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Abstract 

Air-sea gas exchange is an important process in the geochemical cycling of carbon dioxide (Cod. The 

air-sea flux of CO, is determined in part by the physical forcing functions, which are parameterized in terms of 
the air-sea transfer velocity, k. Past studies have attempted to correlate k,, with wind speed, U (e.g., L i s  and 

Merlivat, 1986; Wadnkhof,  1992). Because strong winds occur in ocean regions thought to be important 

sources or sinks of CO, accurate knowledge of KL at high U is important in estimating the global air-sea flux of 

CO, Better understanding of the physical processes affecting gas transfer at large U will increase the accuracy 
in estimating k, in oce’an regions with high CO, ffuxes. Increased accuracy in estimating 1L. will increase the 

accuracy in caIcuIating the net global air-sea CO, flux and provide more accurate boundary and initial conditions 

for global ocean carbon cycle models. 

High wind speeds are associated with the presence of whitecaps, which can increase the gas flux by 
generating krbulence, disrupting surface films, and creating bubble plumes. Bubble plumes will create addi- 
tional turbulence, prolong the surface disruption, and transfer gas to or from individual bubbles while they are 
beneath the surface. These turbulence and bubble processes very effectively promote gas transfer. Because of 

this, Monahan and Spillane (1984) postulated that breaking waves, if present, will dominate non-whitecap related 

gas exchange. Under this assumption, will increase linearly with increasing fractional area whitecap coverage, 

W,. In support of this, Asher et al. (1992) found measured in a whitecap simulation tank (WS’I’) was linearly 

correlated with bubble plume coverage, Bc (the laboratory analog of Wd). Further evidence supporting the large 
effect of breaking waves on air-sea gas ffuxes is given by the results of Wallace and Wyn’ck (1992) and Farmer 
et al. (1993). However, it is not definitively known how the presence of breaking waves and bubble plumes 

affect the dependence of kL on Schmidt number, Sc, and aqueous-phase solubility, a. Knowledge of th is  

dependence is necessary to determine the best method for parameterizing k, in the presence of breaking waves. 
The effects of whitecaps on air-water gas exchange could be studied in detail if k,, could be measured 

for reproducible breaking waves for different gases. In the research descn id  here, kL values for invasion and 
evasion of CO, oxygen (OJ, helium (He), sulfur hexafluoride (SF,), and dimethyl sulfide.(DMS) through clean 

and surfactant-influenced (SI) water surfaces were measured in a tipping-bucket WST. Reproducible, simulated 

breaking waves were generated in the WST by releasing a known volume of water vertically onto the tank water 

surface from a tipping bucket. The bubble populations in the WST are similar to bubble populations measured 
in the ocean (Asher and Farley, 1995) and the WST can generate B, values of up to 0.77%. The WST and the 
characteristics of the bubble plumes generated in it are descn id  in detail in Asher and Farley (1995). 

All measurements were made in seawater that was filtered and sterilized using a flow-through ultraviolet 

sterilizer. This procedure removed particles, helped prevent biologically produced bubbles, and reduced water 

surface contamination. Prior to the start of each experiment, accumulated surface contaminants were removed by 
vacuuming the water surface. For comparison, SI water surfaces were generated by adding 1 ppmv of the 
soluble surfactant Triton X-100 to’the WST. Salinity in the WST was measured by refractometry to be 30 psu. 

ly related to B,. Furthermore, the data show kLE(C) is very sensitive to small changes in Bc even for the rela- 
tively soluble gases CO, and DMS. For these two gases, an increase in Bc from 0% to 0.77% increases kLE(C) 

by a factor of seven for CO, and three for DMS. ’ Similarly, k, for invasion through a cleaned water surface, 

k&), was found to be linearly related with B,. Invasive transfer velocities also were very sensitive to small 
changes in B, with kL1(C) for CO, showing an increase with increasing B, similar to that observed for kLE(C). 

The measurements of kL for evasion through a cleaned water surface, k&), show that kLE(C) is linear- 
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Bubble-mediated gas transfer models indicate that the gas flux due to bubbles decreases as a increases 

(Memery and Merlivat 1985; Woolf and Thorpe, 1992), suggesting that bubble plumes generated by breaking 

waves will be of little importance in the air-sea exchange of CO,. However, the WST measurements show that 
the simulated breaking waws are very effective at increasing both kLE(C) and kLI(C) for CO,. The sensitivity of 

k,,Q and kLe(C) for soluble gases to small changes in Bc demonstrates that bubble transfer processes are not 

the only mechanisms by which breaking waves increase the gas flux. The turbulence generated by the plunging 

water and rising bubbles must make a signjficant contribution to the overall k, measured in the WST. In agree- 
ment with Kitaigorodskii (1984), extending this conclusion to oceanic conditions suggests that the turbulence 

generated by oceanic breaking. waves could be an important air-sea transfer pathway even for a relatively soluble 

gas such as CO,. 
Models of bubble-mediated gas transfer suggest that if the bubble gas flux is a significant fraction.of the 

net gas flux, k&) measured at a particular Bc will be larger than kLe(C) measured for the same gas at the same 
B, (Memery and Merlivat, 1985; Woolf and Thorpe, 1992). Furthermore, this invasion-evasion asymmetry will 
be a function of a with the asymmetry increasing as a decreases. The WST data support this hypothesis, the 
ratio of k,,(C) to kLB(C), R, calculated for transfer of SF, 0, and CO, decreased as a increased when bubbles 

were present in the WST. In the absence of bubbles, RE was equal to unity, and no significant invasion-evasion 
asymmetry was observed. 

respectively, were also found to be linearly correlated with B,. The presence of the surfactant caused a 

significant reduction in both kE(SI) and k,,(SI) compared to kLE(C) or kL,(C), respectively, for the range of B, 

studied here, the maximum reduction in k, occurred at BpO%. Although the effect of the surfactant is largest 

when the water surface is not disrupted by breaking waves, the data show that soluble surface active compounds 
can decrease k, even in the presence of breaking waves. RE calculated using k,,(SI) and kLE(SI) for SF, and 0, 
shows that invasion-evasion asymmetry seen in the cleaned-surface case is also found in the SI data. Because 

this asymmetry is caused by bubble-mediated transfer processes, the similarity in the behavior of RE for transfer 

at cleaned and SI surfaces suggests that the presence of a soluble surfactant does not drastically decrease the 

importance of the bubble-mediated gas flux. 
Using the results from the gas transfer measurements, an empirical parameterization has been developed 

that can be used to estimate k, in the WST from Bo Sc, and a. Based on the modelling studies of Memery and 
Merlivat (1985) and Keeling (1993), k, is partitioned into a component due to mechanically generated turbu- 
lence, k,, a component due to bubble plume turbulence, kT, and a component due to bubble-mediated transfer, 

kw For conditions where the gas is far from equilibrium, this expression has the form 

Transfer velocities measured for invasion and evasion through SI water surfaces, k/@(SI) and kLr(SI), 

where AM and A, are constants determined by the mechanically generated and whitecap-generated turbulence, 

respectively, and n=ln for transfer through a cleaned surface or n=2/3 for transfer through an SI surface. The 
constants a, and b, are functions of water surface cleanliness and flux direction &e., gas invasion or evasion) 

and the exponents m1 and nl' are functions of water surface cleanliness. The set of coefficients AM, A, n, ul, b,, 

m,, and n,' were determined by nonlinear optimization of Equation 1 to the data for kLE(C), kLI(C), or kLB(SI). 
Comparison of kLe(C) estimated using Equation 1 and B, Sc, and a with kLE(C) measured in the WST 

showed the overall accuracy of Equation 1 was 510% for Bc in the range 0% to 0.77% for the gases studied. 
Equation 1 was able to predict kLl(C) with an overall accuracy of 25% for the same range of Be Finally, 
kL,(SI) could be estimated with an accuracy of 510% using Equation 1. The accuracy of the model-predicted k, 

values is within the experimental uncertainty of the direct measurements of k, in the WST for all three cases. 

This shows that Equation 1 does an excellent job of describing the functional dependence of kLE(C), k,,(C), and 
kE(SI) on B, Sc, and a for the conditions present in the WST. 
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