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Abstract Recording eye movement data with high quality
is often a prerequisite for producing valid and replicable
results and for drawing well-founded conclusions about
the oculomotor system. Today, many aspects of data quality
are often informally discussed among researchers but are
very seldom measured, quantified, and reported. Here we
systematically investigated how the calibration method,
aspects of participants’ eye physiologies, the influences of
recording time and gaze direction, and the experience of
operators affect the quality of data recorded with a common
tower-mounted, video-based eyetracker. We quantified ac-
curacy, precision, and the amount of valid data, and found
an increase in data quality when the participant indicated
that he or she was looking at a calibration target, as com-
pared to leaving this decision to the operator or the eye-
tracker software. Moreover, our results provide statistical
evidence of how factors such as glasses, contact lenses,
eye color, eyelashes, and mascara influence data quality.
This method and the results provide eye movement
researchers with an understanding of what is required to
record high-quality data, as well as providing manufacturers
with the knowledge to build better eyetrackers.

Keywords Eyetracking . Data quality . Calibration .

Eye physiology

Why do we need eye movement data with high quality?

Holmqvist et al. (2011, p. 29) defined data quality as a
“property of the sequence of raw data samples produced
by the eye-tracker.” Data quality is influenced by the

eyetracker and the experimental setup, the participant, the
operator setting up the eye image and providing instructions
to the participant, and the physical recording environment,
in terms of, for instance, lighting conditions. In this article,
we focus on three of the most highlighted properties of data
quality, which are central to obtaining valid and replicable
results in oculomotor research: accuracy, precision, and the
proportion of valid data samples during fixation.

Accuracy (or offset) is one of the most important prop-
erties of data quality in eyetrackers (Holmqvist et al., 2011,
pp. 41–43). It refers to the distance between the actual
(reference) gaze location and the recorded (x, y) position in
the eyetracker data. Since the true gaze direction can only be
estimated by observing external features of the eye (cf.
Putnam et al., 2005), the location of a target that participants
are asked to fixate can be used as the reference point. Using
such a definition of accuracy includes both inaccuracy from
the visual system and inaccuracy from the eyetracker, and it
coheres with how accuracy is used and reported by the
majority of researchers and manufacturers (Holmqvist et
al., 2011; SensoMotoric Instruments, 2009; SR Research,
2007; Tobii Technology, 2011). Accuracy is of great impor-
tance in studies with small stimuli, such as reading research
in which the areas of interest are close to one another,
neurological research (Minshew, Luna, & Sweeney, 1999),
and in gaze-input systems (Kumar, Klingner, Puranik,
Winograd, & Paepcke, 2008). As an example, Rayner,
Pollatsek, Drieghe, Slattery, and Reichle (2007, p. 522)
stated that “there can be a discrepancy between the word
that is attended to even at the beginning of a fixation and the
word that is recorded as the fixated word. Such discrepan-
cies can occur for two reasons: (a) inaccuracy in the eye
tracker and (b) inaccuracy in the eye movement system.”
Minimizing the inaccuracy in the eyetracker maximizes the
possibility of making clear scientific claims.

While an arbitrarily small accuracy can be recorded for
specific participants under optimal conditions with tower-
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mounted high-end systems operated by skilled operators,
the best averages over many nonprescreened participants
are around 0.3° (e.g., Jarodzka et al., 2010). Manufacturer
flyers have for a long time stated that their systems have
average accuracies better than 0.5°, although remote sys-
tems, in particular, are often reported as less accurate.
Komogortsev and Khan (2008), for example, used an eye-
tracker with an accuracy specification of 0.5° but found that,
after removing all invalid recordings, the average accuracy
over participants was 1.0°. Zhang and Hornof (2011),
Hansen and Ji (2009), and others have reported similar
results. Furthermore, accuracy depends strongly on the par-
ticular characteristics of the individual participant (Hornof
& Halverson, 2002), with head movements, astigmatism,
and eyelid closure being particularly troublesome factors
that can cause inaccuracies of several degrees of visual
angle and can be detrimental to position-based data analysis
and interaction. Stating the manufacturer’s specifications
only could therefore be directly misleading.

Precision is another important property of eyetracking
data, and is defined as the ability to reliably reproduce a
measurement given a fixating eye (see Fig. 1). Measured
with an artificial eye, the precision of video-based eyetrack-
ers stretches from around 0.001°–1.03° (Holmqvist et al.,
2011, p. 40), where the lower values indicate that micro-
saccades can be reliably detected and the higher end of the
scale makes the detection of fixations difficult.

The detection of any event, be it fixations, saccades,
microsaccades, or smooth pursuit, is easier in data with high
precision, but accuracy is largely irrelevant for event detec-
tion. In clinical applications, high precision is critical to
investigate imperfections in the oculomotor system—for
instance, when measuring fixation stability (see, e.g.,
Crossland, Culham, & Rubin, 2004; Tarita-Nistor,
González, Mandelcom, Lillakas, & Steinbach, 2009) or the
prevalence of square-wave jerks (Rascol et al., 1991).

Poor precision can be caused by a multitude of technical
factors, mostly relating to the quality of the eye camera and of
the algorithms for calculating the position of pupil and corneal
reflection. Participant-specific factors such as eye color are

also assumed to influence precision (Holmqvist et al., 2011,
p. 43). Remedies to poor precision include filtering, but also
improving the eyetracker hardware (e.g., by using a tower- or
head-mounted system instead of a remote one or by increasing
the resolution of the eye camera) and the recording setup (e.g.,
through the use of a bite board or chinrest).

In the ideal situation, the eyetracker should generate valid
data samples—that is, those that are captured within the
tracking range of the eyetracker and have physiologically
plausible values as long as the eyes are visible in the view of
the camera and the eyelids are open. However, a variety of
situations can cause invalid samples to be generated, such as
objects occluding the pupil or corneal reflection(s), poor
image analysis algorithms to detect features in the eye
image, or additional features or reflections that resemble
the pupil or the corneal reflection(s). Data loss can occur
in long bursts or during short intervals. Irrespective of why
this occurs, data loss forces the researcher to decide how to
treat the gaps in the eye movement signal. For example,
should they be filled with values estimated from adjacent
samples, or should we accept that a fixation or saccade is
split in two halves, separated by the gap? In general, it could
be questioned whether an eye movement signal should be
used at all if the proportion of lost data is large. Nyström and
Holmqvist (2010), for instance, disregarded trials with more
than 20 % of lost data samples. It should be noticed that the
causes of poor data quality include imperfections from, for
instance, biological, environmental, and eyetracker-related
sources. Our primary interest for this article is not in the
absolute values of data quality, but in how they change in
relation to calibration methods, over time and space, and
with respect to participants’ eye physiologies.

In this article, we will address several issues related to the
quality of eyetracking data and will focus on questions that
are often informally discussed but seldom systematically
measured and reported. The first of these issues concerns
calibration, based on a comparison of three methods to
ensure that the eye is still and precisely directed to a specific
target during calibration. More specifically, we investigated
whether the operator, an automatic procedure controlled by
the system, or the participants themselves know best when
their eyes are still and fixating a target. We further investi-
gated how accuracy, precision, and the proportion of valid
fixation samples vary over time and stimulus area. Finally,
the influences of eye physiology, visual aids, and mascara
on data quality were investigated.

Practical aspects of calibration related to data quality

Calibration in video-based eyetracking is required to estab-
lish a mapping between features detected in the eye image
and the physical orientation of the eye and/or the position of

Fig. 1 While the accuracy of an eyetracker is the (average) difference
between the location of the fixation target (the position that the partic-
ipant is asked to look at) and the recorded gaze position, precision is
defined as the ability of the eyetracker to reliably reproduce a mea-
surement of gaze position. Both precision and accuracy are properties
of the data samples exiting the eyetracker
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gaze in the stimulus space (Hammoud, 2008). Calibration is
typically performed by asking participants to look at a
number of predefined positions in the stimulus space. At
each calibration target, the eyetracker detects a number of
eye image features and associates their positions in the eye
image with the position of the target (Fig. 2).

Calibration is associated with several challenges, both
theoretical and practical. Theoretical challenges include
finding a good mathematical model for the eye and then a
mapping function from eye features to gaze direction
(Hammoud, 2008). In conjunction with the mathematical
modeling, a number of important practical issues surround
the procedure of calibration. For instance, how should the
targets be presented visually on the monitor so as to guide
participants’ gazes efficiently and unambiguously? During
monocular recordings, does it matter whether you record the
dominant or nondominant eye? How can the poorer calibra-
tion accuracy in the corners of the calibration area be coun-
teracted? Do more calibration points give a higher accuracy?
Does the experience of an operator have an effect on the
quality of the calibration? And do the instructions and task
given to the participants before calibration influence data
quality? Few of these questions have been investigated in
detail.

Figure 3 provides an overview of the steps required to
perform a calibration. Before calibration starts, the operator
sets up the eye camera for an optimal recording of the
participant’s eye(s). The operator typically checks for cor-
rect pupil tracking, making certain that the entire pupil is
involved when finding the center of the pupil, as well as that
neither mascara-covered lashes nor glass rims are likely to
become targets of the pupil-finding algorithm. The second

thing that the operator looks for is the tracking of corneal
reflection. Potential problems include competing reflections
in glasses, a split reflection due to air bubbles under contact
lenses, and potentially lost reflection if the stimulus area
involves very wide visual angles that place the infrared
reflection on the sclera of the eye (Holmqvist et al., 2011,
chap. 4). Then the operator provides instructions for the
participant: for instance, “look as precisely as you can at
the points that you will see on the monitor, and do not move
the eye until the point disappears.” Directly before the
calibration starts, the operator instructs the presentation
software to show the first calibration target on the screen.
After calibration is done and the operator has evaluated its
result—sometimes aided by numerical results from the man-
ufacturer software—the calibration is either accepted and
the data collection can begin, or it is rejected and has to be
performed all over again. The critical decision of when the
eye is fixating a calibration target can be left to the system,
the operator, or the participant (as was discussed by
Goldberg & Wichansky, 2003).

During system-controlled calibration, the eyetracker soft-
ware automatically decides whether or not the eye is stably
directed toward a calibration target. In such automatic cali-
bration—which often relies on closed, manufacturer-
specific algorithms—verification from the operator or par-
ticipant is not given.

Operator-controlled calibration means that the operator
accepts a calibration target when he or she has the impres-
sion that the participant is fixating the target. This decision
can be further aided by verifying that the participant’s eye is
stable in the video feed of the eye image and by asking the
participant for verbal confirmation.

Finally, participant-controlled calibration means that
participants themselves decide when they are fixating a
calibration target and confirm this decision by pressing a
mouse or keyboard button. Leaving the control over cali-
bration to participants may seem very natural—after all,
they should know best where they are looking.

The current trend is that increasingly more control over
the calibration procedure goes to the system; for instance,
three of the largest eyetracker manufacturers all use system-
control led calibrat ion by default (SensoMotoric
Instruments, 2010; SR Research, 2007; Tobii Technology,
2010). Consequently, the majority of calibrations in eye-
tracking research are system-controlled, even though their
superiority to operator- and participant-controlled calibra-
tion remains to be proven. Below, we will examine each of
these three calibration methods in detail.

System-controlled calibration In the system-controlled cal-
ibration method, the decisions of when the eyes are fixating
and directed toward a target are made algorithmically, pos-
sibly with the exception of the first calibration point, which

Fig. 2 Calibration means establishing a mathematical mapping from
features in the eye image—such as the positions of the pupil and any
corneal reflection—and the position of the calibration target looked at.
Because the eye is not completely still before, during, or after looking
at the point, a crucial problem in calibration is to choose the right
period in time to sample the coordinates of the eye image features

274 Behav Res (2013) 45:272–288



may need to be accepted manually by the operator or the
participant.

The benefits of a fully automatic system-controlled cali-
bration are primarily the ease and speed with which the
calibration is handled. A quick and unobtrusive calibration
phase reduces the risk of directing too much attention to the
calibration process and in turn of making the participant
aware of the fact that eye movements are being moni-
tored. In many experiments, the reason for calibrating is
something best explained after the experiment during
the debriefing session.

The decision to accept a calibration target is based on
the assumption that the eye is more or less stationary
over a minimum period of time when it is fixating the
target. The same assumption is used when detecting
fixations from raw data samples. Therefore, system-
controlled decisions during calibration are associated with
the same problems of detecting fixation samples as are
standard fixation detection algorithms. Such problems
include selecting appropriate methods and thresholds that
decide when the eye is still enough to be considered a
fixation, and these problems are well documented in the
eyetracking literature (Nyström & Holmqvist, 2010;
Salvucci & Goldberg, 2000; Shic, Scassellati, &
Chawarska, 2008). The problems inherently associated
with fixation detection therefore introduce uncertainty as
to whether the eye-to-gaze mapping was calculated with
information obtained during steady fixation.

A quick calibration procedure also makes it hard for the
operator to keep up with the pace of the calibration, difficult
to detect any less-than-perfect moments in the calibration,
and troublesome to anticipate future problems in the record-
ing phase. This makes it more difficult to decide whether the
calibration is good enough to accept or whether the system
should be recalibrated.

Moreover, an automatic calibration may not suit all par-
ticipants. For instance, the EyeLink manual mentions that
manually accepting calibration targets may “be useful for
subjects showing difficulty fixating targets” (SR Research,
2007, p. 25).

Operator-controlled calibration For each target in an
operator-controlled calibration, the operator visually verifies
that the target is presented on the participant’s monitor. Then
the operator checks the eye image to verify that the partic-
ipant’s eye is being robustly tracked and that the gaze seems
to be directed toward the target.

Manufacturers give some advice as to when to accept a
target, such as “The pupil tends to come to rest gradually
and to make small vergence movements at the start of
the fixation, so do not respond too quickly. However,
do not wait too long before accepting the fixation, as
subjects soon begin to make involuntary saccades” (SR
Research, 2007, p. 70).

The benefits of an operator-controlled calibration include
the ability to halt the calibration upon detection of potential
sources of inaccuracies, remedy them, and recalibrate. Even
if the calibration works well, the careful visual inspection of
the eye image during the calibration phase allows the oper-
ator to predict potential problems that may manifest later in
the experiment when the participant’s head or glasses shift
in position. The operator is also able to accept an eye that is
actually, and not just assumed to be, visually stable.

A drawback of this calibration method is the response
latency due to visually inspecting the eye, determining
whether to accept the calibration target, and executing the
final motor action to click the “Accept” button. We know
from standard reaction time tests—for instance, lexical de-
cision tasks—that a decision takes from around 250 ms to
perform (Nebes, 1978). This time may be long enough for
the participant to shift his or her eyes or to make anticipatory
eye movements to the next probable calibration target.
If the operator blinks or makes a saccade during this
buttonpress, data deriving from periods when the partic-
ipant is not fixating may be recorded, and the calibra-
tion will be inaccurate.

Another drawback, which we have experienced our-
selves, is the phenomenon that participants become habitu-
ated to the mouse clicks and the rate of progress of the
operators through the calibration points, so that participants
begin to move the eyes ahead to expected positions as soon

Fig. 3 Overview of the steps
required to prepare, execute,
and evaluate a calibration. Note
that setting up the eye camera,
instructing the participants, and
evaluating the results of the
calibration are always the
responsibilities of the operator.
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as a mouse click is heard or the expected acceptance time
has passed. In some cases, this may lead the operator to
accept a position just as the participant moves his or her eyes
to a new, expected position. This is typically solved by
showing calibration targets in a random order, avoiding an
even acceptance rate, and providing clear instructions to the
participants.

Finally, manually inspecting and verifying the eye image
makes the calibration phase slow. The method also requires
experienced operators to fully utilize its benefits.

Participant-controlled calibration In the participant-
controlled calibration method, more responsibility is trans-
ferred to the participant. The participant is instructed to look
at a target and to click a button whenever he or she is
confident that the eye is stable and locked on the target.
The click triggers the presentation of the next target, and the
participant proceeds until all calibration targets have been
accepted.

The benefits of the participant-controlled calibration is
access to any phenomenological insight that participants
have on the stability and direction of their own gaze. If they
have this insight, they should be able to click at a moment
when the eye is open, maximally stable, and directed at the
center of the calibration target. This should lead to higher
data quality. Also, placing the participant in control makes
the participant more likely to be motivated to perform well
during the calibration phase.

A drawback of this calibration method is that it depends
on the participant’s phenomenological insight, which, at
least in this domain, has not been investigated for validity
and reliability. Even if the average participant is reliable and
cooperative, it may be that a relatively large subset of
participants are unreliable and inappropriate for this method.

As with the system-controlled calibration, the operator
here can only passively watch the calibration phase, with the
option to recalibrate if he or she spots any potential problem
during the calibration. The operator is also required to detect
problems in the short window between the appearance of a
calibration target and its acceptance by the participant,
which, if the participant is quick, may be very short.

The role of the operator

Setting up the eye image, instructing the participant how to
behave during calibration and later recording, and deciding
whether to accept or reject the calibration are always the
tasks of the operator. Even though the current trend among
eyetracker manufacturers is to leave increasingly more of
the decisions during calibration to the system, there are
reasons to believe that more experienced operators can
generate data with better overall quality than can novice

operators, in particular when participants with difficult eye
physiologies are being recorded. Whether due to using a
difficult eyetracker, a challenging task, a difficult participant
population, or inexperienced operators, several examples
illustrate the problem of having to discard substantial amounts
of data before analysis. For example, in experiments reported
by Schnipke and Todd (2000), Mullin, Anderson, Smallwood,
Jackson, and Katsavras (2001), and Pernice and Nielsen
(2009), 20 %–60 % of the participants or trials were excluded,
whereas only 2 %–5 % of participants/trials should be
expected, according to Holmqvist et al. (2011).

The role of the participant physiology

In addition to how steadily a participant gazes at the target
when sampling eye feature coordinates, the very physiology
of the eye affects the stability of the eye feature data at the
moment of sampling, and therefore also the quality of the
calibration. In addition, some eye physiologies are more easily
modeled to obtain accurate mapping functions from eye fea-
tures to gaze positions. Well-known issues that make feature
extraction unstable are droopy eyelids, contact lenses, bifocal
glasses (Holmqvist et al., 2011, p. 118), and certain eye colors
(Kammerer, 2009). It is very likely that these factors have a
stronger effect on accuracy and precision than does the choice
of calibration method, and the effects that one was looking for
would then be concealed bymuch greater sources of variation.
For example, a participant with mascara may have offsets far
beyond normally expected levels, and it should come as no
surprise that it is difficult to find subtle effects, given the
presence of such a large error source.

Data quality in space and time

The accuracy of eyetracking data is best directly after calibra-
tion, which is why many eyetrackers have built-in support for
on-demand recalibration or drift correction1 (SensoMotoric
Instruments, 2009; SR Research, 2007). Only few articles,
however, have described systematic investigations of the effect
of data quality over time and across the visual field. A notable
exception is the work by van der Geest and Frens (2002), who
compared theperformanceofavideo-based systemwith scleral
search coils, which long has been considered the gold standard
in eyetracking research.They foundnosystematic difference in
gaze position from simultaneous recordings with the two sys-
tems, and concluded that there is “high stability in the output of
the video recording system over a time course of several
minutes” (p. 188).

1 A one-point calibration that linearly shifts the data in the calibration
plane.
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Research questions

The previous subsections have shown that several issues
could influence the quality of data recorded with a
video-based eyetracker. However, such issues are mostly
discussed informally and are seldom measured and
quantified. To address the lack of empirical data to back
up these informal claims, we conducted an experiment
to address the questions of how different calibration
methods, positions of calibration targets, visual aids,
and eye physiologies affect data quality in terms of
accuracy, precision, and data loss. We predicted that
several of these factors would have significant effects
on data quality.

Method

Participants

A group of 149 students from the Department of
Business Administration at Lund University participated
in the experiment as an obligatory part of a course in
English business communication. Their average age was
22.5 years (SD 0 2.2). To be able to investigate a larger
range of possible recording difficulties, no prescreening
for difficult tracking conditions (glasses, contact lenses,
mascara, or eye physiology) was made while selecting
the participants. Instead, data were taken prior to cali-
bration on a variety of participant-specific properties:
visual aids (including type of correction and dioptrics),
eye color (brownish, bluish, or other) and brightness
(bright, mixed, or dark), eye dominance2 and hand
dominance (left or right), direction of eyelashes (up,
forward, or down), and presence of mascara. To limit
the number of predictors, some of them have been
merged (e.g., those for mascara). Table 1 gives an
overview of the factor coding that was used in the
statistical models.

Operators

Six operators participated in the data recording. They all
had at least three years of previous experience from
running eyetracking experiments. Five of the six oper-
ators had long-term experience with the type of tower-
mounted eyetracker used, while the sixth operator had

only made recordings using head-mounted eyetrackers
from the same manufacturer. Furthermore, participants
who were judged to be difficult to calibrate3 were
assigned to the two most experienced operators for this
type of system.

Stimuli

Stimuli—the circles shown in Fig. 4—were presented with
black color on a bright background. The outer diameter of
each target spanned 0.5° of visual angle. These targets were
shown at the same position as those used during calibration,
to minimize the influence of the underlying (and unknown)
method for calculating the positions of intermediate values
on the calibration surface.

Apparatus

Two computers were used to run the experiment: One,
henceforth the stimulus computer (SC), was used to present
stimuli and to interact with the participants, and the other,
the control computer (CC), to receive and process the infor-
mation from the eyetracker. The SC had a 2.2-GHz dual-
core processor, 2 GB of RAM, and an ATI Radeon HD 2400
XT graphics card. The SC was connected to a Samsung
Syncmaster 931c TFT LCD 19-in. monitor operating at
60 Hz with a resolution of 1,024 × 768 pixels (380 ×
300 mm [31.6° × 24.0°]). Stimuli were presented with
MATLAB R2009b and the Psychophysics Toolbox (Version
3.0.8, Rev. 1591; Brainard, 1997). The CCwas running iView
X (Version 2.4.19; SensoMotoric Instruments, 2009) adjusted
for binocular pupil and corneal reflection (CR) recordings at
500 Hz, and otherwise using the default settings. Viewing and
recording were binocular, with monocular gaze estimation
made separately and simultaneously for each eye.

The monitor was placed d 0 670 mm in front of the
position that the eye had when a participant’s head was
correctly positioned in the eyetracker’s chinrest and fore-
head rest. See Fig. 5 for details about the setup. The param-
eters h and α were chosen to mimic a typical situation4 in
which participants read text on a computer screen.

Data were recorded with four SMI HiSpeed 500-Hz
systems located in different windowless basement rooms,
which were prepared so as to keep the recording environ-
ments as consistent and similar as possible. Illumination
came from overhead fluorescent lighting, which is known
to minimize the infrared noise in the eye image (Holmqvist
et al., 2011, p. 17).

2 “The participant extends both arms and brings both hands together to
create a small opening while looking at an object with both eyes
simultaneously. The observer then alternately closes the left and the
right eye to determine which eye is really viewing the object. That is
the eye that should be measured” (Holmqvist et al., 2011, p. 199). See
also Miles (1929). 4 In the authors’ experience.

3 Difficulty was estimated subjectively, by visual inspection of the
participant’s eye physiology and visual aids when arriving at the
experiment.
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Procedure

Overview The participants were welcomed into the experi-
ment room and introduced to the experimental procedure
and equipment. First, an online questionnaire was filled in
by the operator as a means to collect the participant-specific
visual and eye data. Participants were then seated in the
eyetracker, and the image of the eye was optimized by the
operator. The participants were then instructed to look close-
ly at calibration targets as the targets appeared, after which
they were calibrated with a method randomly selected from
the three that we were testing. Then followed a short mea-
surement of the accuracy and precision achieved, about

15 min of self-paced reading, and finally another measure-
ment at the end of the recording session.

Calibration After verifying that both pupil and corneal re-
flection features were robustly detected in all four corners of
the monitor, a 13-target binocular calibration was performed
using iView X, in which calibration targets were shown one
at the time in a predefined order, as is shown in Fig. 4. Both
eyes were calibrated simultaneously.

In the default running mode of iView X, a calibration
point can be accepted only when “valid data” have been
recorded for a minimum amount of time. Data validity is
controlled by a check level (strong, medium, or weak) in
iView X (SensoMotoric Instruments, 2009, p. 316), with
medium set as the default.

For a given participant, one calibration method was cho-
sen at random:

1. System-controlled calibration, in which each calibration
target was automatically accepted when a fixation had
been detected.

2. Operator-controlled calibration, in which, as described
above, the operator accepted each of the 13 calibration
targets after convincing him- or herself that the partic-
ipant’s eye was still and directed toward the target, and
that its features were correctly detected.

3. Participant-controlled calibration, in which the partic-
ipants accepted each calibration target themselves by
clicking the mouse when (they believed that) they were
looking at the center of a calibration target.

Table 1 Overview of the predictors for statistical analysis

Predictor Values

(Intercept) Not a predictor, represents the mean value of the dependent variable

Calibration method operator-controlled (62), participant-controlled (43), system-controlled (44)

Off-center target numerical variable in steps of 100 screen pixels

Rightward target numerical variable in steps of 100 screen pixels

Downward target numerical variable in steps of 100 screen pixels

Visual aids none (102), contact lenses (35), glasses (12)

Eyelash direction downward (8), upward (141)

Eye color nonblue (35), bluish (114)

Mascara yes (38), no (111)

Pupil diameter numerical variable in camera pixels

Recording number first (beginning of experiment), second (end of experiment)

Measured eye left, right (left or right eye measured?)

Dominant eye left (64), right (85) (which eye is dominant?)

Measured dominant yes, no (is the measured eye dominant?)

The number of participants with a certain characteristic is given in parentheses. Factor levels used as reference groups are marked with bold font.
The intercept, which will be reported in the result tables that follow, represents the unweighted mean (mean of the means) of the different groups—
that is, the different levels of the factors (Cohen et al., 2003; cf. p. 333, last sentence).

Fig. 4 Manufacturer default order of calibration points
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Since each period of stillness could automatically be ac-
cepted as a valid calibration target, it was crucial that the eyes
go directly to the correct calibration target without having to
search for it. Therefore, to make targets more salient and to
prevent eye movements other than those directed to the correct
calibration target, each dot blinked before the steady onset; it
appeared for 200 ms, disappeared for 200 ms, and then reap-
peared for 1,500 ms or until the target was accepted and the
next calibration target was shown. The instructions were the
same across conditions, except for details that explained how
participants were expected to click in the self-controlled ver-
sion. Irrespective of the method, all participants received the
instruction to look at the center of each target and to keep
looking at it until it changed position.

After the calibration was done, all calibration targets were
shown simultaneously, to allow the operator to inspect the
calibration results visually while the participant looked at the
targets and to decide whether the quality of the calibration was
good enough to then record data that could be used to analyze
the participant’s reading behavior on a word level. The oper-
ator chose to accept the calibration and start recordings, to
recalibrate using the same method, or to switch to operator-
controlled calibration (in cases in which another method had
initially been chosen). This last option was used when auto-
matic or participant-controlled calibration was not possible—
for example, when manual adjustment of eye feature detection
thresholds was required to successfully complete the calibra-
tion. The two recalibration options were used very sparingly,
however, to minimize their influence on the results. The
option to override the randomly chosen calibration method
in favor of manual calibration was used a total of nine times
for the 149 calibrated participants.

Data collection Calibration was directly followed by the
recording procedure, in which participants looked at the tar-
gets, one after the other in a random order, while eye move-
ment data were collected. As during the automatic calibration,
each target appeared for 200 ms, disappeared for 200 ms, and
was finally displayed for 1,500 ms. Consequently, 950 data
samples were recorded for each target.

Participants then read 16 text screens at their own pace,
which took between 6 and 19 min. No recalibrations or drift

corrections were performed during the reading phase.
Finally, a second recording of data—identical to the first—
was performed. All of the reading data were omitted from
the analysis.

Data analysis

Preprocessing of the data As measures of data quality, we
calculated the proportion of valid fixation samples, accura-
cy, and precision, with the data from each target and eye
treated separately. Fixation samples were identified as the
samples that fulfilled all of the following criteria:

& They were recorded 400 ms after target onset and for as
long as the target was displayed. This threshold was
selected to ensure that participants had sufficient time
to program a saccade and move the eye to a new loca-
tion, and to reduce periods of instability in the eye-
movement data due to saccadic overshoot, undershoot,
or postsaccadic vergence. Moreover, this ensured that no
data were included from the 200-ms period when the
target was absent.

& The samples were available from the eyetracker [i.e.,
were not registered as (x, y) 0 (0, 0) coordinates, which
would indicate that no pupil was found—for instance,
during blinks].

& They resided in the Voronoi cell belonging to the target
being looked at.

& They exceeded the border of the stimulus monitor by no
more than 1.5°.

& They were not saccade samples, according to the sac-
cade detection algorithm of Engbert and Kliegl (2003),
using λ 0 6 and a minimum saccade duration of one
sample. Conceptually, λ controls the degree of confi-
dence at which a velocity sample can be considered to
exceed the velocity of a saccade-free period. Note that
this excludes any sample with sufficiently high velocity,
regardless of whether it belongs to a saccade or is a
recording artifact.

& They were part of at least a 100-ms period of samples
contiguous in time—that is, in which no sample had
been lost.

Fig. 5 Experimental setup (d 0
670 mm, α 0 5°, w 0 1/2 ⋅ W
mm, h 0 3/4 ⋅ Hmm). W and H
represent the width and height
of the computer screen
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Samples that met these criteria were included in the
analyses, and henceforth will be labeled “valid fixation
samples.” The remaining samples were considered to be
“lost” data.

Consequently, the proportion of valid fixation samples
(Pv) was defined as

Pv ¼ Nvalid

Nall
;Pv 2 0; 1½ � ð1Þ

where Nvalid and Nall represent, respectively, the numbers of
valid samples and of all samples recorded from 400 ms after
target onset and for as long as the target was displayed,
regardless of whether the samples were valid or not.
Figure 6 illustrates the results of applying the steps above
to data recorded for one target; after lost data have been
removed, three fixations are detected.

Offset was defined as the angular distance from a
recorded fixation location to the position of a target that
the participant was asked to look at. If θi represents the
offset for target i 0 1, 2, . . . , n, where n is the number of
targets, then the overall accuracy in terms of offset can
formally be defined as

θOffset ¼ 1

n

Xn

i¼1

θi ð2Þ

If more than one fixation is detected for a certain target,
the one closest to the measurement target is selected. This is
motivated by the fact that the eye frequently overshoots or
undershoots the target, resulting in small, corrective sac-
cades following the main saccade to the target. As a conse-
quence, short fixations occur between these saccades that

should be excluded from the offset calculations. Figure 7
shows all detected fixations during the first measurement.

Precision is calculated as the root-mean square (RMS) of
the angular distances θi (in degrees of visual angle) between
m + 1 successive data samples (xi, yi) to (xi+1, yi+1):

θRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

θ2i

s
ð3Þ

Only samples belonging to the previously selected fixa-
tion were included in the precision calculations.

Finally, median values of the vertical and horizontal pupil
diameters were calculated for all samples labeled as valid,
again for each eye and target separately.

Statistical analysis Offset, precision, and proportions of
valid fixation samples were analyzed using the same ap-
proach: Linear mixed-effects models, using the lme4 package
in the statistical software R (Bates & Maechler, 2010; R
Development Core Team, 2009), were fit to the data. Using
a mixed-effects model is superior to most traditional methods
with regard to repeated measurements of participants, han-
dling missing data, and using any combination of categorical
and continuous variables (Baayen, Davidson, & Bates, 2008).

Themodelwas fit to thedatausingparticipantsandoperators
as random effects with random intercepts. The data were trans-
formed in order to acquire Gaussian-looking distributions; the
offset and precision were log-transformed, whereas log-odds/
logit transformation was applied to the proportions of valid
fixation samples. The calibration method, participant-specific
properties such as eye dominance, mascara, and eyelash direc-
tion, and targetplacementand recordingnumber (firstorsecond
data collection) were used as fixed effects in the model. See
Table 1 for a full list. The p values were calculated using a
Markov-chainMonteCarlomethod(MCMC)fromthepackage
languageR (Baayen, 2010), and .05was selected as theα level.

Due to the nonlinear natureof log- or logit-transformeddata,
themagnitudeof an individual factor alonewill dependonwhat

Fig. 6 Three fixations containing valid fixation samples (×). Invalid
samples are represented with empty circles (○). The fixations have
been numbered (F1, F2, and F3) according to their temporal order
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Fig. 7 Offsets for all fixations from both eyes detected from the first
measurement (directly after calibration)
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other factors it is grouped with, and therefore we leave it up to
the reader to back-transform5 the particular combination of
factors that are relevant to him or her. In that case, note that
categoricalpredictorswerezero-sumcontrast-coded[−0.5,0.5]
and, consequently, that the intercepts represent unweighted
means (Cohen, Cohen,West, & Aiken, 2003, chap. 8).

Results

For 145 of the 149 participants we collected 52 measure-
ments (13 targets and two eyes, at the beginning and end of
experiment). For the remaining four participants, however,
only data from the beginning of the experiment were avail-
able. Consequently, the total data set consisted of 7,644
measurements. A total of 650 data values (8.5 %) were
excluded because no valid fixation samples could be iden-
tified for these targets. This reduced the data file to 6,994
observations.

As a check for correlation among the predictors, we
calculated6 a variance-inflation factor (VIF) for each predic-
tor. The VIF provides an indication of collinearity among
the predictors, which may lead to uninterpretable results. As
a rule of thumb, the VIF should not be larger than 10 (cf.
Cohen et al., 2003, p. 424). In our study, the highest value
was 2.59 (for the visual-aid predictor), and the median VIF
was 1.09, suggesting that collinearity was not a problem for
the analysis.

A total of 146 participants were successfully calibrated
and recorded. Of these, 60 participants had operator-
controlled calibration, 42 had participant-controlled calibra-
tion, and 44 had automatic calibration. In all, 57.5 % of the
participants had right eye dominance, whereas the rest had
left eye dominance. The distributions of accuracy (offset),
precision, and the proportions of valid fixation samples are
shown in Fig. 8.

Accuracy

As is summarized in Table 2, participant-controlled calibration
produced significantly better accuracy (lower offset) than did
operator-controlled calibration, whereas system-controlled

calibration produced results marginally significantly worse
than those from operator-controlled calibration.

Targets placed off-center did not differ in offset as com-
pared to those positioned centrally. However, we found that
targets to the left (as compared to the right) and to the
bottom (as compared to the top, or “upward”) of the screen
had significantly lower offsets. Offsets were greater in the
second recording phase, after reading had commenced—on
average, around 0.2° larger than in the first recording. A
post-hoc test using total reading time did not indicate (p 0
.303) that the second recording produced more offset as a
function of time—at least not within the reading times of
this experiment (confidence interval 0 5.57–18.52 min).

Contact lenses increased offset significantly, but glasses
did not. Downward-pointing eyelashes had a significantly
negative effect on accuracy (i.e., it became worse). We
found no effect of eye color on accuracy and, surprisingly,
no effect of mascara on accuracy. Pupil size did have an
effect on accuracy, in that larger pupils produced signifi-
cantly smaller offsets. There were no group-level differen-
ces between the left and the right eyes (Fig. 9a), nor did
participants with a particular dominance perform differently
during the recording phase. However, we found that domi-
nant eyes did produce significantly less offset (Fig. 9b).

Although the role of the operator was modeled as a
random effect under which the other predictors were nested,
Fig. 10 indicates that it may be motivated, given enough
data, to model each operator individually. A post-hoc ex-
ploration of the operators, modeled as fixed effects, revealed
that one operator produced recordings that had significantly
(p < .001) poorer accuracy than the other operators. This
effect remained significant even after controlling for multi-
ple comparisons (number of operators 0 6); this operator
had extensive experience with head-mounted but not with
tower-mounted systems and had only been assigned partic-
ipants who had been judged easy to record high-quality data
from.7

Precision

As Table 3 shows, the choice of calibration method affects
the average precision. More precisely, the participant-
controlled calibration method yielded significantly better
precision (i.e., lower RMS) than operator-controlled calibra-
tion did, whereas system-controlled calibration produced
less precise measurements than did operator-controlled
calibration.

Targets located off-center or farther down on the screen
produced significantly higher RMSs. No horizontal asymmetries

6 Functions courtesy of Austin Frank at Haskins Laboratories.

7 Probably the poorer data quality was caused by suboptimal camera
angles toward the eye, which is often difficult for beginners to set up.

5 If you want to calculate, for instance, the predicted mean accuracy of
the dominant eye versus its reference level (the nondominant eye), the
means from the fitted model would be ynondom exp[intercept+(−0.5 * –
0.0798)] and ydom0exp[intercept+(0.5 * –0.0798)]. Intercept is the
intercept value from the fitted model, –0.5 and +0.5 are the contrast
codes for “nondominant” and “dominant,” respectively, and the value
−0.0798 is the fitted coefficient for the “measured dominant” factor. To
get the output back to visual degrees (as the data were log-
transformed), these expressions should be used as exponents to the
natural logarithm e.
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were found. Measurements from the first recording phase were
significantly more precise than those from the second phase.

Concerning the participant effects, we found that partici-
pants with blue eyes had significantly worse precision than
participants with brown (or “other”) eyes. Glasses mademeas-
urements significantly less precise, and measurements with
contact lenses actually produced significantly better precision
than did using no visual aids at all. Eyelashes did not have an
effect on precision, nor did mascara. The right eye—on aver-
age, over all participants and with eye dominance controlled
for—did produce somewhat less precise data. Eye dominance
did not have a significant effect on precision.

Valid fixation samples

The results from the analysis of the probability to acquire
valid fixation samples are summarized in Table 4. The data

were analyzed as the log odds of acquiring a valid data
sample.

The calibration method used did not influence the ability
to record valid fixation samples from the participants, al-
though there was a tendency for system-controlled calibra-
tions to be less likely to generate valid data samples. Targets
located off-center, as well as targets located in the lower part
of the screen, were less likely to produce valid data. We
found that the second recording phase was significantly less
likely to capture valid data samples during target fixation.

Concerning the participant factors, we found that
glasses did not differ from using no visual aids at all,
but contact lenses predicted fewer valid samples ac-
quired. Eyelash direction did not influence the ability
to acquire valid data, nor did a participant’s eye color
or the presence of mascara. Eye dominance did not play
a role, either, but we did find a main effect for the right
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Table 2 Results from the linear mixed-effects model for accuracy (offset in log-transformed degrees), shown for each predictor

Predictor Estimate CI95 p Value VIF

Intercept −0.4556 (−0.7282, –0.1775) .006** N/A

Participant-controlled −0.1681 (−0.3292, –0.0118) .041* 1.55

System controlled 0.1407 (−0.0090, 0.2913) .068 1.57

Off-center target −0.0047 (−0.0147, 0.0052) .367 1.00

Rightward target 0.0065 ( 0.0009, 0.0116) .017* 1.00

Downward target −0.0147 (−0.0227, –0.0072) <.001*** 1.09

Contact lenses 0.3146 ( 0.1156, 0.4977) .002** 2.59

Glasses 0.1975 (−0.0633, 0.4681) .138 2.57

Downward eyelashes 0.2671 ( 0.0420, 0.4988) .024* 1.04

Bluish eyes −0.0430 (−0.1670, 0.0832) .500 1.06

Mascara 0.1030 (−0.0223, 0.2417) .121 1.16

Pupil diameter −0.0111 (−0.0195, –0.0025) .010** 1.17

Second recording 0.4308 ( 0.3893, 0.4700) <.001*** 1.07

Right eye −0.0142 (−0.0545, 0.0240) .482 1.03

Right-dominant eye 0.0408 (−0.0733, 0.1437) .461 1.16

Measured dominant −0.0798 (−0.1572, 0.0001) .047* 1.03

Negative estimates indicate higher accuracy. The intercept represents the unweighted mean offset—that is, the mean of the means of the different
groups. CI95, 95 % confidence interval; VIF, variance-inflation factor for the different predictors.
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eye across all participants; it was slightly more likely to
capture a valid fixation sample.

Discussion

Recording eyetracking data with high quality is crucial to
achieving accurate and replicable research results. While
there is mostly informal knowledge of which factors influ-
ence the quality of eyetracking data, we systematically
quantified how the calibration method, time, eye physiolo-
gy, and operator skills affect the accuracy, precision, and
proportions of valid fixation samples. These are practical
issues of great concern to everyone who wants high-quality
data from their eyetrackers.

We found that both accuracy and precision are better
for participant-controlled than for operator-controlled and,
by extension, system-controlled calibration, which is cur-
rently the default calibration method in the majority of
eyetracking software packages. It seems as if the partic-
ipant’s ability to judge the correct moment when the eye
is stable and directed toward a target is better than those
of the operator or of a fully automatic system, or, in
other words, that the participant knows best when a
specific target is being fixated.

While it can perhaps be intuitively understood why ac-
curacy would be better for a participant-controlled calibra-
tion, the explanation with regard to an increase in precision
is not quite as accessible. Why would the eye be more stable
simply because the participant has been in charge of the
clicking during the calibration phase? At least three explan-
ations could be advanced: First, it is possible that the actual
instruction to click a mouse button to accept a calibration
target influences fixation stability, and that this effect is
carried over the subsequent recording phase. Steinman,
Cunitz, Timberlake, and Herman (1967), for example, sug-
gested that an “appropriate instruction” can increase the
fixation stability by reducing the microsaccadic rate. Note,
however, that a change in the microsaccadic rate would not
necessarily influence the precision, if the microsaccades
could be detected and removed from further analysis.
Second, the procedure of clicking may provide a better
means of preparing, or may train, the participants for the
forthcoming recording, in which they will be required to
perform the same task, but without having to actively click
on the targets. There is evidence that relevant training can
improve the fixation stability of participants (Di Russo,
Pitzalis, & Spinelli, 2003; Kosnik, Fikre, & Sekuler,
1986). Finally, the clicking procedure could make partici-
pants more aware of when and where they need to fixate in
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relation to how the targets are presented and moved. In this
way, the probability of including samples recorded from a
fixation increases, and the samples are less likely to be
contaminated by those originating from other types of eye

movements or noise, which, by definition, decrease the
precision in the data.

A reasonable hypothesis is that more experienced oper-
ators should be able to record data with higher quality than

Table 3 Results from the linear mixed-effects model for precision (as root-mean squared [RMS] log degrees), shown for each predictor

Predictor Estimate CI95 p Value VIF

Intercept −3.7309 (−3.8328, –3.6228) <.001*** N/A

Participant-controlled −0.0844 (−0.1559, –0.0148) .018* 1.55

System-controlled 0.0781 (0.0125, 0.1460) .019* 1.56

Off-center target 0.0063 (0.0038, 0.0088) <.001*** 1.00

Rightward target −0.0007 (−0.0020, 0.0007) .303 1.00

Downward target 0.0144 (0.0125, 0.0163) <.001*** 1.11

Contact lenses −0.2457 (−0.3266, –0.1609) <.001*** 2.58

Glasses 0.4094 (0.2914, 0.5186) <.001*** 2.56

Downward eyelashes −0.0015 (−0.0103, 0.0972) .965 1.04

Bluish eyes 0.1315 (0.0795, 0.1874) <.001*** 1.05

Mascara 0.0243 (−0.0312, 0.0817) .403 1.16

Pupil diameter −0.0114 (−0.0137, –0.0091) <.001*** 1.21

Second recording 0.0165 (0.0063, 0.0261) <.001*** 1.09

Right eye 0.0605 (0.0506, 0.0697) <.001*** 1.03

Right-dominant eye 0.0375 (−0.0116, 0.0841) .121 1.15

Measured dominant 0.0142 (−0.0046, 0.0337) .144 1.03

Negative estimates indicate higher precision. The intercept represents the unweighted mean RMS—that is, the mean of the means of the different
groups. CI95, 95 % confidence interval; VIF, variance-inflation factor for the different predictors.

Table 4 Results from the linear mixed-effects model for the amount of valid data, shown for each predictor

Predictor Estimate CI95 p Value VIF

Intercept 3.0975 (−3.3953, –2.8082) <.001*** N/A

Participant-controlled 0.1336 (−0.1404, 0.4050) .341 1.55

System-controlled −0.2575 (−0.5285, 0.0021) .057 1.54

Off-center target −0.0713 (−0.0869, –0.0557) <.001*** 1.00

Rightward target 0.0048 (−0.0037, 0.0132) .276 1.00

Downward target −0.0243 (−0.0360, –0.0126) <.001*** 1.09

Contact lenses −0.4186 (−0.7678, –0.0865) .018* 2.59

Glasses 0.2621 (−0.1745, 0.7410) .268 2.58

Downward eyelashes 0.1578 (−0.2561, 0.5471) .437 1.04

Bluish eyes 0.1274 (−0.0843, 0.3517) .248 1.05

Mascara −0.1281 (−0.3629, 0.0944) .274 1.15

Pupil diameter 0.0227 (0.0091, 0.0366) <.001*** 1.18

Second recording −0.1049 (−0.1670, –0.0414) <.001*** 1.08

Right eye 0.0938 (0.0337, 0.1553) .002** 1.03

Right-dominant eye 0.1165 (−0.0770, 0.3098) .233 1.12

Measured dominant −0.0157 (−0.1336, 0.1067) .802 1.03

Negative estimates indicate a lower number of valid data samples. The scale is in log odds (logits) of acquiring a valid data sample, and the intercept
represents the unweighted mean logit—that is, the mean of the means of the different groups. CI95, 95 % confidence interval; VIF, variance-
inflation factor for the different predictors.

284 Behav Res (2013) 45:272–288



could novices, despite manufacturers’ claims of “no operator
experience needed.”8 With a high-speed tower-mounted eye-
tracker, in particular, there are many degrees of freedom to
change mirrors and cameras in order to set up a good eye
image, which is a skill that develops with time.We found that
the least experienced operator for this particular system
produced data with the poorest quality in terms of accuracy,
even though all operators had significant experience of eye-
tracking in general. The poorer accuracy of the less experi-
enced operator, although significant, stems from a single
case study, and the operator was assigned participants who
were judged as easy to record high-quality data from. This
expected result is very relevant for training and competence
development in eyetracking laboratories, but is in need of
further investigation. We expect that the difference among
operators with respect to data quality will become even
larger when comparing experienced operators with first-
time users. However, operator experience is problematic to
define precisely, because there is no clear-cut path of devel-
opment for each operator. Each person develops his or her
own set of skills with his or her own bag of tricks to cope
with problems such as mascara, eyelashes, and unwanted
reflections. We would expect some interaction between op-
erator experience and the problematic eye factors of the
participants. However, the vast number of combinations
prevented this kind of analysis in our present data set.

Data quality is directly related to the quality of the eye
image and to how robustly features can be extracted from it,
and everything that prevents information from being accu-
rately captured by an eye camera is therefore a potential
threat to recording high-quality data. Such factors can be
both external—coming from, for instance, glasses, contact
lenses, eyelashes, and mascara—and internal—stemming
from the size of the pupil or the structure and color of the
iris. We found that contact lenses produced data with sig-
nificantly larger offsets as compared to the data from par-
ticipants without visual aids. One explanation for this is that
the lens may slip in relation to the eye, and thereby intro-
duce air bubbles or other types of distortions that change the
eye image in relation to what it looked like during calibra-
tion. Contrary to our expectations, we found that glasses did
not produce less accurate data. This could reflect the fact
that glasses remain stable in relation to the eye and to the
eye camera; even if the glasses distort the shapes and loca-
tions of the eye features, similar distortions are present
during calibration.

Glasses did produce less precise data. This was expected
since, in our experience, some glasses—possibly ones with
antireflection or antiscratch coatings—absorb some of the
infrared light, making the eye appear slightly darker. This

could, in turn, provide a less distinct border between the
pupil and the iris, making the pupil more difficult to detect
robustly. Contact lenses produced, to our initial surprise, a
distinctly lower RMS. However, the reason is simply that
the operators trained at our lab purposefully defocus the
camera on the eyetracking system when recording partici-
pants with contact lenses. The reason is that ill-fitting lenses
may have small air bubbles under the lens, and these may in
certain positions end up right where the corneal reflection
appears. The effect is that the corneal reflection is split into
several smaller reflections, which in turn produces much
larger problems when the system switches between the
different competing reflections. The result is a very low
precision (“jittery” fixations). Defocusing the camera
merges the small reflections into a larger one, which can
be used to more accurately calculate the center point of the
corneal reflection. The fact that the center of a large object
(pupil or corneal reflection) in the eye image can be com-
puted with higher accuracy than the center of a small object
is also reflected in the pupil size results; precision increases
as the pupil becomes larger. In line with the investigation of
Holmqvist et al. (2011, p. 42), we found an effect of eye
color on precision; data recorded from participants with a
bluish eye color had significantly lower precision than did
data recorded from other participants. Supposedly, the con-
trast between iris and pupil becomes smaller when tracking
blue-eyed participants with a dark-pupil eyetracker.

The effect of target location on data quality was some-
what inconclusive. Placing targets to the right seemed to
produce higher offsets than did targets placed on the left part
of the screen. Placing targets farther down on the screen
seemed to improve accuracy, despite the fact that lower
targets usually have more problems with eyelashes interfering
with the eye video. Off-center targets as well as lower targets
produced significantly worse precision. One explanation
could be that this effect is driven by the decrease in pupil size
that a larger gaze angle gives (cf. Gagl, Hawelka, & Hutzler,
2011). We know from the results in this article that such a
decrease in pupil size reduces precision. The decrease in
precision for lower targets could also be explained by an
interaction with eyelashes; if the eyelashes are superimposed
on the border between the pupil and the iris in the eye image,
this may decrease the stability of pupil contour detection. Off-
center and low targets produced significantly fewer valid data
samples. Again, this could be related to eyelashes mak-
ing feature detection less robust for targets positioned in
the lower part of the screen, or to large gaze angles
placing the corneal reflection on the sclera, and there-
fore rendering it difficult to track.

Accuracy deteriorated with time; it was on average 0.23°
better directly after calibration than after 6–19 min of read-
ing. A large part of the increase in offset likely occurred
because of movements of the participants’ heads and

8 The quote is taken from the SMI RED250 flier, downloaded August
6, 2011, from www.smivision.com/.
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postures over the course of the experiment. Similar effects
were found for precision and for the amount of valid data
acquired, where the second measurement phase produced
significantly lower-quality values. A separate post-hoc anal-
ysis using reading time as a predictor did not show a
connection between the time spent reading and the
amount of degradation in the quality values. This means
that the reduction in data quality is associated with
certain events, such as sneezing, that can occur at any
time during the experiment, and that additional events
do not further decrease the data quality.

Other studies have found a difference in accuracy origi-
nating from eye dominance—for instance, Marmitt and
Duchowski (2002) reported that in most cases, calibration
was better for the participants’ dominant eye (self-reported),
but they did not define what “better” means. In contrast, Cui
and Hondzinski (2006) found no evidence that eye domi-
nance influenced accuracy. However, both of these studies
used rather few participants (nine and six, respectively) and
low-speed eyetrackers (60 Hz), making the analyses poten-
tially insensitive to small differences between the dominant
and the nondominant eyes.

We found smaller offsets for the dominant eye than for
the nondominant eye. Since both eyes were calibrated si-
multaneously and independently, this finding does not nec-
essarily mean that the dominant eye has better accuracy per
se. Rather, it means that the dominant eye more reliably can
realign its gaze direction to a previously shown target—that
is, the target shown during calibration—than can the non-
dominant eye. Notice that, in general, we should not expect
to find a perfect alignment between the eyes, since there is
natural disparity between them. This is known, for instance,
from studies investigating binocular coordination and dis-
parity during reading. As a methodological note, Liversedge,
White, Findlay, and Rayner (2006) recommended that mon-
ocular calibration should be conducted on each eye indepen-
dently when studying binocular coordination, whereas
Nuthmann and Kliegl (2009) argued that while binocular
calibration may affect the magnitude of fixation disparity, it
is unlikely to influence its direction.

We used a single tower-mounted eyetracking system
based on the principle of dark-pupil eyetracking, and do
not exclude the possibility that other recording techniques
may provide results different from the ones found in this
study (see, e.g., Smeets & Hooge, 2003, who found higher
variability in the peak velocities and amplitudes of saccades
recorded with scleral search coils as compared to saccades
recorded with a video-based system). We also cannot ex-
clude the possibility that other manufacturers, producing
eyetrackers similar to the one that we tested, have imple-
mented better calibration procedures, which display calibra-
tion targets so that participants look more steadily and
exactly at them and can make more qualified decisions on

when to sample feature values from the eye image. A
calibration in which the participant not only clicks the
keyboard or mouse button, but points at the calibration
target while clicking, may help to keep up the motivation
throughout a large number of calibration targets. This type
of clicking to calibrate is not used as the default option in
any commercial systems, however. Instead, the trend among
manufacturers has been to develop calibration methods
with as few targets as possible. How many calibration
targets to use, how they should be presented to opti-
mally guide participants’ gazes, and whether or not to
click on the targets are largely open questions that will
require additional research.

Conclusions

We have provided the first comprehensive set of data show-
ing how the calibration method, the operator, participants’
eye physiologies, and visual aids affect the quality of data
recorded with a video-based eyetracker using the principle
of dark-pupil and corneal-reflection tracking. Many of the
factors that we investigated had a significant effect on the
data quality, and we argue that the results presented in this
article are of great importance to everyone who wants to
record high-quality data to answer fine-grained questions
about the psychological or neurological nature of the ocu-
lomotor system. We welcome further research replicating
these findings on a wider range of eyetrackers.
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