical 
objects. In most cases, these are system behaviors or characteristics, such as safety, handling, 
or fuel economy, that are visible to the customer. During system design, the requirements of 
upper levels in the hierarchy are decomposed and flowed down to the lower levels. This is 
intended to create separate manageable pieces that can be worked on independently. Carried to 
its extreme, this process is called “reductionism.” Major challenges include remembering all the 
requirements, keeping them consistent, and understanding the many interactions between 
branches of the hierarchy. These interactions cause problems during integration at the end of 
product development and challenge the basic assumptions underlying reductionism. 

System engineering theory works most smoothly when the product can be broken into modules 
that are relatively independent. Such products or systems are called modular. When products 
cannot be decomposed simply, or when their behaviors interact, they are called integral. There 
are good technical reasons, such as weight or energy efficiency, that some systems must contain 
some measure of integrality. Correspondingly, there are good non-technical reasons, such as the 
ability to upgrade or customize a product, that systems must also contain some measure of 
modularity. A continuing tension in system design is the result. 

More generally, reductionism relies on the assumption that a divide-and-conquer strategy will 
really work, that understanding the behavior of each element and defining each interface correctly 
and completely will assure a properly working system. This assumption brings with it a host of 
other attitudes and methods, generally called top-down, that assume that things can be 
preplanned and scripted, and that following the script is the way to get a successful result. 

In contrast to top-down is bottom-up, in which requirements and system design are expected to 
emerge over time and by means of trial and error. Under these assumptions, no complete script 
can be written, not all of the events and decisions can be anticipated or scheduled, and the final 
result is unknown. On this basis, a step-by-step design process beginning with definition of the 
architecture is impossible. At the very least, the early steps will be revisited. Even if the design of 
each individual system proceeds more or less top-down, the architecture of an industry or class of 
system has historically evolved on a bottom-up basis. This is especially true in complex 
situations. A nuanced procedure for balancing these approaches is given by Cutcher-
Gershenfeld, Field, Hall, Kirchain, Marks, Oye, and Sussman (2004). 

Creating an architecture is often called architecting. Rechtin’s description of this process broadly 
represents the de novo design situation plus intense dialogue between architect and customer 
(Rechtin 1990). It involves determining what the system is supposed to do and how specifically it 
will do it. Rechtin’s view of architecting is similar to the embodiment stage (Pahl and Beitz 1991) 
in classical engineering design, when functions are expressed as objects arranged in space so 
that they can accomplish the desired functions. Achievement of the ilities is also a factor during 
the embodiment stage, according to Rechtin and Pahl and Beitz. The process of generating form 
from function usually does not deliver a unique form. The final choice is guided by application of 
the principles of engineering design as well as by the desire to conform to the ilities. Furthermore, 
in traditional engineering design, the ilities are derived from careful consideration of customers or 
users of the system. In the enterprise view of complex engineering systems (Allen, Nightingale 
and Murman 2004), Ilities also arise from enterprise culture and values, such as the safety-
consciousness of Volvo. 

The process of creating an architecture often follows a process of decomposition, in which a top-
level concept of the system’s required functions is broken down into subfunctions, and at the 
same time the most abstract version of its physical form is broken down into subsystems capable 
of performing the subfunctions. The process of decomposition continues in this way until single 
parts are reached. Decomposition at lower levels often can be accomplished only by choosing 
particular concepts or instantiations of the system. System design does not always follow a 
relentless top-down decomposition process to the single-part level but may stop partway when 
standard or previously used items are adopted in full. It is also frequently true that architects and 
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designers iterate between upper and lower levels of the system decomposition as the designers 
learn more about the implications of their architectural decisions. 

Within the architecting process, several types of architectures are involved (Levis 1999). These 
are  

> The functional architecture (a partially ordered list of activities or functions that are 
needed to accomplish the system’s requirements) 

> The physical architecture (at minimum a node-arc representation of physical 
resources and their interconnections) 

> The technical architecture (an elaboration of the physical architecture that 
comprises a minimal set of rules governing the arrangement, interconnections, and 
interdependence of the elements, such that the system will achieve the 
requirements) 

> The dynamic operational architecture (a description of how the elements operate 
and interact over time while achieving the goals) 

Furthermore, architectures may evolve over time. This is true of typical products like cars and 
aircraft and is particularly important with respect to long-lived systems like infrastructures. An 
infrastructure’s evolution is governed by many factors, such as its geographic dispersal and its 
high societal impact. A system like the telephone network or the organization chart of a company 
begins simply, with a few elements and simple relationships. As it grows, elements are added, 
new complexities arise, and the system may have to be re-architected. Wise is the architect 
whose system can grow within the original rules, element types, and structural arrangements. 
Most companies must be repeatedly reorganized. Other systems that involve large investments in 
physical plant cannot be re-architected. The goal of the architect is to minimize the severe 
constraints imposed by legacy, some of which are highly disadvantageous. 

The life history of a decomposition process, both for familiar products and long-lived 
infrastructures, comprises at least two evolutions. One evolution defines the architecture of an 
entire technological class of entities and follows the “S” curve (Utterback 1994). The other 
evolution follows a contingent series of choices during the design of a given entity in that class.  

The “S” curve history starts with an interactive search by users and designers for requirements 
and matching architecture. A pure top-down process cannot succeed in the early phases of a 
technology or industry. Even after users and designers understand each other, systems evolve to 
meet requirements in new ways. In aircraft propulsion, the top-level architectural decision 
between piston (radial geometry) and turbine (axial geometry) mechanizations was made 
decades ago. We do not often go down the piston side of the choice tree any more. Within the 
turbine choice tree, many decisions are no longer looked at seriously because technology, 
materials, or safety considerations have cemented those decisions into place. Thus, as 
technologies mature, the active choices are pushed lower and lower, ultimately to the component 
level. Sometimes hybrid architectures, such as turboprops, will emerge to exploit new markets or 
to backfill market segments abandoned by earlier architecture/technology concepts. This reflects 
the Henderson-Clark (1990) breakdown of innovation (radical, architectural, component, and 
incremental). When a major/disruptive break occurs, it is necessary to undo choices at 
increasingly higher levels of the decomposition tree.  

In an individual system design project, a decomposition is made in the form of a series of choices, 
any one of which represents a form-function realization, and any one of which could run into a 
serious problem. If the problem threatens the whole design, a series of decisions above must be 
revisited. This can be especially difficult if the budget or schedule available to these decisions has 
been exhausted. The inability to operate confidently at lower levels of this tree, free of the fear of 
the whole thing unraveling, constitutes one of the hazards of designing complex systems. 
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C. EXAMPLES OF ARCHITECTURES 
Architecture comprises entities and the structure of relationships and interfaces between them. 
The relationships can be geometric, temporal, logical/informational, or based on exchange of 
matter, information, energy, or value. Architectures can describe end items like cars or highways, 
or they can describe patterns and rules by which such end items should be designed or built. 
Architectures must also contain a plan for how the system should be operated under nominal and 
off-nominal conditions. 

Thus, aircraft architectures can be classified as fixed wing or rotary wing. Within fixed wing, we 
have straight or angled wings distinct from the fuselage, delta wings, and blended wing 
architectures. We also used to have mono-wing, bi-wing and tri-wing configurations, but the latter 
choices were gradually abandoned. Each of these is suited to a different class of operation, 
speed, flight pattern, payload, or flying characteristics. The architect chooses wing and body 
shapes in order to achieve the desired functions. 

The architecture of wheeled vehicles began as “body on axles,” the typical form of chariots and 
farm wagons. Sometime in the past, springs were added and the architecture became “body on 
frame separated by springs.” This architecture persisted into the era of automobiles until the mid-
1960s when the technology of steel stampings made reinforced shell bodies feasible, giving rise 
to the unitized body in which there is no separate frame. Sloan (1996) describes several 
intermediate forms that appeared and disappeared in the 1920s and ’30s, such as radiator and 
rear seat over axles, and low-slung frame.  

Jet engines have two dominant forms today, the low-bypass and high-bypass types.  See Figure 
2. The high-bypass type gains its thrust from a jet-driven propeller called the fan, and has a large 
frontal area and diameter. It is suitable for commercial planes when situated under the wings. The 
low-bypass type is more like a rocket that gains thrust by emitting hot gas out the back. It is long 
and thin and is suitable for mounting inside the fuselage of a combat jet. The cockpit of such a 
plane is mounted ahead of the engine. A high-bypass engine could not be mounted in this way on 
a fighter jet. It is also more difficult to rapidly change the RPM and thus the thrust of a high-
bypass engine as is required by combat maneuvers. For a history of these engines, see Smith 
and Mindell (2000). 

Compressor Combust or Turbine

Cockpit Wing

Fan

Compressor

Combust or

Turbine

Wing

High Bypass Type Jet  Engine

Low Bypass Type Jet  Engine  
Figure 2: Schematic Comparison of Architectures of Two Types of Jet Engines 
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Aircraft architectures are also described by product families such as the Boeing 737-xxx series. 
Members of such a family share a common fuselage diameter and certain other characteristics 
such as control systems and cockpits, but may differ in fuselage or wing length. New members of 
the family must conform to certain rules of design and production, so that they can be made in the 
same factory and flown by the same pilots without undue retraining. These rules also comprise a 
kind of architecture—that of the product family itself. They comprise standards that govern some 
features of the entities (fuselage elements) as well as the interfaces (main fuselage joints) that tie 
them together. 

Aircraft manufacturing also presents architectural choices. Figure 3 shows two methods for 
assembling aircraft fuselage and installing distributive and interior systems. Each has its 
advantages and disadvantages. “Trough and drape” is more feasible for small aircraft than for 
large, for which “build and join barrel sections” is commonly used. 

Aircraft Manufacturing
Architecture

Trough and Drape Build and Join
Barrel Sections

Favors achieving
circular geometry Favors pre-outfitting

of individual sections

Favors installation
of long

distributive systems

Favors completion
of large amounts
of work prior to
final assembly

Permits adding
family members
by creating new

barrels

Permits top-loading
of many interior

pieces

 
Figure 3: Alternatives for Building Aircraft Cylindrical Fuselage Sections 

Another example of an architecture that governs the creation of multiple systems is the wired 
national telephone network. This system has three layers, each with its own architecture. At the 
local level, there is a central exchange that can link any of 9,999 phones to each other or can link 
one of them to a phone in a nearby exchange in the same region. Inter-regional trunks link the 
regions in the layer above the local layer. At the top is a layer of long distance links that can be 
switched based on current loads to create alternate routes for long distance calls between distant 
regions. Each layer has multiple connections within it and a few connections to the other layers. 
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Within the top two layers, it is possible to create many alternate paths for calls to follow. Thus, the 
system can be scaled to carry more calls and is robust against disruptions to major links and 
hubs. 

Figure 4 is a map of the California electric transmission grid, showing the main high voltage lines. 
It is an accretion of the investments of at least nine separate entities. Connections, not shown, to 
other states obviously add links and loops to what is shown. 

 
Figure 4: California Electric Transmission Grid 

At least nine distinct grids are shown. Line layouts and generator locations are influenced  
by geography, population centers, location of water, and regulations,  

to name a few (von Meier 2003). 

 
The fact that architectures can arise in different ways presents some challenges to academics 
wishing to understand architecture. The de novo case is the least constrained and thus allows 
analysis of a sort of “pure” situation similar to removing friction in order to understand the basics 
of dynamics. Understanding the pure case allows us to define an ideal process and perhaps 
some ideal architectures, as well as to generate benchmarks that can be used for comparison to 
real architectures that conform to the constraints mentioned above. Yet few if any architectures 
are actually created in the pure environment. Thus, the next intellectual challenges are to 
understand the interactions of form, functions, and constraints that practicing architects must deal 
with, and to understand how to balance these factors to create a “good” architecture. 
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Summing up, we may observe that a wide variety of systems have architectures and that 
architecture is what gives systems their behaviors, both good and bad. The process of creating 
architectures is central to creating working systems that fill defined needs in defined ways within 
certain constraints. 

There are, however, no algorithmic procedures for creating architectures, that is, for choosing 
elements or choosing how to link them together, so that the desired behaviors will definitely be 
achieved. Furthermore, there are no tools that permit us to reason out what unintended behaviors 
will emerge just by inspecting the arrangement or understanding the behaviors of the individual 
elements. Thus, architecture is a necessary but incompletely understood property of complex 
engineering systems, and architecting is a necessary but incompletely understood step in 
creating them. This does not mean that more rigorous ways of analyzing and synthesizing 
architectures are beyond our collective reach. One of the goals of research in system architecture 
is precisely this—to uncover a set of principles, methods, and tools that will help system 
architects in the future. 

D. WHY IS SYSTEM ARCHITECTURE IMPORTANT? 
Architecture is important practically and intellectually. It is necessary in order to design systems 
well and to understand their behavior. Some architectures are easier to manage during design, 
others easier to manage during operation. Some are more robust to deliberate attack while others 
are more robust to random failures. Some of these aspects of architecture are discussed next. 

1.  ARCHITECTURE IS A WAY TO UNDERSTAND COMPLEX SYSTEMS 
Architecture as “arrangement of entities and relationships between them” conveys many of the 
ways the system will behave. In a highway system, one can count the number of alternate routes 
and the capacity of each, and thus can predict the system’s overall capacity. The structure of an 
airline’s service network can be set up as hubs and spokes, permitting the airline to fly 
passengers between far-separated cities via short routes and few plane changes. 

Architecture as “rules to follow when creating a system” conveys coordination rules, so that 
different people at different times and places can create systems that are compatible in various 
ways. This is efficient not only because of the advantages of coordination but also because 
elements and interconnection patterns with known behavior can be reused, increasing the speed 
with which such systems can be designed and put into operation. 

Some architectural designs can follow canonical patterns whose behavior is fairly well 
understood. Hub and spokes mentioned above is one example and is one case of a network. 
Token rings and buses are other forms of architectures, particularly popular in computer 
networks. A tree structure is another standard architectural form. Here each element is linked to 
each other element by one route only. Formal organizations are usually trees, but informally they 
behave like more general networks in which people find alternate routes by which to 
communicate with each other. 

Not only are a system’s desired operating modes influenced by its architecture, but so are some 
of its failure modes. Thus an architecture that permits only one path between elements may fail if 
a leg of any path breaks. All of a tree below a broken node is isolated from the rest of the tree.  

Some architectures can be represented fairly completely as networks. In such cases, a lot can be 
determined about their behavior from graph theory. Current literature usually assumes identical 
nodes and identical links. Various authors (Doyle and Carlson 2000; Barabasi and Albert 1999; 
Watts and Strogatz 1998; Strogatz 2001) have studied the properties of such graphs in order to 
determine their behavior if certain nodes are removed, or if control of the network’s routes is 
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decentralized. A general network is vulnerable to random failures while a hub and spokes 
network is not, since hubs can easily carry traffic routed to them around broken nodes. But a 
deliberate attack on one or more hubs will disable this kind of network fairly quickly whereas a 
general network does not present opportunities for efficient deliberate attack. The time taken by a 
message to go between random nodes and the vulnerability of a forest to lightning strikes are 
other examples of analyses that can be performed on such general models. 

2.  ARCHITECTURE IS A WAY TO DESIGN COMPLEX SYSTEMS 
Designers can use architecture to help create systems with desired behaviors and can structure 
those architectures to make the task of design and manufacture easier, although these goals 
sometimes can be in conflict. Architecture as “rules to follow when creating a system” has already 
been discussed. In addition, architects speak of integral and modular architectures as differing 
styles with their own advantages and disadvantages.  

Roughly speaking, modular architectures consist of modules, each with one or a few distinct 
functions, connected to each other with a few simple, well-defined interfaces. In the ideal limiting 
case, all interactions between modules occur over these predefined interfaces, and all system 
behavior is encompassed by module behavior and interactions across the defined interfaces. On 
the other hand, integral architectures contain modules that perform multiple functions and interact 
over many interfaces, some defined by the architect and some emergent as a result of module 
behavior or opportunistic interactions. In some limiting cases, there are no discernable modules. 
Most real systems are in between the limiting cases. 

Modular architectures are the easiest to decompose, sometimes according to the functions 
performed, sometimes according to how they are designed and built, sometimes according to 
how they are used or perceived by users (Ulrich and Eppinger 2000; Baldwin and Clark 2000). In 
the ideal limiting case, the system can be built simply by plugging the modules together. The 
literature on drivers of modularity and decomposition is large. The notion of “elegant” architecture 
applies when the system architecture is very similar across multiple decomposition criteria. This is 
the case, for example, when the system modules are identical for design, manufacturing, 
procurement, and operational considerations. An example of an elegant architecture is the Apollo 
Program. Here, the command module, service module, lunar excursion module, as well as the 
Saturn rocket represented modules of a larger architecture, with many interconnections within the 
modules and few between them. 

Conventional aircraft comprising separate wings and fuselages accomplish the functions of 
providing lift, carrying fuel, and housing passengers using separate portions of the aircraft. 
Typically wings and fuselages are designed by different engineers and made in different factories. 
The Airbus Consortium was structured to take advantage of this architecture. Wings are made in 
the UK, fuselage barrel sections in Germany, tail sections in Spain, and final assembly and 
integration take place in France. But there are some disadvantages in terms of coordination as 
well as transportation of large subassemblies. For example, the International Space Station may 
have suffered from certain mismatches between physical and organizational architectures. 

On the other hand, blended-wing and delta-wing aircraft combine many functions in the same 
structural regions. Such systems are integral. Their design and construction can be more difficult, 
but their operational efficiency can be superior to that of more modular systems. They may 
contain fewer interfaces or may require only one element to carry out several functions, whereas 
modular architectures tend to have distinct elements assigned to each function. The extra 
interfaces between modules add weight and occupy space that can be used to accomplish other 
goals in an integral system. Extra manufacturing and assembly time may also be required of 
modular systems.  
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The option to modularize is often limited by the absolute level of power used or conveyed by 
system elements. Portions of jet engines may have to be made integral simply in order to manage 
the power; however, elements of microelectronic products can be modularized almost at will 
because their very low power transmission is incidental to the main function of processing 
information. As modularity is enforced, some of this power can be wasted—something that 
cannot be done in jet engines (Whitney 1996).  

Also, for many systems, such as vehicles (cars, airplanes, spacecraft, submarines), there exist 
important packaging constraints that force all subsystems and modules to fit within a constrained 
volume in physical space. Vehicles have to carry much of the energy for their own travel within 
that constrained volume. One may argue that the existence of such constraints pushes architects 
and designers to make choices that promote volume and mass efficiency at the expense of purely 
decoupled, uncoupled, or elegant architectures. Fixed infrastructures and various kinds of non-
mobile industrial machines might not have to satisfy such constraints, and, as a result, their 
architectures might be different. The independence axiom of axiomatic design promotes 
decoupling functional and physical elements of the architecture (Suh 2001). The virtues of such 
practices stem mainly from reduced complexity of design, manufacture, and system integration. 
When performance, efficiency, and packaging constraints dominate, such clean, decoupled 
architectures might not always be feasible. 

Modular architectures can also be designed and built as distinct subassemblies, and some of this 
work can be distributed among many companies in a supply chain. The coordination of such work 
is aided by careful definition and oversight of the interfaces and relationships between these 
subassemblies, along with maintenance of standards for measurement. In many cases it is 
desirable to make the functional boundaries the same as the physical boundaries, an additional 
constraint on the architecture that permits subassemblies to be functionally tested prior to final 
assembly. 

Commercial products are often given modular architectures that permit them to be customized on 
the spot in response to customer orders. Assembly sequences and supply chain dynamics are 
arranged, so that most of the product can be built in common and customization can be delayed 
to an economically or logistically advantageous point (called the decoupling point or the push-pull 
boundary) (Simchi-Levi et al. 2002).  

Baldwin and Clark (2000) have studied modularity and conclude that there are three kinds.  

> Modularity in design (each function is designed separately and placed in one 
physical object, or several functions and their objects are combined and designed 
together) 

> Modularity in production (a group of functions or physical objects is built or bought 
as a package) 

> Modularity in use (the customer can combine several functions or physical objects 
and use them, choose them when buying, or upgrade them together) 

 
The important thing to understand is that the three different kinds of modules may be different. As 
illustrated in Figure 5, a module that exists in production may include parts of many modules that 
exist in design, This can cause confusion, cut systems in two, and create disconnected pieces of 
requirements that must be satisfied by different suppliers who may not have the skills. The 
example in the figure was provided by Francois Fourcade, who was product line manager for a 
front-end module for a French car supplier. Its customer cancelled the program, and the supplier, 
seeing no way to make a profit in view of the technical and business complexities, has not bid on 
this kind of item since.  
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Figure 5: A “Module in Production” Consisting of Front Bumper, Bolster, Grill, and Lights 
Contains portions of several systems but not all of any one. It is easy to install on the car but hard 

to design and test. 

As shown in Figure 6, some kinds of products are easier to modularize than others. More integral 
products need to be designed at the highest level of the hierarchy, or their design requires a lot of 
coordination of the “modules” at lower levels. 
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Figure 6: Examples of Products with Different Degrees of Integrality 
Top: Dominant architectures of automobiles. (Illustration provided by Prof. Olivier de Weck, MIT 

ESD) Bottom: As integrality increases, it is harder to divide the product into independent modules. 
(Illustration provided by Prof Jasper Steyn, University of Pretoria.) 

According to the theory of axiomatic design, the best design is one where each function is 
implemented in a way that is independent of implementation of any other function (Suh 2000). 
This permits the maximum in independence and simplicity. It is impossible to define all of these 
relationships at once, however. Instead, one has to start with the top-level functions and define 
some top-level technological choices or implementations. These give rise to a second layer of 
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functional requirements, which in turn are linked to more detailed or subordinate technical 
implementations. This decomposition process continues in a zig-zag fashion to the lowest level in 
the hierarchy. While there is general agreement that simpler designs with independent functions 
are desirable, there is less agreement about whether this is possible in complex systems. 

The processes for designing complex systems can also be said to have architectures, as can the 
organizations that carry out the design. Processes can have modules and interconnections 
between them, and these can all evolve over time. Steward (1995); Allen, Nightingale, and 
Murman (2004); and Browning et al. (2002) discuss alternate organizational patterns and show 
the influence of conforming or not conforming organizational structures to product and system 
architectures. 

There is some evidence that complex phenomena become understandable only after their 
essential modules have been identified and characterized. A corollary requirement for 
understanding is that these modules act the same way in all combinations and that the types of 
interactions and interfaces can be enumerated and characterized. 

3.  ARCHITECTURE IS A WAY TO DESIGN STANDARDS AND 
PROTOCOLS TO GUIDE THE EVOLUTION OF LONG-LIVED SYSTEMS 

Standards provide a way for systems to be designed by different and distant sets of designers 
using the patterns set by the standards. An early example is standard weights and measures, 
which permit decomposing and outsourcing system design to a supply chain. Later examples 
include pipe threads, electrical quantities, communication codes and protocols, and software file 
interchange standards. Standards often apply to interfaces, a prime focus of system architecture. 
Once in place, these standards provide the ability to evolve systems over time, design upgrades 
to existing systems, and to innovate a class of systems under the umbrella of the standard. The 
standard allows the system designers to skip an often difficult step in design and focus their 
efforts on the immediate challenges. Standards also permit systems to be made of a judicious 
combination of standard components and bespoke ones. 

An example of a long-lived standard that gave rise to a whole set of avionics architectures in 
aircraft, spacecraft, and military communications systems is MIL-STD-1553. 

MIL-STDs comprise, among other things, standard procedures for doing repetitive things. Even 
the design of products and systems can be subjected to standards, such as the German DIN 
system. The DIN for product development was based on Pahl and Beitz (1991). 

In some domains, such as VLSI, standard components have been adopted as one way to reduce 
uncertainty in complex semiconductor product development. These components, either stand-
alone chips or nano-scale circuit devices within a chip, act as the main function carriers of such 
systems. In typical high-power mechanical systems, the standard components are more often 
support items like fasteners. The most important main function carriers are usually designed to 
suit. Whitney (1996) discusses the reasons for this. 

4.  ARCHITECTURE IS A WAY TO MANAGE COMPLEX SYSTEMS 
System architects often seek to design the systems so that they will be easily managed after they 
are built. System modules or segments may be defined by where they are or how easily they can 
be observed or controlled rather than by what they do. What they do may be perceived quite 
differently by operators than by designers. Thus, elements that might be designed or 
manufactured more efficiently as a single integrated unit might be nevertheless divided into two or 
more distinct units in order to make operation or repair easier. 
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Complex products and systems are hard to design and operate because a) they contain complex 
components, and b) those components interact in complex and sometimes unpredictable ways. It 
takes a long time for someone to learn all the interactions that are known, much less learn how to 
find the hidden ones. Data from several lines of research indicate that individual attributes are 
supported by six to twelve underlying and interacting items, and sometimes more (Whitney et al. 
1999). The interactions comprise long chains that can snake through assemblies, tooling, 
organizations, and supply chains. Only the most senior employees, given the chance, are likely to 
understand the whole chain in any given situation. Management incentives and career-path 
planning are needed to ensure that a critical mass, perhaps 10 percent of all technical 
employees, have a chance to develop this kind of knowledge and put it into use. 

A user or operator of a system may see it in a way that is totally different from the way its 
designers or builders see it. Its “modules” may be operating or failure modes, rather than physical 
elements. Such modes may combine elements that were not necessarily designed or built 
together. 

The impact of complexity in an architecture may be felt most strongly by users or operators. If the 
interconnections or interactions are many, hidden, or changing, the operators may be unable to 
understand the system and operate it properly. Users may drive the system into unstable 
operating regimes, as happened at Chernobyl, or they may do the wrong thing because they do 
not know the state of the system, as happened at Three Mile Island. Thus, one must distinguish 
between interface complexity and behavioral or structural complexity. Interface complexity is a 
subjective measure of complexity as experienced by users, operators, or assemblers of the 
system. This subjective perception of complexity is often expressed by the adjective 
“complicated” rather than the adjective “complex.” Structural and behavioral system complexity 
are theoretically measurable, independently of the observer, provided one can agree on the 
metrics. It is good systems architecting practice to think about the relationship between interface 
and structural/behavioral complexity in the context of the needs of downstream stakeholders. 

It is important to note that the designers of such systems may be unaware that they are creating 
complexity. The system may grow by individually understandable increments that lead to an 
incomprehensible system in due time. Careful planning can prevent this, but such planning must 
be centralized and managed consistently over the entire life of the system. This can happen 
under monopoly conditions as existed in the US telephone system for decades. The US electric 
power grid was not built by a central planning agency or a monopoly. 

E. TYPES OF ARCHITECTURES  
This section expands on some of the issues raised in earlier sections. Here we deal with 
structures or architectures for architectures and try to make some general observations. 

The following figures propose a structure for architectures. Figure 7 displays the first-level 
decomposition of things with architectures. Each subsequent figure expands a portion of Figure 7 
to lower levels of hierarchy. In many engineering systems, several of these types of entities will 
be involved. Thus, not only are their individual architectures important, but so is matching, or the 
consequences of mismatching, the architectures of the entities that interact. 
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Things With Architectures

Entities
Other Architectures That
Inform Or Constrain The
Architectures Of Entities

Natural Systems Designed
By People

Standards &
Protocols

Product Families
And Platforms  

Figure 7: First-Level Decomposition of Architectures 

In Figure 7 we make a few main distinctions. First, entities are distinguished from architectures 
themselves, since both can have architectures. Not every possible architecture on the right is 
listed, but a couple of importance (standards and protocols, and product families and platforms) 
are noted because they provide constraints on the architecture of things on the left designed by 
people that are intellectually or commercially important. Natural systems are included because 
their architectures are the subject of high interest (carbon cycle, for example) or because they 
may offer exemplars for the design of things that might as a consequence have certain desirable 
properties. 

Figure 8 pursues the branch in Figure 7 that deals with entities designed by people. On the left 
are distinguished two kinds of entities whose internal constraints make their possible 
architectures quite different. These differences extend to the ways they are designed and how 
they behave. On the right (with abstractness increasing to the right) are things with architectures 
that have no necessary physical existence. The lack of physical existence frees them of many 
constraints that inhibit architectural choice or implementation in physical things. For example, 
thinking in network terms, nothing limits the number of arcs that can emanate from a node in a 
non-physical system, but heat, weight, or mechanical constraint are examples of influences that 
limit this number in physical things. (Bounded human rationality, however, may provide a limit in 
non-physical things.) 
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Figure 8: Several Important Things Designed by People 
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Figure 9 displays an expansion of one important node from Figure 8, namely that of 
organizations. A few important kinds are shown. Government and non-governmental 
organizations are shown mainly because they provide contexts such as regulations that constrain 
architectures of other designed things, both physical and non-physical. Companies and 
enterprises are important in themselves because they can have many possible architectural 
forms and because those forms interact with and encourage or inhibit the design of other entities, 
such as products. At the lowest level in this figure there is increasing abstractness, diversity, and 
lack of structure proceeding from left to right. 

 
Organizations

Government Regulators
Government Operators

NGOs

Companies Enterprises Larger
Than Single Govt

Agencies Or Companies

Individual
Programs

Coordinated
Multiple Programs

Joint
Ventures

Supply
Chains

Multiple
Divisions  

Figure 9: Two Levels of Decomposition of Organizations as Examples of Non-physical 
Things with Architectures That Are Designed by People 

The last section of Figure 7, intellectual frameworks, appears in Figure 10. Pursuit of this domain 
is as old as philosophy, but it is included here because our committee has engaged in it, and 
those who design organizations and their knowledge have done so as well. Again, these 
architectures can encourage or inhibit the creation of important entities listed elsewhere in the 
figures. Also, there is again a somewhat increasing level of abstractness proceeding from left to 
right. 
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Figure 10: A Decomposition of Intellectual Frameworks 

For example, it is known that organizational forms differ widely and are variously suited or 
unsuited for managing situations in Figure 9, such as individual programs or coordinated multiple 
ongoing programs (overlapped car development activities, for example). 
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F. DOMAINS WHERE ARCHITECTURE IS IMPORTANT 
Architecture is important to both naturally occurring and overtly designed systems since 
architecture conveys behavior. 

Examples of naturally occurring systems whose architectures have been studied are biological 
systems (ecosystems, cells and small organisms—see Figure 11, the carbon cycle, and the 
etiology of diseases) and social systems (villages, military units, workplaces). Among the models 
built are networks, dynamic simulations, and control systems. Network theory and graph theory 
have been used to measure the networks, discover connections and cliques, and determine how 
information, energy, and material flow between elements (Kitano 2002; Sterman 2000). Naturally 
occurring systems are of interest in their own right as well as because they may tell us something 
about how to provide overtly designed systems with desirable properties such as robustness to 
element failure. 

 
Figure 11: The Topologic Overlap Matrix Corresponding to E. coli Metabolism, with the 

Corresponding Hierarchical Tree That Quantifies the Relation between the Different 
Modules (Ravasz et al. 2002) 

Some physical systems have emerged without design but perform complex functions and have 
distinct architectures. These include informal social networks that spring up within defined 
organizational structures. Another well-known example is the Internet, which has no central 
control or growth rules. It is relatively efficient and effective but is hard to manage when uniformity 
is needed, such as for diffusing security precautions. 

Some infrastructure systems conform to natural constraints, such as railroads and highways that 
follow terrain, river valleys, or mountain passes. In some cases the routes are thousands of years 
old and have been repeatedly reconstructed using new technology. In some cases, new 
technologies allow designers to push back on some constraints (tunnels through the Alps, 
Chunnel, bridge connecting Denmark and Sweden), albeit at significant cost. 
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Finally, there are overtly designed physical systems, such as cars, planes, airports, factories, 
shopping malls, and supply chains. Each of these seeks to perform certain functions and must 
conform to a variety of physical and administrative constraints during construction and use, 
including the laws of nature, building codes, industrial standards, safety regulations, and work 
rules, to name few. Some such systems, like the DC-3 aircraft, fulfill their intended role and do so 
unchallenged throughout a long life cycle. Others, like the B-52, outlive their original function and 
repeatedly take on new ones not conceived of when they were designed. Yet others, like the B-
58, barely serve their original function and go out of service quickly, unable to be used for 
anything else. The deeper architectural reasons for these different outcomes are not well 
understood. The word “flexible” is used to describe such systems, but a universal formula for 
creating flexible systems does not exist. 

In some cases, flexibility comes at a price—namely, efficiency in some form. Flexibility may 
require over-design, generic components, extra interfaces, or changeover time. A less flexible 
system might have more focused components, fewer interfaces, and no loss due to changeover. 
The need for flexibility shows that the process of architecting requires a model of future usage of 
the system, including an understanding of uncertainties in the environment, competition, 
regulations, and future user needs. This is a central issue addressed by a parallel ESD committee 
on uncertainty management. 

The architectures of most overtly designed systems usually emerge from long iterations between 
potential users and the system architects and engineers. The DC-3 followed the rejected DC-1 
and DC-2 as the engineers sought to meet the specifications and the users saw what was 
possible economically and physically. The B-52 might be seen as a successful iteration following 
the less successful B-48 and B-50. The structure of General Motors’ products in the 1920s 
emerged as the company discovered how to implement the strategy of “a car for every purse and 
purpose” while at the same time maintaining some rationality of families and reuse of expensive 
components like engines (Sloan 1996). 

Similarly, different architectures of production systems have emerged successively over time in 
response to different needs. The principle of division of labor permitted specialization and 
economy of scale. The assembly line brought the work to the worker to cut wasted motion and 
worked best when identical products were made over and over using the same route and 
sequence of work. Flexible manufacturing systems sought to combine efficient use of individual 
workstations with flexible transport systems, permitting different routes for different products in 
the same factory. Common car body architectures are intended to permit different kinds of cars to 
be made on the same single route-single sequence assembly line. Each of these architectures 
meets, in different ways, different needs for efficiency and flexibility, two of many ilities. 

As with the aircraft cited above, each of these architectures emerged and was not successfully 
designed on the first try. Each has its own strengths and vulnerabilities as well as emergent 
behaviors. Assembly lines led to boredom and, combined with hierarchical management, to 
industrial strife, while flexible manufacturing systems presented difficult scheduling problems. 
Both were unanticipated, and both have been mitigated by additional architectural and 
managerial initiatives. 

Another reason why architectures of designed systems emerge is immaturity of technology and 
product alike. Utterback (1994) and others (for example, see Christensen 1997) have noted the 
cycles of industrial evolution in domains like typewriters and disk drives. When a technology is 
new, no one knows what it is or what it can do. There is an exploratory phase when many 
innovators and users try different things. At some point, for various reasons, a so-called dominant 
design emerges. This design is usually an architecture. An example is the 1920s single metal 
wing aircraft with stressed metal skin, which was adopted after twenty-plus years of exploration 
with multiple wings, cloth wings, wings with struts and guy wires, and so on. Only now is this 
architecture being questioned by both Airbus and Boeing. Once the dominant design emerges, 
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innovation switches from product architecture to process architecture, including production, 
supply, and distribution systems. 

Thus requirements themselves are apparently emergent properties of systems, making their 
design necessarily an exploratory process, at least when the system’s technology or the desired 
functions have not been implemented before. 

G. EMERGING PRINCIPLES OF ARCHITECTING 
The previous discussion highlighted the importance of architectures in many different domains 
from product development to large infrastructures. One may ask whether there are generalizable 
insights to be gained across these domains. One may even go further and attempt to uncover or 
formulate “principles of architecting.” A principle is a statement that is almost universally true and 
is long enduring. We contrast principles of architecting with methods and tools, which might 
become obsolete on shorter time scales. 

Prof. Ed Crawley has been collecting principles of architecting over the last five years in his 
course on systems architecture at MIT, and there is empirical evidence that such principles might 
exist, regardless of whether one considers, civil, computer, product or other architectures. 
Principles can be either descriptive (how things are) or prescriptive (how things ought to be). 

An example of a principle of systems architecting is: Robust functionality drives essential 
complexity. This is a descriptive statement that introduces a third notion of complexity, aside from 
structural/behavioral and interface complexity as described above. Essential complexity is a 
theoretical lower bound to the complexity of a system, required to achieve a specified function or 
set of functions with desired precision, efficiency and repeatability. The existence of such a lower 
bound has not been proven. This is in sharp contrast to lower bounds in other disciplines, e.g., 
Shannon’s bound in information theory.  

Let us consider a very simple example to explore the proposed essential complexity principle of 
systems architecting. An example of simple systems of varying complexity are bottle cork 
removers. They come in various shapes and sizes, and use a variety of working principles (spiral 
screws, vacuum pumps, gas injectors…). They are all designed to fulfill essentially the same 
function. Expressed in its essential form, this function is to get the cork out of the neck of the 
bottle. Most commercial realizations operate by exerting an axial force on the cork, reacting this 
force axially on the bottle. Those that tend to fulfill the function more robustly, e.g., requiring less 
force, also tend to be more complex. That is, they have more system elements and interactions, 
and may require more steps to operate. Good system designers attempt to design for simplicity, 
but usually some amount of gratuitous complexity is introduced. This unnecessary amount of 
complexity is the difference between the (unknown) essential complexity and the actual 
complexity of the final product or system. Good architectures, according to this principle, have 
minimal gratuitous complexity.  

Further principles of architecture might emerge over time, but they can only be viewed as 
heuristic guidance until they are proven by rigorous mathematical proofs and physical evidence in 
actual systems. There is debate whether such rigor is achievable or necessary in practice.  

Table 2 categorizes some of the activities involved in architecting a complex engineering system. 
These are partitioned into two phases and two types of considerations. While these activities do 
not rise to the level of principles, it is felt that these steps are involved in the creation of many—if 
not all—architected systems. 
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 Technical Matters Non-Technical Matters 
“Direct” design aimed at 
achieving the main 
functions—these are the 
functions required 
immediately upon initial 
fielding of the system 

Determine structure that 
achieves properties and 
behavior 
Manage complexity “in the 
box” using clustering, 
interface clarity, and other 
principles of architecting 
Be mindful of uncertainty 
Prepare for verification at 
multiple levels 

Consider multiple 
stakeholders 
Manage complexity at the 
human interfaces 
Match system architecture to 
the architecture of the 
context and stakeholder 
organizations 
Prepare for validation at 
multiple levels 

Planning for the life cycle 
(manufacturing, operations, 
upgrade, retirement) plus 
achieving the ilities 
(reliability, flexibility, 
operability, etc.) 

Be mindful of emergence, 
including technological 
evolution and disruptions 
Prepare for upgrades, 
customization, repair 
See to reliability, durability, 
scalability 

Consider multiple 
stakeholders 
Be mindful of emergence, 
including human agency 
Be mindful of changing 
missions and circumstances 

Table 2: Considerations Applicable to Architecting Complex Engineering Systems 
The term “be mindful” is an acknowledgement that systematic procedures do not exist for 

obtaining many desirable features of a complex system. 

Direct design encompasses traditional engineering that is aimed at achieving the system’s main 
recognized functions. Life-cycle planning addresses the ilities as well as activities normally 
associated with the system’s life. Technical matters begin with the act of architecting itself 
(structure > properties > behavior) but extend to other requirements. Non-technical matters 
include non-physical architectures and the activities of people as users, passive participants, or 
observers of the system. 

H. CRITICAL PROPERTIES OF SYSTEMS AFFECTED BY 
ARCHITECTURE 

1. DELIVERY OF BASIC FUNCTION 
Architecture as “arrangement of entities and relationships between them” or as “relationship 
between form and function” is the designer’s solution to the problem of finding a physical 
embodiment that will deliver the required functions. Example decisions include that cited above 
between the basically radial style of piston and high-bypass jet engines on the one hand and the 
basically axial style of low-bypass jet engines. Each of these delivers thrust but in very different 
functional ways. 

Traditionally, design to achieve basic function focuses on performance, time to market, cost, and 
risk. Maier and Rechtin (2000, figure 5.2) show these four quantities as being in tension with each 
other. One of the main jobs of architects and product designers is to understand and resolve this 
tension. Traditional engineering education tends to focus on performance. Adding time and cost 
creates a complex interaction in which elements of each must be traded off in order to arrive at a 
design. Risk is the most difficult dimension to understand and address. A wide array of methods, 
intellectual frameworks, and computerized tools has emerged to support this process. These 
include traditional engineering design (Pahl and Beitz 1991), axiomatic design (Suh 2001), 
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product design and development (Ulrich and Eppinger 2000), constraint management (Goldratt 
1991), computer-aided design and manufacturing software, the design/dependency structure 
matrix (Steward 1995), time to market and time to profit metrics, among others. It can be debated 
whether risk should be treated as a separate entity, or whether it acts as a qualifier on 
performance, schedule and cost (Browning et al. 2002).  

2.  OTHER PROPERTIES 
From a traditional point of view, it is comparatively easy to say what the functions of a product, 
system, or enterprise should be. An airplane must fly, a manufacturing company must design and 
deliver products, and so on. But it has to do these things well, and here is where properties called 
ilities come into play. Examples include robustness, adaptability, flexibility, safety, and scalability, 
to name a few. The architecture has a strong influence on how the ilities are achieved and how 
their achievement interacts among themselves and with the basic function. 

Doyle says that comparatively little effort is devoted to assuring that an entity like an airplane will 
provide the required functions of lift and forward speed. The rest is overwhelmingly large and 
comprises providing safety, redundancy, amenities, automated functions, and so on. But this 
statement must be tempered by the thought that lift and forward speed may not be a complete 
statement of the required function. Only by considering the aircraft in the narrowest sense can 
this list be considered complete. At a minimum it must deliver lift and speed with sufficient safety 
and fuel efficiency. It also must be able to take off and land on required or available runways and 
must be able to make an emergency landing right after takeoff. These additional basic functions 
add severe constraints to speed and lift specifications. Things are further complicated when 
various types of internal and external payloads and delivery processes are considered. 

Boeing manufacturing employees acknowledge that the design engineers mainly focus on 
assuring that the aircraft will not physically break during takeoff, flight, and landing. The rest, 
including manufacturability, is addressed by others who petition the design engineers to pay 
attention to these other needs. Similarly at Ford, the body engineers focus mainly on structural 
integrity, stiffness, crash-resistance, and squeaks and rattles. The manufacturing engineers 
perform a function similar to those of their Boeing counterparts. 

More generally, the requirements must be stated in the context of the enterprise. This means that 
the product has to satisfy a combination of interlocking technical and business requirements. The 
aircraft must be able to take off fully loaded with revenue cargo and over its lifetime must return a 
profit to its owner who will pay ten times more for fuel and maintenance that its original purchase 
cost. Not only must the gravity-lift equation balance but the cost-revenue equation must do so as 
well. At Boeing this is called “making the business case close,” and failure to close the business 
case is often the reason why aircraft programs are cancelled or aircraft do not succeed in the 
market. 

The architecture of the product has a large influence on how these other properties are achieved, 
as well as how well and how efficiently. An example was given in Figure 3. 

The next few subsections discuss specific ilities. 

a) Robustness 
Robustness is defined as “the demonstrated or promised ability of a system to perform under a 
variety of circumstances, including the ability to deliver desired functions in spite of changes in 
the environment, uses, or internal variations that are either built-in or emergent” (ESD 2002). 
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Robustness may be implemented in several ways, including by paying attention to the reliability of 
system elements as well as reliability of interconnections. In addition, robustness may be 
enhanced by the structure of the system, such as by providing alternate paths or backup 
systems. An intellectual framework for designing robust systems revolves around the P-diagram, 
which is a discipline for identifying “noises” from within or outside the system (see Figure 12). 
Engineers are asked to create a P-diagram for their component, subsystem, or system. 
Identification of the noise factors is the most difficult part of this process, since this identification 
requires engineers to think beyond the boundaries of their part. A lot of knowledge about 
interactions from other systems, including customers, is needed. At Boeing, the pilot is 
considered a possible noise source. As more comprehensive subsystems and systems are 
considered, developing their P-diagrams involves more people. There is some question as to 
whether the noise factors for an entire system can be identified. 

 

Figure 12: The P-Diagram.  
(Source: http://thequalityportal.com) 

The P-diagram approach, however, does not address the role of architectural form in providing 
robustness. The network theorists (Barabasi, Doyle, and others) note that different network 
architectures are differently able to resist attack. Doyle, however, says that additional effort at 
providing robustness only adds layers of system elements and connections, providing only 
additional complexity and points of potential failure (Doyle and Carlson 2000). Perrow (1999) 
makes the same observation. Thus there is no consensus on whether architectural form by itself 
can impart robustness to a system. Nevertheless, it is known that certain forms are easier to 
understand, partition to avoid cascading failures, diagnose, and maintain. These generally have a 
more modular structure and were designed with careful attention to keeping the modules 
separate. 

b) Adaptability 
Adaptability is defined as “the ability of a system to change internally to fit changes in its 
environment,” usually by self-modification to the system itself (ESD 2002). Such systems contain 
sensors, control algorithms, and human operators. The technical portions must be designed to be 
stable while the human elements must be trained to distinguish desired signals from distracting 
noise. The technical architecture of such control systems is well developed but holds some risks 
when decisions must be made quickly and the behavior of the system is not well understood, or 
when the human interface is not well designed (Perrow 1999).  
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c) Flexibility 
Flexibility is defined as “the property of a system that is capable of undergoing classes of 
changes with relative ease. Such changes can occur in several ways: a system of roads is 
flexible if it permits a driver to go from one point to another using several paths. Flexibility may 
indicate the ease of ‘programming’ the system to achieve a variety of functions. Flexibility may 
indicate the ease of changing the system’s requirements with a relatively small increase in 
complexity and rework” (ESD 2002). Flexible systems include product families that can be 
configured to meet changing markets. An example is a family of aircraft where the fuselage can 
be lengthened merely by adding short sections fore and aft of the center section. At an enterprise 
level, a flexible system can deliver products or services quickly and accurately in response to 
real-time demands. An example is Dell’s manufacturing, supply chain, and fulfillment system. In 
both example cases, the flexibility arises from the architecture of the system itself, which exploits 
defined interfaces to permit substitutions at predefined points in the product or process. 

Flexibility can be thought of as a means of managing risk, specifically risk that the system as 
designed will not meet its requirements some time in the future. The flexibility committee’s paper 
(de Neufville et al. 2004) notes that financial options theory can be applied to determine the value 
of providing (at some cost) the flexibility to respond to future contingencies. These options permit 
some decision about the system to be delayed until more information is available. Financial 
options have been used this way for decades. They have the advantage that future value can be 
calculated. In addition, there is some equivalence of value between different options since they all 
can be reduced to money and can be readily substituted for one another. Whether this can be 
accomplished in physical systems is the subject of future research. 

d) Safety 
Safety is defined as “the property of being free from accidents or unacceptable losses.” 
Associated with this definition are several others: An accident is “an undesired and unplanned 
(but not necessarily unanticipated) event that results in a specified level of loss” (human, 
economic, etc). A hazard is “a state or sets of conditions that, together with worst-case external 
conditions, can lead to an accident.” Risk is “the level of hazard combined with the likelihood of 
the hazard leading to an accident, and the duration of exposure to the hazard” (Leveson 1995). 

Endowing a system with safety involves determining, among other things, how safe is safe 
enough. This question is beyond the scope of architecture alone; however, architecture can 
improve or reduce safety in various ways. Systems whose architecture is transparent are easier 
to diagnose, and hazards may be easier to detect and prevent. No method exists, however, to 
compare the safety of two architectures. 

e) Scalability 

Scalability is defined as “the ability of a system to maintain its performance and function, and 
retain all its desired properties when its scale is increased greatly, without causing a 
corresponding increase in the system’s complexity” (ESD 2002). Ways of increasing the scale of 
a system include increasing the number of elements, increasing the number of possible paths or 
connections between elements, increasing the “traffic” capacity of links or connections, or all of 
the above. The degree to which the complexity of the system increases depends greatly on how 
the structure is designed and how or if it changes as the scale is increased. Some architectures 
permit additional scale by adding identical subsystems. Short and long truss-style bridges and 
short and tall buildings can be made this way. Others permit additional scale by adding differently 
structured layers. An example is the US national wired telephone system. 

Most systems incur increased complexity as their scale increases. Taller buildings require 
segmented elevator systems since a single elevator cannot be built taller than a limit that is now 
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less than building height. Coordination of these elevators to permit people to travel the full height 
of the building can be complex. Some plans for mega-buildings envision creating separate 
stacked modules for full-time living that do not require residents to move beyond their module. 
This reduces the complexity problem to that of the identical layers method. 

Really large systems pose particular challenges. Each has its own architecture and scaling 
properties. Some are built in an evolutionary way rather than being manufactured repetitively 
according to a standard pattern that was established before construction begins. Some, like the 
International Space Station, cannot be assembled and tested before being put into use. They are 
so complex, and their operating environment is so hard or costly to duplicate, that they cannot be 
tested end to end prior to deployment. In some cases, very large infrastructures can be 
implemented in pieces and each piece can be tested before it is added to the existing system. 
This approach is sometimes referred to as “staged deployment.” Staged deployment for large 
constellations of communications satellites has been proposed as a way to reduce economic 
risks for systems such as Iridium and Globalstar, which were designed “all at once”, rather than in 
a staged manner (de Weck et al. 2003). But success in these tests does not guarantee that 
unexpected behaviors will not emerge after the larger system begins to operate. This and other 
issues of scale remain unresolved. 

I .  OPEN RESEARCH QUESTIONS 
In this section, we list a number of research questions that may have definite answers or may 
become recurrent themes without final resolution. The list is not intended to be exhaustive, but 
rather to be illustrative and provocative. Our hope is that the field of engineering systems 
architecture will create an effective way of thinking about complex systems, generate a shared 
vocabulary, develop and validate research methodologies, and improve the practice of generating 
and evaluating system architectures. 

The list of questions follows: 

Systems that are complex enough to be of interest to the Engineering Systems Division exhibit 
emergent behavior. Some emergent behavior may be beneficial because it gives the system 
desired qualities that the parts of the system do not have by themselves. But some emergent 
behavior is detrimental because it represents sneak paths or other unpredicted behavior that is 
not wanted. How can we get the good without the bad, or at least predict and mitigate the bad? 
Perhaps this should be called “emergence management.” 

Is emergence management possible, or do the methods we use now (testing, redundancy, 
sensors, etc.) only add complexity and introduce emergence elsewhere in the system?  

Is complexity inevitable in systems that are commercially meaningful or that do enough good 
things well to make them worth building? Are there less complex alternatives that could do the job 
just as well, such as locally generated electricity as an alternative to central generators and 
complex distribution grids? 

In principle, all the behaviors of a system could be predicted if we pursued reductionism to its 
limit, modeling and testing every element and every combination of elements, but this limit is 
unachievable in practical cases. Emergence is the opposite of reductionism. 

Cognitive limits prevent us from thinking of everything. They also prevent us from making perfect 
models of real systems. Incomplete or inaccurate models are another source of emergence. 

Are there architectures that can minimize the effects of cognitive limits? Hierarchies are one such 
architecture, but can they be used in all systems and do they apply to all types and 
consequences of cognitive limits? 
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Will human agency inevitably create emergent behavior? Agency can arise due to cognitive limits 
or willful intent. Perrow (1999) argues that some systems will always be too complex to design or 
operate properly and thus should not be built. Weick et al. (1999) argue that people’s ability to 
improvise and use their accumulated experience is the only known barrier to emergence, but this 
argument applies only in emergencies in the examples they cite. 

Systems where reductionism appears to work are often those that exhibit a great deal of 
modularity. An example is low-power micro-electronics. In these cases the individual modules can 
be modeled and their models validated separately. Additionally, their behavior when connected 
into systems is reasonably predictable. This is accomplished by several means, such as 
enforcing standardization and forcing interfaces to be one-way, via huge impedance mismatches. 
What are the limits of extending this approach to all systems? 

How many kinds of things can usefully be said to have architectures? Examples include systems, 
products, organizations, and processes. 

What are ilities, and can they be classified? A suggested classification comprises two types: 
those used during system design to anticipate future uncertainties, such as manufacturing, 
normal use, abnormal use, technological or market evolution, and so on; and qualifiers on 
performance or fitness, such as cost, robustness, safety, or reliability. 

Can systems be classified? Classes could include primary function delivered, logical or physical 
structural type, operating power level, type of enterprise (public/private), type of use pattern 
(product, infrastructure), or degree of evolution over time. What characteristics do all classes 
share, and what characteristics distinguish them? 

How can the relative or absolute complexity of a system be measured, or can systems even be 
ordered according to complexity? Can other system characteristics, such as reliability, be 
normalized with respect to complexity in order to create a scale of expectations against which the 
reliability per unit of complexity (for example) can be judged? 

How do we evaluate the ilities content of a system?  

More generally, how can the “goodness” of a system be evaluated? 

What is the difference between designing a new system and designing one to fit legacy systems, 
predefined and populated product families, existing standards of product, interface, or process? 
How much in terms of functions or ilities is lost when these constraints are applied, what is 
gained, and is the gain worth it? 

To what degree do these constraints inhibit the inclusion of new technologies, or do new 
technologies simply invalidate old architectures? 

How do we represent the architecture of a system? How many things need to be in the 
representation? For example, a network can represent the simple binary relationships between 
system elements, but it may require another network to describe some of the strengths or 
histories of these relationships. Some relationships might be static (i.e., they are permanently 
present); others might only exist temporarily or during certain operating or failure modes. What 
aspects of an architecture cannot be represented by a network or networks, and how should they 
be represented? Can there be a unified representation of system architectures that captures 
simultaneously both structure (objects) and behavior (processes), or must we inevitably resort to 
multiple, related views? 

If we say that systems have properties, structure, and behaviors (alternately structure, functions, 
and organization), what methods exist for describing, modeling, testing, and synthesizing these? 
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Are certain kinds of structures or architectures known to be good and would this apply across the 
variety of domains discussed here? It is often recommended that functional and physical 
structures should correspond, having similar clusters. This is obviously a cognitive aid, but is it 
always a good thing in other dimensions of function or ilities? For example, combat systems have 
distributed physical structure in order to be robust against point damage. Another example is 
highly clustered networks: they provide shorter paths and are much more robust to random node 
damage but much less robust to deliberate attack on the hubs than are random networks. 

Are natural systems good exemplars for designed engineered systems? Some natural systems 
have ilities that we would like engineered systems to have, such as flexibility and robustness, 
even when individual modules are not very reliable. 

Do different observers or participants in an architecture require different representations? 
Examples include the designer, the user, the manager of a family of items in an architecture, a 
safety or risk analyst. 

Is there a process for generating an architecture that will have certain desired properties while 
avoiding certain undesired ones? Typically, architectures themselves emerge from an 
evolutionary process that weeds out unfit ones according to market pressures on functions or 
pressures on the ilities. There are heuristics but no theory or guaranteed algorithms. 

How determinative is architecture (compared to detailed design, module behavior, and behavior 
of users or operators) in deciding how a system will behave, how it comes out on the scales of 
ilities, etc.? For example, Doyle and Carlson (2000), Barabasi et al. (2002), Strogatz (2001), and 
Watts (1999) argue in various ways that highly clustered networks are better in some respects 
than random ones even if the nodes are the same. But up to now these analyses have assumed 
identical nodes and arcs. What if these are allowed to be different? Is structure still dominant? 

J. CONCLUSIONS 
> The architecture is the form of the system and is the dominant factor in its 

behavior. In some cases the function can be deduced by inspecting the form while 
in others (for example, software), the form conveys nothing about the function. 

> Systems have behaviors that no subsets of their elements have. These behaviors 
are products of the interactions between the elements. They may be anticipated 
and designed in, or they may be unanticipated, in which case they are called 
emergent. Both anticipated and emergent properties may be desirable or 
undesirable. 

> Emergent properties, desirable and undesirable, exist because we do not 
understand the system or its interactions with its context completely.  

> To the extent that emergent behavior is caused by unpredictable factors such as 
human agency, future changes to the system, or the inability to model every 
possible system state, it may never be possible to prove that a given architecture 
has or does not have a particular behavior. 

> The aim of system design, and of architectural design within system design, is to 
obtain the desired behaviors (functions plus ilities) while suppressing undesirable 
behaviors. The system’s architecture is chosen to enhance achievement of these 
goals. A key issue for future research is to learn how to create systems with the 
desired behaviors and to predict and suppress the undesired ones. 

> Systems have multiple architectures and hierarchies of architectures. This can 
occur because of the choice in defining the system’s boundary. It also occurs 
because the system has both a physical architecture and numerous virtual 
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architectures that seek to capture important aspects or views of its behavior. Many 
of these virtual architectures correspond to mental models of different behaviors. 

> Multiple representations are needed to describe systems and their architectures. 
Many aspects of system architectures can be described by networks of one kind or 
another, but not all architectures can be described this way (houses, 
microprocessors). Network analysis is the most abstract architectural modeling 
method and holds promise for elucidating general properties of architectures; 
however, typical networks represent only connectivity. Hence, more specific 
models than those currently in use will likely be needed.  

> There are some basic architectural elements from which more complex 
architectures can be built. Some kinds of desirable system behaviors can be 
obtained by using these primitives singly or in combination. Thus it is desirable to 
understand these elements more completely in order to understand how to use 
them in architectural design. (This is a version of the statement that structure 
begets properties which beget behavior.) Standards and standard components and 
procedures can be thought of as primitives. 
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