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Summary

The optical method of reflected caustics was applied up-to-now to problems of cracked
plates under uniaxial loading. Only the problem of the biaxial tension of the plate has been
considered for the particular case where the crack is transverse to the longitudinal axis of
the plate which coincided with the loading axis. In this paper the influence of a biaxial
loading of the plate on the form and orientation of the caustic was studied in connection
with the orientation of the crack. New modified relations were given for the evaluation of
the complex stress intensity factor K = K; — iK;; in terms of the angle ¢ of the angular
displacement of the caustic axis. For the accurate evaluation of K; and K;; nomograms of
correction factors T3%, §I% and TN were giver in terms of the angle of inclination of the
crack @ = (90 — B) and the biaxiality factor k. Experimental evidence with PMMA inter-
nally cracked plates corroborated the results of theory.

List of Symbols

D(z), 2(2) complex-stress function of Muskhelishvili

G Oyyr Tay crack tip stress referred to Cartesian coordinate system.

r, & polar coordinate system centered at crack tip

K, Kip stress intensity factors for Mode I and IT loading, respectively

w angle of inclination of the crack

7] 90°-

k ratio of stresses at infinity

Oy Oy principal stresses at crack tip

a crack length

log stress applied at infinity along the transverse boundaries of the plate
X Yig * parametric equations of the reflected caustics referred to the Cartesian

system O’X’Y’ on the reference screen: (r) reflected caustics from rear
face of the specimen and (f) reflected caustics from the front face of the
specimen

7o radius of the generatrix curve on the specimen around the crack tip
(initial curve)

Cr, g optical constants of the material for reflections from the rear and front
faces of the specimen respectively
A magnification ratio of the optical set-up
2y distance between the reference-screen and the middle plane of the
‘ specimen
2 distance between the focus of the light beam and the middle plane of

the specimen
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thickness of specimen

2 for the reflected caustics from the rear face of the specimen and 1 for

the reflected caustics from the front face of the specimen

2odley, [ (2)12

Poisson’s ratio .

elastic modulus of the material

A4k 4+ (1 — k) cos 2w

(1 — k) sin 20

14+ k41— k) cos2m

@ 2 tan! (B/4) = 2 tan~t (K;7/K})

Dg}ax, DA%, Dg}m the maximum and the minimum diameter of caustics along the axis
Oy’ and O’x” of the crack respectively

6;’}“, gmax gmin  the correction factors for DL‘}""X, D& and Dimin respectively

Djmax_ [oax the maximum transverse and longitudinal diameters of the caustics

respectively

the correction factors for D/™®* and D;™%* respectively

Qwh&TQ ° &
&,

6tmax ) 6lmax

1. Introduction

The optical method of reflected caustics, as it has been developed during the
last ten years, was extensively applied to various elastic problems containing
singularities and especially to problems with cracked plates. Whereas in all these
problems of cracked plates under any combination of the three modes of defor-
mation were studied, in the case of uniaxial loading of the plate, the problem of the
influence of the biaxiality of loading was strangely always omitted. Surely, it was
taken into account the influence of the component of stress parallel to the crack
tip which was added to the singular expression of stresses, but this was valid only
for the case when the crack-axis was normal to the applied tensile load at infinity.

It was only in 1977 that Liebowitz and his co-workers [1] to [4] have con-
sidered problems of infinite plates containing slant cracks where the influence of
biaxiality of loading of the plate was taken into account for stationary cracks.
Thus, Eftis, Subramonian and Liebowitz [1] have shown that the one-parameter
representation of the stress field at the vicinity of the crack tip only for simple
cases of transverse cracks and uniaxial normal to the crack-axis loadings is a
satisfactory approximation. When a biaxial load at infinity is applied to the
cracked plate and the crack is oblique to the principal applied stresses to the plate
this representation may lead to erroneous results. It was also shown that the second
term in the series representation for the stresses contributes significantly and
independently of the distance from the crack tip. The effect of higher terms was
best indicated in the problem of a biaxially loaded infinite plate containing a
transverse central crack [2] under biaxial loading at infinity. Liebowitz and
co-workers continued their study on the influence of biaxiality and have shown in
a third paper [3] that the elastic strain energy density depends also on the bi-
axiality of the applied load. Finally, in a fourth paper Liebowitz, Lee and Eftis [4]
have shown that the elastic stress intensity factor as well as the j-integral are not
sensitive to the presence of the biaxial load. They extended also their studies to
internal cracks in finite plates and to cases small scale yielding.

Simultaneously, some extensive experimental studies with photoelasticity were
undertaken where crack-tip stress patterns were analysed on the basis of two and
multiple parameter characterization of the stress components at the vicinity of the
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crack tip. It was shown that at least a two-parameter representation of the stress
field around the crack tip is necessary and in many cases sufficient to yield
results in agreement with the experiment [5] to [9]. For a critical review of these
two-parameter methods see ref. [9]. ,

A three-parameter method taking into account the third term in the Taylor
series expansion of the Westergaard complex stress function was introduced in
ref. [10] for the evaluation of mode-I stress intensity factor at a crack tip where the
idea of an appropriate selection of the polar direction for determining K; was
introduced depending on the distance of the point of measurement of isochromatics
from the erack tip. Three and several terms approximations in the series expan-
sions of Z(z) were also introduced in refs. [11] and [12] in order to liberate the
measurements from the requirement of being made at the vicinity of the crack tip,
but these methods are rather complicated and necessitate considerable computer
work with doubtful results. Finally, Rossmanith gave an extensive analysis of
the mixed-mode isochromatic patterns at the vicinity of the crack tip in a plate
containing an oblique crack [13].

On the other hand, Cotterell [14] studied the influence that the coefficient of
the second term of the Williams asymptotic expansion has on the shape and
orientation of the isostatic loops. Similarly, Williams and Ewing [15] have studied
the influence of the applied biaxial stress at infinity in a plate containing an
internal slant crack and discussed the influence of the constant term in the Taylor
series expansion of the stress function on the position of the ecritical angle of
fracture. The procedure adopted in the experiments indicates empirically the
significance of inclusion of the constant and higher terms of the series expansion
of the Westergaard complex stress function. However fails to disclose the authentic
influence of these terms on the stress distribution around the crack tip and conse-
quently on the form of the isochromatics.

With caustics the situation is different. While the isochromatics are pro-
portional to [Z0'(z) + ¥(z)| (where @(2) and ¥(z) = —2®(z)/z the Muskhelishvili
complex stress functions) and the isopachics are proportional to Re @(z) in caustics
the initial curve and the respective caustic depend on @”'(z) and @'(z) respectively
and at least for the K;-mode of deformation of the crack these curves are in-
dependent of the constant term, at least, in the series expansion of @(z). An
extensive study of the influence of the biaxiality factor k on the dynamic crack
propagation in slant cracks of any obliqueness was undertaken by Theocaris [16]
and Theocaris and Papadopoulos [17], whereas closed-form solutions for the stress
field in cracked plates under biaxial load was recently prepared [18].

In this paper the influence of biaxiality on the shape and orientation of caustics
formed around stationary cracks was thoroughly studied and formulas were
given for evaluating K; and K;; for any slant angle § of the crack where this
influence is incorporated by the introduction of appropriate correction factors.

2. Crack-Tip Stress Fields for Mixed-Mode Deformation

For a thin elastic and isotropic plate under conditions of generalized plane
stress containing a slant internal crack of length 2a and submitted at infinity by
a biaxial state of stress defined by the stresses o and ko along two adjacent sides
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of the plate (Fig. 1) the Muskhelishvili complex stress functions @(z) and £2(z)
are given by [19]

1 =, z 1 =,
and
1 1 =,
Qz) = E(ZF—FF)——‘W-FEF (2)
where the quantities I” and I'* are expressed by:
1 = o Qi(ifw)
— —(1—k 2
ST = (ke (3)

—;- @r+4+1" = 7:— {{1 — e%(‘z"”"’)] +k [1 + 62"(‘3““)]}. 4)

In these relations k is the biaxiality factor of the stresses at infinity and w the
angle subtended by the crack-axis and the transverse axis of the specimen
(w = 90° — ). The components of stresses at the tip of the crack may be derived
by the well-known relations:

O + Oyy = 2[P(z) + —é(_z)] (5)
Oyy — o -+ 20ty = 205 — 2) D(2) + G(2) — D). 6)

Introducing relations (1) and (2) into relations (5) and (6) we obtain [1] to [3]:

Oy 2 S, cosi[l—smism@]—]{—’_’si [2+cosieos@]
Iur 2 2 2] Yo 2 2 2] (g

— o(1 — k) cos 2w

K; { § 319] Ky 9 39
Oy 2 —~— COS 1 + sin — sin — | + —2£ sin — cos — cos — (8)
" V2mr 2 2 Vear 2 2 2

Ky sin-—gcosgcos@_{_—l—{&cos 9 [1 — sm—g—sm 3;}

2nr 2 2 VZm

(9)

Ty 22

where the components of the stress intensity factor K = K; — 9K, are given by:

—
K=" 4 (10)
Ky = "'{;“ - B (11)

with:
A=01++k)+ (1 —£k)cos20 (12)
B = (1 — k) sin 20, (13)

The variation of the K ;- and K;;-stress intensity factors in terms either of the
angle o of inclination of the crack-axis with the transverse direction or of the
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y curve

O 1 R

Fig. 1. Geometry of cracked plate and the shape of the principal epicycloid and geometry
of its formation for £ = 0 (uniaxial tension)

biaxiality factor k is given in Fig. 2 and 3 respectively. Similarly, the variation of
ratio of stress intensity factors K,;;/K; versus w and k is given in Figs 4(a, b)
respectively. From relations (7) and (8) the sum of principal stresses at the vicinity
of the crack tip may be evaluated from relation:

2 9 . P
(o1 + 03) = (04 + 0yy) = W (KI cos - K;; sin 7) — o(1l — k) cos 2w.
(14)
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Fig. 2. Variation of K; versus either w, or % for various parametric values of & and w
respectively
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Fig. 3. Variation of K versus either o, or k for various parametric values of & and o
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Fig. 4a. Variation of the ratio K;;/K; versus o for various parametric values of &k
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Fig. 4b. Variation of the ratio K;y/K; versus k for various parametric values of w

3. The Method of Reflected Causties for Biaxial Loading

The experimental arrangement of the method is simple. A laser light, the
specimen, a ground glass screen and a camera suffice for recording the caustics. It
is shown schematically in Fig. 1 while at both lateral faces of the specimen the
generatrix curves of the respective caustics are small circles, on the screen Sc¢ the
external caustic corresponds to reflections from the rear and the internal caustic
to reflections from the front face of the specimen.

It has been shown that for uniaxial tension (or compression) with £ = 0 the
parametric equations for both branches of the caustic are given by [20]:

I~ Y] = 1o c08 D + O, (K pry~32 cos 3319 — O, (Kprg™®2sin 3?19 (15)
L/ . : —8/2 o3 39 —8/2 39
A My p = 1o sin D - Cp (K7 ¥ 2 sin 5 + C, K 1179782 cos > {16)

where 7, expresses the radius of the generatrix curve (initial curve) given by:

o= (5 Cns) " (K 4 Kty a7)
with :
_£2 dc,,_f_ (18)
" A2yl

14%
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In relation (18) the quantity e takes either the value ¢ = 2 for reflected rays from
the rear face of the cracked plates (caustics designated with the subseript r), or
the value ¢ = 1 for reflected from the front face rays, d is the thickness of the
plate and C, ; global constants including the optical constants of the material as
well as it mechanical properties and corresponding to reflected rays from the
rear (r) or the front face (f) of the plate. The constant ¢; is very simple and equals:

—) (19)

where » is Poisson’s ratio and & the elastic modulus of the material. Finally, the
magnification ratio of the optical set-up 4, is given by:

A =205 (20)

where z; is the distance between the focus of the light source and the middle plane
of the plate and z, the distance between this plane and the parallel plane of the
reference screen Sc. The positive sign is valid for real image, while the negative
one for virtual image.

Introducing relations (10) and (11) into Eq. (17) we obtain:

ro = (% C, 0 VE)ZIE’ (g)” ’ (21)

C=14k 4+ (1 — k? cos 2m. (22)

with:

Relation (21) yields the depedence of the radius 7, of the initial curve from the
angle w and the biaxiality factor k. The complete variation of the radius r, of the
initial curve versus either the angle w, or the biaxiality factor & with parameter
the other quantity for each case is given in Fig. 5.

Introducing relation (21) into Egs. (15) and (16) we obtain the parametric
equations of the caustic in terms of w and k. These relations are given by:

AN = 7 {cos 9+ % A(20)72 cos 321? _ % B(20)-1 sin 3?'9} (23)

Ny =0 {Sm 9+ % A(20)712 sin §2£9 + ~§— B(20)72 cos 3?79} L (24)

Relations (23) and (24) are the parametric equations of the caustic referred to
the 0'z'y’-system (Fig. 1). By angularly displacing the 0'z'y"-system by an angle
(2n — @) we obtain the new 0'x;y;-system. For this new coordinate system
relations (23) and (24) may be found by the transformation:

(xlr,f) _ (cos @ —sin (p) (x;f) 25)
yr,, sin @ cos ¢/ \y;.;
These relations in the new coordinate system become:
2 39
wy, = Ao {cos 9+ @) + 3 cos (—2~ +y + (p)} (26)

Y, = Tt {sin (6 + ¢) + % sin (%—9 g+ ¢)} 27)
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Fig. 5. Variation of the radius #, of the initial curve versus either w, or % for various para-
metric values of k and o respectively

with
cos y = A(20)71/2, (28)
siny = B(20)™2 (29)

and
sin?y + cos?y = 1. (30)

Putting y = ¢/2 and 7 = (¥ + @) the parametric Egs. (26) and (27) become:

21 = Il {cos r+ % c08 %}, (31)
Yr = Dt {sin r + % sin %} . (32)

It may be derived from the parametric Eqs. (31) and (32) that the caustic in the
0’y -reference system is a symmetric curve having as an axis of symmetry the
line subtending an angle —¢ with the 0'z’-axis of the crack. Relations (28) and
(29) for y = ¢/2 yield the angle of angular displacement of the caustic relatively
to the crack-axis. This angle is given by:

g = 2 tan_l (1 — ]C) sin 2w (33)
(A + k) + (1 — k) cos 2w
Comparing relation (33) with relations (10) and (11) we obtain:
p=2tan 122, (34)

1
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Therefore, relations (33) and (34) yield the angle of angular displacement of the
caustic in terms of the angle o of inclination of the crack and the biaxiality fac-
tor k. The variation of angle ¢ with angle w and the factor & is given in Figs. 6a, b.

From relations (23) and (24), for values of ¢ between —= and = and for various
values of the biaxiality factor £ we may readily plot the caustics formed around
the respective crack tips.

For k = 1 the caustics plotted are always symmetric to the crack axis while
for k& == 1 and varying beteeen £ = —1 and k = 1 a continuous relative rotation
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Fig. 6a. Variation of the angle @ of rotation of caustic versus w for various parametric
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Fig. 6b. Variation of the angle ¢ of rotation of caustic versus & for various parametric
values of w
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of the caustic is apparent. This rotation is made in such a direction so that the
crack axis and the axis of symmetry of the caustic subtend an angle equal to —g
given by relations (33) and (34).

Figs. 7a, b present a series of caustics plotted by the computer for typical

k—» -10 -05 o 05 10
w aY Yan ',.'"yI Yan ¥, %

AN AN AN
SUASZAN

:

1
¥
%E j X' ‘ f D"
gt :
Fig. 7a. The caustics from reflected light rays on a cracked plate made of an isotropic

elastic material for £ between —1 and 1 and for @ = 0°, 30° and 45° as they have been
plotted by the computer for —n <9 = =n

Fig. 7b. The caustics from reflected light rays on a cracked plate made of an isotropic
elastic material for & between —1 and 1 and for @ = 60°, 70°, 80° and 88° as they have
been plotted by the computer for —7 < ¢ <=
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values of angle w (w = 0°, 30°, 45°, 60°, 70°, 80° and 88°) and values of k£ varying
between k£ = —1 and & = 1. These caustics correspond to an initially isotropic and
elastic material and as such was chosen PMMA with » = 0.34 and & = 3400 MN/m?2.
The thickness of the cracked plate was d = 0.003 m the crack length 2a = 0.02 m
and the optical constant ¢, = —1.55 X 107 m?%/N, 2, = 2.0 m, z; = 0.5 m and
o = 2.0 MN/m?2.

4. Evaluation of the Diameters Dy;™ of the Caustics
and the Stress Intensity Faetors K; and K,

Relation (24) presents extrema whose positions may be found by zeroing the
first derivative dy, /o9. This derivation yields:

A Byl [0 = 1 {cos 9 & A(20)12 cos -32@ — B(20)-1" sin 3;} =0 (35)

with:

3 2/5 B2\1/5
ro = (3 O,JfK,) (1 + Zz) . (36)

Solutions of relation (35) for —1 <k <1 and for 0° < w << 90° yield the
positions of angles 97:%" for which the maxima of relation (21) exist (these are
maxima since 8%, /092 < 0). Relation (24) may be written under the form:

max Ri /max 3 2/5 max
pmss 3y g (2 0,,,1{,) (0, ), (37)
=

where DJ}** expresses the maximum diameter of the caustic along the direction
of the 0'y’-axis of the crack and §*(w, k) is a correction factor given by:

@, k) — 3, (1 +

32)1/5
j=1

(38)
Jgmax gymax
{sm G+ = A(ZO’) Yegin 2 4 = B(QO) —1/2 oog ;.‘.’}

The maximum and minimum values D2**, D™ of the diameter of the caustic
along the 0’2’-axis of the crack may be evaluated from relation (23) for values of
angles #%* and #%" for which relation (24) becomes equal to zero. For these
values relation (23) may be put under the form:

. 2 i 3 2/5 ;
Dgomin = 3 gt = 4, (; 0,,,1{[) S0, k), (39)
j=1

where again D% and D% are the maximum and minimum diameters of the
caustic along the 0'z'-axis of the crack and 8%°*(w, £) and §%™(w, k) the respective



The Influence of Biaxiality of Loading on the Caustics 213

correction factors given by:

6rxn'ax,min(w, k) _ 22, (1 + 22)1/5

j=1
. [COS ﬁmax,min + _z_ A(20)"1/2 cos 3’!92}3.):,111111 (40)
#i 3 —z
mag{,min

39m
— 2 B2e)y 12 sin _”_} .
3 2

The variations of the correction factors 67, 63** and 6™ in terms of the angle
and the factor £ are given in Figs. 8a, b, 9a, b and 10a, b respectively.
From relation (39) we may derive the ratio (DI** — DT)/D5** given by:
pmax __ D;nin 6;nax _ 6min
z’ ’ i z’

D;x;ax 62}&){

(41)

From this relation it may be derived that the difference of the respective maximum
(D22} and minimum (D5™) diameters of the caustic along the 0’a’-axis of the
crack normalized to D3 equals the respective difference of the correction
factors 6%°F and §5™ normalized to 6=,

The variation of the ratio (41) in terms of the angle » and the factor k is
given in Figs. 11a, b.

Finally, from relations (18), (34), (37) and (39) the stress intensity factors K;
and K;; may be evaluated from the respective relations:

2(20)2 D\ 5/2
Ky = b — (42)
3ezy di,y, /2] Cr 1l Oy,
or:
1/2 quax,min
K, — - 2(271)) . xa. ' (43)
€20 d}“m ! | cr,fl 6;9 XA
and:
KII:KI tal’ll. (44)

2

Relations (42), (43) and (44) yield the components of stress intensity factors
derived by measuring the diameters D2** and Dp**™™" of the caustics along the
transverse and the longitudinal axes of the crack. The sign of K; must be chosen
according to Fig. 2. However, since the internal caustic yields always the 0'z;-axis
of symmetry of both caustics an alternative procedure, which is, in some cases,
much eagier than the previous one, is to measure the diameters D;"** and D™=
of the caustic. These diameters are along 0'y;- and 0'x;-axes which may be defined
by tracing the common tangent to the cuspoid internal caustic and draw the
normal at the middle of this common tangent. This normal is the 0'z;-axis of
the caustic. In this case the two components K; and Kj; are expressed by:

max 5/2
K = L 2212 (DM ) (45)

T Bezy A2, oy gl \ SR

KII:KIta’n%' (46)
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In relations (45) the correction factors 6,"** and 6,"** take the values §,"** = 3.17
and ;"% = 3.00 respectively. These well known values may be derived from the
nomograms of Figs. 8a, b, 9a, b and 10a, b for @ = 0° or £ = 1.0.
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Fig. 12. Positions where appears the state of stress in the vicinity of the crack tip is pure
shear (K; = 0, Kj; == 0) for k << 0, while for £ > 0 there are no positions of pure shear

5. Experimental Evidence

In order to check the potentialities of the method we have applied it for the
evaluation of the angle ¢ of the angular displacement of the caustic in a thin plate
containing a central crack subtending an angle w = 45° to the loading axis and
subjected to a biaxial load at infinity. The material of the plate was plexiglas with
y = 0.34, £ = 3400 MN/m? and an optical constant ¢, = —1.55 X101 m?/N,
The specimens had the following average dimensions: width w = 0.15 m, thick-
ness d = 0.003 m, and crack length 2¢ = 0.02 m.

Fig. 13 presents the experimentally obtained caustics formed on a reference
screen placed at a distance z, = 2.0 m from the specimen, for four cases of bi-
axial load with o = 1.5 MN/m? Fig. 13a presents the reflected caustic with a

biaxiality factor £ == —1.0 (equal tension-compression). The angle of angular
displacement of the caustic is ¢ = 180° while Fig. 13b presents the reflected
caustic with £ = —0.6 (tension-compression) and the angle ¢ = 150°, Fig. 13¢

shows the reflected caustic for the case where k£ = 0.7 (tension-tension) and the
angle ¢ = 20°. Finally, Fig. 13d presents the reflected caustic with k= 1.0
(equal tension-tension) and the angle ¢ = 0°. All the experimentally measured
angles ¢ coincide with the theoretically obtained ones derived from Figs. 6a
and b.
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aZ) V£
< @)

. w=lS® k=-10 w=45®  k=-06
@l (= 1800) (b) (= 1500)

u_j:f.5° k:o‘f m:f.S" k:1.0
(c) (9= 20°) (d) {p=0°)

Fig. 13. Experimentally obtained reflected caustics for plexiglas plate containing a central
crack with angle of inclination w = 45° and subjected to biaxial load with ¢ = 1.5 MN/m?
and for & (a) —1.0 (b} —0.6 (c¢) 0.7 and (d) 1.0

6. Results and Diseussion

In this paper a method was developed for evaluating the components of the
stress intensity factor K = K; — 1K;; by measuring on the reflected caustics
created around the crack tip of a slant crack existing in an infinite elastic plate
submitted to any type of in-plane biaxial loading.

The influence of the angle of inclination of the crack w (w = 90° — f), as well
as of the biaxiality factor k£ expressing the ratio of loading of the plate at in-
finity is apparent by following the variation of the shape and orientation of the
respective caustics for each case with o and k. Figs. 7a, b exemplify this in-
fluence.

The influence of the angle  and the factor k£ on the values of K; and K,;
appears in Figs. 2 and 3. It may be derived from these figures that as the angle »
increases and therefore angle § decreases there is also a decrease of K;. The same
phenomenon happens for decreasing values of k. On the contrary, the values for
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K;; increase from zero for w = 0° rapidly to a maximum appearing for w ~ 45°
followed by a decrease of this factor which becomes again zero for §=0° (o = 90°).

The values of K -factor for positive values of the biaxiality factor & tend from
a positive value maximum value which appears at § = 90° (0w = 0°) to zero,
whereas for negative values of £ this factor takes negative values. In the positions
where a change of sign for K; appears the state of stress in the vicinity of the
crack tip is pure shear (K; = 0, K; == 0). In these positions of pure shear the
ratio K/ K; tends to infinity fact appearing in Figs. 4a, b.

The shape and the size of caustics depend on the values of the radius of the
initial curve as it is clear from relations (23) and (24). The inclination of the crack
axis w and the biaxiality of the external loading % influence the size of the initial
curve as this appears in Figs. 5. For increasing values of w and for k < 0, a
decrease of the magnitude of the radius 74 of the initial curve appears which after
passing from a minjimum value corresponding to k== 0 it starts to increase
continuously for £ > 0. For w = 0° the size of the initial curve remains constant
and independent of k.

The same phenomenon happens for £ = 41 for any angle of inclination .
While this is valid for the size of the initial curves, for the respective caustics
these are independent of w and % only for £ = 1 and w = 0°. For values of k = —1
the size of the caustics and their orientation depend on w. This may be explained
by the fact that while for £ = 1 the state of stress of the plate at infinity is biaxial
tension, that is a symmetric case, for £ = —1 the state of stress becomes longitu-
dinal tension and transverse compression, which influences weakly the size of the
caustics but strongly their orientation. Indeed, as it may be seen from Figs. 7a, b
the cusp of the internal caustic has been angularly displaced by = for w varying
between zero and 45°. For w varying between zero and #/2 the cusp is angularly
displaced by —2z. On the other hand the external branch of the caustic is con-
tinuously reduced in size while its extremities alternate on both sides of the
crack.

In Figs. 6a, b, where the dependence of the angle of angular displacement of
the caustic in terms of angle w and the factor k is given, it is indicated that for
k = 0 the axis of symmetry of the respective caustic coincides with the crack-axis
for w = 0° and it is angularly displaced by an angle —¢ for different values of .
This angle —¢ is progressively decreasing as o increases for k < 0.

The dependence of angle ¢ on £ is as follows: For k = 1 angle ¢ is independent
of w and f. For positive values of k its variation presents a smooth maximum. For
k = 0 the dependence of ¢ on w is linear and for w = 90° angle ¢ takes the value
@ = 180°. For k positive angle ¢ takes always positive values.

In the position of pure shear K; = 0 and K;; & 0, an interchange appears of
the branches of the caustics that is the external almost circular branch becomes
internal and the internal cuspoid branch becomes external. The measurements
of diameter for evaluating K; and K;; should be made on this external branch
which corresponds to rays reflected from the front face of the plate and therefore
for the evaluation of K’s the optical constant ¢; should now be taken into con-
gideration instead of ¢,.

Similar phenomena appear with the variation of ¢ in terms of k. For values
of w = 0°, ¢ is independent of k as it was expected from previous evidence [16].
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From the nomograms of Figs. 8 to 10 we observe that the values of the cor-
rection factors 83", 5** and 03" are increasing with increasing values of w and &
and after passing through infinity they diminish tending to their asymptotic
values corresponding to w == 0° that is 6;"** = 3.1702 and ¢,™** = 3.00. The
positions of infinite values for the correction factors correspond to pure shear
stress fields around the cracks and the positions of jump for the angle ¢ as it was
previously discussed.

Finally, Figs. 11a, b yield the variation of the distance DD’ of the inter-
sections of the external branch of the caustic with the crack lips with w and %
respectively. It is observed that at the positions of pure shear at the crack tip the
maximum of such distance between the fails of the caustic appears. A combination
of Figs. 6a, b and 11a, b leads to the evaluation of the angle of rotation of the
caustic and therefore to an evaluation of K;; especially in cases where the angle ¢
of rotation of the caustic is difficult to be evaluated especially in cases where the
method is applied to opaque materials. -

Finally, in Fig. 12 the positions where the stress distributions at the crack tip
is pure shear, with K; = 0 and K;; = 0, are shown. It must be said that this
stress distribution can only be achieved when & << 0, while for £ > 0 such positions
do not exist.
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