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Abstract 

The use of cannabis for medicinal / recreational purposes is widespread throughout the world.  Smoke 

inhalation is known to cause airway irritation due to noxious substances (i.e. benzene) within the mix.  Thus, 

advanced vaporisation platforms (e.g. Davinci IQ) have been developed to circumvent negative health 

implications.  Here, we consider the impact that cannabis smoke and cannabis vapour have on simulated lung 

surfactant performance within a model pulmonary space (i.e. 37°C, elevated humidity and related fluid 

hydrodynamics).  In total, 50mg of herbal material was ignited or placed within a Davinci IQ vaporiser with 

subsequent activation.  The aliquots were collected and then analysed using gas-chromatography – mass 

spectroscopy for composition and cannabinoid (e.g. Δ9-tetrahydrocannabinol (Δ9-THC)) concentration.  The 

average content within cannabis smoke was 2.84% (0.07%, SD) Δ9-THC, with the same for cannabis vapour 

being 0.88% (0.14%, SD).  Aerosolised samples were transferred to the lung biosimulator.  When compared to 

the pristine Curosurf® system, challenge with cannabis smoke and cannabis vapour reduced the surface 

pressure term by 26% and 7% and increased film compressibility by 60% and 15% at 80% trough area, 

respectively.  The net effect would be enhanced film elasticity and an increased work of breathing; being more 

pronounced on cannabis smoke inhalation.  The trends noted were ascribed to two factors operating 

synergistically; namely the amount of Δ9-THC (plus others) within the aerosolised samples and the associated 

toxicity profile.  Further research is required to establish mass-balance effects (i.e. titrated outputs) along with 

detailed chemical profiling of material generated from the unrelated cannabis activation pathways. 
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1. Introduction

The cannabis plant contains numerous chemicals, such as cannabinoids and terpenes [1].  The 

administration of cannabinoids to the body results in psychoactive effects by way of altering alter 

neurotransmitter release within the endogenous cannabinoid system (ECS) [2]. The main 

psychoactive component within the cannabis plant is �9-tetrahydrocannabinol (�9-THC) [3].  It is 

thought that �9-THC acts synergistically with the endogenous cannabinoids (i.e. anandamide

and 2-arachidonoyl) by activation of four G-protein coupled receptors within the ECS.  Further to 

receptor (i.e. CB1 and CB2) stimulation, anxiolytic and analgesic properties result [4]. Cannabis is 

known to cause fatigue, altered sensory perception and contribute to mental health conditions such 

as schizophrenia [2, 4].  Terpenes, such as linalool and limonene, are aromatic molecules responsible 

for the distinctive organoleptic properties of cannabis [5]. 

Cannabis is the most extensively cultivated, trafficked and recreationally used illicit drug in the world 

[6].  The respiratory system is frequently used as a means to deliver recreational drugs (e.g. 

cannabis) to the body in order to derive the effects as outlined above.  Drug substances delivered to 

the lung are able to diffuse into the systemic circulation further to contact with the pulmonary air-

liquid interface.  To date, limited consideration has been given to the impact of cannabis smoke and 

cannabis vapour may have on the human airway, and in particular pulmonary surfactant [4].  Given 

the widespread use, it is important to understand the effects of cannabis and its related compounds 

on the body (e.g. the lungs) so we can better understand the impact of these chemicals on public 

health as a whole. 

The inhalation of smoke from various sources (i.e. the tobacco or the cannabis plant) is known to be 

deleterious to the body [7].  This is so as the combustion process liberates noxious substances 

including benzene, carbon monoxide and tar [8, 9].  Pulmonary irritation and depleted surfactant 

levels result further to oxidative stress, which leads to deviation in respiratory mechanics from the 

norm [10].  Within recent years, advanced vaporisation platforms (e.g. the Davinci IQ) have emerged 

within the marketplace.  This technology is viewed as an alternative to traditional smoking that 

negates the harmful effects caused by smoking plant-based material.  The process of drug 

vaporisation, or ‘vaping’ as it is frequently referred to, involves the production of a drug-containing 

aerosol further to the heating of dried herbal material via contact with a heating element [11]. 
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Vaporisers are considered to offer a ‘clean’ alternative to smoking, with levels of particulates and 

volatile organic compounds no higher than daily background levels [8, 12].  Indeed, during 2017 

Shahab and co-workers highlighted the fact that former smokers using vaporised nicotine-

replacement therapy had lower concentrations of harmful metabolites associated with cigarette 

smoke consumption, but similar concentrations of nicotine when compared to current smokers [11].  

The lung biosimulator [13], a recent development in the field of Langmuir monolayer technology, 

can be applied within the laboratory setting to investigate the effects of cannabis smoke and 

cannabis vapour on pulmonary surfactant monolayers as per the (deep) lung [3].  Langmuir pressure-

area isocycles arising from the advanced biomedical strategy offer an indication as to the dynamics 

(i.e. compression / expansion functionality) of surfactant material during the process of tidal 

breathing when exposed to environmental stressors [14].  Naturally, comparisons can be drawn 

between baseline data when challenged with environmental stressors.  Here, the pulmonary 

surfactant replacement product called Curosurf® (i.e. that prescribed to manage respiratory distress 

syndrome) was applied as a model alveolar air-liquid interface [15].  The product is a mixture of 

dipalmitoylphosphatidylcholine (DPPC) plus surfactant proteins B and C [16].  On delivery to the 

respiratory system, the material forms a thin solid film to reduce the surface tension term and 

promote tidal breathing [17].   

The aim of this research is to determine the influence cannabis smoke and cannabis vapour hold on 

simulated pulmonary surfactant monolayers within a model lung environment.  During this piece, 

consideration will be given to the chromatographic analysis of both cannabis smoke and cannabis 

vapour aliquots, mass-balance dose comparability, chemistries of interaction along with the 

relevance of this work to public health.  
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2. Materials and Methods

2.1 Materials 

The commercially available lung surfactant preparation Curosurf® (Chiesi Ltd, Italy. Lot: 1065833) 

was applied herein to represent the alveolar air-liquid interface.  As previously detailed, a dilution 

step was applied prior to Curosurf® use [3].  In summary, a buffer solution comprising NaCl 

(150mM), CaCl2 (2mM) and NaHCO3 (0.2mM) at pH 7 was used to dilute the surfactant product from 

80mg/ml phospholipid concentration to 1mg/ml phospholipid concentration [17].  Once this dilution 

stage was complete, a suitable volume of the spreading solution was placed across the ultrapure 

water subphase held within the Langmuir trough to increase the surface pressure from 0mN/m to 

approximately 16mN/m [18].  Two batches of cannabis were applied during this work (i.e. Batch A 

and Batch B). 

The herbal material was used as supplied and either pyrolysed as previously outlined to generate 

smoke aliquots [3] or activated within an advanced vaporiser platform (i.e. Davinci IQ) to generate 

vapour aliquots.  In both cases, the cannabis was acquired from Merseyside Police under a Home 

Office Research Licence.  Chloroform (CHCl3) (Sigma-Aldrich, UK) of analytical grade (≥ 99.9%) was 

employed to clean contacting surfaces.  In terms of chemical analysis, ethanol (Analytical grade, In-

house production) was used as the solvent to facilitate chromatographic analysis.  Ultrapure water 

(Purite, UK), demonstrating a resistivity of 18 MΩ.cm and pH 7, was used as the cleaning solvent and 

as the Langmuir trough aqueous subphase. 

2.2 Methods 

2.2.1 Langmuir Monolayer Preparation 

Surfactant monolayers were produced and held within the lung biosimulator [13].  Surfactant free 

tissues (Kimtech Science, Kimberley-Clark Professional, 75512, UK) were soaked in chloroform and 

applied to clean the glassware and contacting surfaces.  Cleanliness was assured within the Langmuir 

trough (Model 102M, Nima Technology, UK) by attaining a surface pressure value of ≤0.4mN/m on 

full barrier compression.  A Hamilton microsyringe was applied to deliver the diluted Curosurf® to 

the surface of the ultrapure water subphase. 
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Here, sufficient amphiphilic material was delivered to reach a starting pressure of 16mN/m and a 

wait period of 10 minutes then allowed to enable material spread over the 70cm
2 

aqueous surface. 

In order to acquire Langmuir isocycle data, the trough barriers were programmed to move inward / 

outward relative to the centre of the compartment at 100cm
2
/min.  Langmuir surface pressure vs. 

percentage trough area at 37°C and elevated humidity (e.g. 85% RH) were obtained via a Wilhelmy 

plate positioned in the middle to the Langmuir trough. 

2.2.2 Cannabis Smoke / Vapour Generation 

At the outset, all glassware was thoroughly cleaned and subsequently connected together using 

Tygon tubing to form an airtight system, as illustrated in Figure 1.  The generation of cannabis smoke 

and cannabis vapour was undertaken in a fume hood to restrict unwanted release of aerosolised 

material within the laboratory space.  Here, the starting material was either ignited as previously 

described [3] or placed within the Davinci IQ platform and activated at full battery power under the 

manufacturer’s factory default conditions (i.e. maximum temperature of 221°C). 

Figure 1.  The experimental arrangement applied to collect cannabis vapour aliquots, showing the Davinci IQ 

platform.  This advanced vaporisation device was detached and replaced with a glass pipe plus perforated foil 

support during the pyrolysis experiments, as previously detailed [3].      

Davinci IQ Vaporiser 

Tygon Tubing 

Separating Funnel 

Round Bottom Flask 
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A total of 50mg of ground cannabis [9] was pyrolysed by igniting with a long-necked electronic 

lighter.  With regards to the vaporisation process, a mass of 50mg cannabis was placed inside the 

Davinci IQ platform and the device then activated at maximum battery charge and under the 

manufacturer’s baseline settings.  Here, the intention was to achieve a consistent starting mass (i.e. 

50mg), prior to material activation.  On activation of both systems, a volume of 50ml of water was 

pulled through the 250ml separating funnel to create a vacuum.  Related smoke / vapour was 

collected in the 500ml round bottom flask and allowed to settle for 30 seconds.  A further 50ml of 

water was then pulled through and this process was repeated until a total volume of 250ml of water 

was used (i.e. 5 puffs).  The tubing connecting the round bottom flask was removed and stoppers 

inserted immediately to ensure no loss of cannabis smoke / vapour.   At that stage the cannabis 

smoke / vapour sample could be delivered directly to the lung biosimulator.  For GC-MS analysis, the 

smoke / vapour was passed through a volume of 10ml of analytical grade methanol to solubilise the 

smoke aliquot. 

2.2.3 Chromatographic Analysis of Cannabis Smoke / Vapour 

The analysis of the smoke / vapour samples and THC standards (10 -100µg/ml range) was performed 

in triplicate using an Agilent 6980GC with 5975MS detection. Hexadecane was added as an internal 

standard. The column was an Agilent J&W HP5-MSUI with the dimensions of 30m x 0.250mm x 

0.25mm run in splitless mode with an injection of 1µl.  The oven time and temperature parameters 

were 5 minutes at 50°C, 20°C/minutes to 225°C held for 2 min, 20°C/min to 300°C held for 5 

minutes.  In total, the run time was 24.5 minutes.  The mass spectrometer was operated in full scan 

mode from 40 to 500 AMU, and single ion monitoring mode (CBD at 17.95 - 18.20 mins; 231 m/z. 

THC at 18.2 - 18.6 mins; 314, 299 and 231 m/z. CBN at 18.6 - 23.5 mins; 295 and 310 m/z).  Mass 

spectra for recorded peaks were further evaluated using the NIST database (MS search programme 

Version 2.0, NIST, MSS Ltd., Manchester, England). 
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2.2.4 Cannabis Smoke / Vapour - Pulmonary Surfactant Interaction 

To determine the impact cannabis smoke and cannabis vapour had on the simulated pulmonary 

surfactant monolayer system under in vivo conditions, the aerosolised material(s) was transferred to 

the lung biosimulator via compressed air along Tygon tubing.  A period of 10 minutes was allowed 

for related interaction.  Langmuir isocycle data was recorded with 14 compression-expansion cycles 

at a rate of 100cm
2
/min.  At this stage, initial isocycles (n=4) were used to condition the surfactant 

monolayer to facilitate a more representative demonstration of the interacting chemistries 

anticipated during tidal breathing.  All data was obtained in triplicate, which enabled the generation 

of average data sets inclusive of the standard error of the mean. 

2.2.5 Langmuir Monolayer Compressibility 

The compressibility of a Langmuir monolayer concerns the ability of the thin organic film to reduce 

the alveolar surface tension with negligible change in surface area [19].  Under ideal circumstances, 

lung surfactant should exhibit low compressibility values; this allows gaseous over a large surface 

area [20].  The lower the compressibility of a surfactant film then the more rigid the surfactant film is 

[21].  Langmuir monolayer compressibility may be determined as outlined in Equation 1. 

Compressibility =
1

A
x
1

m

Equation 1. Langmuir Monolayer Compressibility Determination. 

Where A represents the relative surface area and m the slope of the isotherm.  Here, ‘m’ was 

calculated via ‘m = 
�����

�����
’ across the percentage trough area values of 60%, 70% and 80%.  The 

related ‘y’ and ‘x’ values concern the surface pressure and percentage trough area values, 

respectively [19]. 
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2.2.6 Statistical Analysis 

A one-way analysis of variance (ANOVA) was conducted using the statistics package Minitab (v18.1) 

in order to determine statistical significance within the data sets.  A separate ANOVA was performed 

on a previously identified range of interest (30-55%) [3], with a Tukey’s follow-up test.  This latter 

approach was an appropriate follow up given the unpaired nature of the data and its comparison of 

each group with every other. 

3. Results and Discussion

3.1 Analysis of Cannabis Smoke Extracts 

Typical GC-MS data from the cannabis smoke and vapour samples are illustrated in Figures 2 and 3, 

respectively. 

Page 8 of 27

http://mc.manuscriptcentral.com/sia

Surface and Interface Analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



9 | P a g e

Figure 2.  GC-MS Analysis of Cannabis Smoke Indicating the Major Component �9-THC.

Figure 3.  GC-MS Analysis of Cannabis Vapour Indicating the Major Component �9-THC.

The chromatographic data confirms that the major component of aerosolised cannabis aliquots is �9-

THC at 18.46 minutes; this is particularly notable in the case of the smoke sample. This molecule will 

thus dominate the interaction with the Curosurf® system applied herein.  The components detected 

at approximately 12 minutes into the run are commonly occurring terpenes and include for example 

β-caryophyllene, α-humulene and α-bulnesene.  Such terpenes are commonly detected in Cannabis 

sativa samples as they are synthesised in the same glandular trichomes as cannabinoids [22].  The 

level of terpene molecules detected was lower in the case of the vaporisation route. 
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3.2 Cannabis Quantification 

Concentrations of the predominant cannabinoid, �9-THC, within the cannabis smoke and vapour 

aliquots are presented in Table 1. 

Sample Replicate Concentration 

(mg/ml) 

����9-THC

Content (%) 

Average 

Content (%) 

Standard 

Deviation (%) 

1 140.42 2.81 

Cannabis Smoke 2 146.18 2.92 2.84 0.07 

3 140.21 2.80 

1 38.43 0.77 

Cannabis Vapour 2 51.77 1.04 0.88 0.14 

3 41.16 0.82 

Table 1. Concentrations of �9-THC within cannabis smoke / vapour aliquots 

The data presented in Table 1 indicate that the mode of cannabis activation results in varying 

amounts of �9-THC available for interaction with the Curosurf® system prepared within the lung 

biosimulator; or in real terms, the (deep) lung.  Pyrolysis of the herbal material resulted in an 

average content of 2.84% �9-THC within the aerosolised aliquots collected.  However, there was a 

three-fold reduction in this level was noted with regards to the vaporisation route (i.e. via use of the 

Davinci IQ platform).  Importantly, the variability within the data set is minimal and this we attribute 

to the execution of the puffing regimen employed herein along with the experimental arrangement 

(i.e. the use of inert Tygon tubing).  Greater variability was noted in the case of the cannabis 

vaporisation route, and this will be discussed at later juncture in this piece. 
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 3.3 Langmuir Pressure – Area Isocycles 

Langmuir pressure-area isocycles were obtained for the pristine Curosurf® system plus the same 

when exposed to cannabis smoke and vapour aliquots.  The data sets for this element of the study 

are presented in Figure 4. 

Figure 4.   Langmuir pressure-area isocycle data concerning the exposure of Curosurf® to cannabis smoke and 

cannabis vapour aliquots under physiologically relevant conditions.  Averaged data of 3 replicates presented 

with standard error of the mean displayed.  Where, each replicate consists of 10 compression-expansion cycles 

at a barrier speed of 100cm
2
 / min.

The data presented in Figure 4 confirm that further to exposure to cannabis smoke and cannabis 

vapour, the maximum surface pressure for the Curosurf® system decreased.  Thus, the ability to 

reduce the surface tension term at the air-liquid interface was impaired.  With regard to the 

influence of cannabis vapour on the system, the maximum surface pressure for Curosurf® reduced 

from 61mN/m to 57mN/m.  Whilst a clear decline in the value was apparent, and confirmed by the 

absence of error bar overlap, the difference was found not to statistically significant (i.e. P=0.23, 

95% CI).  However, on consideration of the influence of cannabis smoke on the maximum surface 

pressure term for Curosurf® it is evident that exposure caused a reduction to 45mN/m and this was 

deemed statistically significant (i.e. P<0.01, 95% CI).  In order to determine the compressibility term 
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at pre-defined relative trough areas (i.e. 60%, 70% and 80%) Equation 1 was employed.  The output 

from this element of the study is presented in Figure 5. 

Figure 5. Compressibility data relating to Curosurf® surfactant monolayers in the presence of cannabis smoke 

and cannabis vapour at pre-defined relative trough areas. The delivery of cannabis smoke to the test zone 

increased the compressibility term to the greatest degree.  

The data presented in Figure 5 indicate that exposure to cannabis smoke and vapour aliquots 

increased the compressibility term, relative to the baseline, throughout.  The increase in the 

compressibility term suggests that the Curosurf® monolayer became more elastic and less rigid 

when challenged with the aerosolised aliquots.  The change in compressibility would suggest that 

after exposure to cannabis smoke / vapour, the pulmonary surfactant monolayer arrangement was 

less favourable to support gaseous exchange between the body and the atmosphere [20]. 

Importantly, if such exchange is affected in vivo (e.g. in the case of interstitial lung disease) then the 

exchange of respiratory gases across the alveolar-capillary barrier would be impaired.  This would 

ultimately result in the lungs not meeting the demands of the body [20, 23]. 
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3.4 Considerations 

The results obtained from this study confirm that exposure to cannabis smoke and cannabis vapour 

was detrimental to the overall performance of the Curosurf® surfactant film.  The negative impact 

was greatest in the case of the cannabis smoke aliquots.  Detail regarding the mechanisms of 

interaction between �9-THC and Curosurf® monolayers has been provided elsewhere [3], hence 

discussion will be limited here.  Of greater importance, we believe, are the reasons as to why the 

trends in our data present.  Further to reflection on the experimental procedure and resultant data 

series, we are mindful that the trend noted could be due to two aspects, namely the differences in 

�9-THC concentrations within the aerosolised aliquots delivered to the lung biosimulator and the

toxicity profile associated with each aliquot type.  Here, we provide comment on both factors in an 

attempt to inform on future work in this under-researched and pressing biomedical field (i.e. with 

the increasing interest in the administration of cannabis for medicinal purposes). 

3.4.1 Cannabis Pyrolysis vs Cannabis Vaporisation 

Perhaps the most notable point to discuss involving this work is the method used to obtain cannabis 

smoke and cannabis vapour aliquots for delivery to the lung biosimulator.  Here, we utilised 50mg of 

herbal material for both the pyrolysis route and the vaporisation route (i.e. to achieve a mass 

balance equivalence) [9].  However, although the same quantity of cannabis was used at the outset, 

the resultant levels of �9-THC within the aerosolised samples differed considerably.  In the case of 

the pyrolysis route, all of the herbal material would have activated and thus been available for 

interaction with the Curosurf® monolayer held within the lung biosimulator.  However, with 

vaporisation in mind only a fraction of the total mass of cannabis placed into the holding chamber 

was activated at 221°C.  It has previously been reported that the vaporisation of herbal material can 

lead to variability in drug output during practical use [24].  In the case of our work presented here, 

this point is reflected in the standard deviation data presented in Table 1 where the variance 

between activation routes doubles in the case of material vaporisation.  There are numerous factors 

that can influence the vaporisation process; for example, the properties of the heating chamber (i.e. 

the dimensions and composite material), the location of the herbal material within the chamber if 

not packed tightly plus the physiochemical properties of the starting material itself [8]. 
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Moreover, user attributes can effect drug release profiles from advanced vaporisation platforms 

[25].  During this work, we employed an exacting puff regimen to ensure the data were as consistent 

as possible.  However, in reality, the user will exhibit variable puff routines and indeed such puff 

routines will vary between individuals.  Typically, an individual using cannabis for recreational 

purposes would employ a larger mass within the vaporiser (i.e. pack it full).   Furthermore, they 

would have greater exposure to cannabis than the four ‘puffs' method used in this experiment. 

However, we wanted to maintain a scientific approach in the work and use an equivalent mass for 

this first-in-class, comparative study.  Thus, standardisation during vaporiser use is a major 

consideration with accurate dose titration and release of a desired / consistent dose of cannabinoids 

being a significant challenge [24].  This point itself may adversely impede the widespread uptake 

within the medical community as a whole [9].  We suggest, therefore, that further work should 

consider the exact mass of herbal cannabis within the vaporiser platform that would reliably 

generate the same cannabinoid (i.e. �9-THC) output as per complete pyrolysis; that is to say a 

titration-based study for drug release equivalence.  This could be achieved, given an appropriate 

timeframe, by varying the amount of cannabis dry herbal material placed into the vaporiser and 

analysing the associated output to find the mass that would produce an equivalent amount of the 

cannabinoid (plus others) as per cannabis smoke.   

The chemical composition within the cannabis smoke and cannabis vapour aliquots is another 

important point for consideration when rationalising the experimental results presented herein.  It is 

widely documented that the vaporisation and subsequent inhalation of drug substance(s) exposes 

the individual to fewer harmful toxins [7, 25, 26].  Here, we believe that the vaporisation of cannabis 

and subsequent introduction to the lung biosimulator would have had less of a detrimental effect on 

the Curosurf® film because the herbal material was heated to the point where cannabinoids were 

released with no material combustion [7, 27].  The GC-MS data presented within this piece confirm 

lower concentrations of terpene molecules as compared to full pyrolysis.  Indeed, current evidence 

is supportive of the fact that vaporisation is a safer method of drug administration to the body given 

the lower levels of polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, naphthalene, and 

carbon monoxide produced as compared to smoke [7, 28].  Developing this point further, PAHs can 

induce a range of cytochrome P450 enzymes within the body and thus lead to various drug 

interactions with medication concomitantly administered.  Should the PAH levels be reduced (i.e. via 

application of vaporisation technology) then it is likely that drug interactions within the body would 

be minimised.   
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Interestingly, a number of composite particles within cigarette smoke (e.g. sterols and fatty acids) 

can interact with surfactant monolayers during the compression phase [29].  Although this study was 

based upon cannabis smoke and not cigarette smoke, dried cannabis is known to contain many 

similar constituents capable of disrupting surfactant monolayers such as fatty acids, phenols and 

hydrocarbons [30].  Cannabis vapour and smoke contains the lipophilic �9-THC molecule that is 

capable of disrupting a surfactant monolayer. This is so as these molecules can insert themselves 

directly into the monolayer, between surfactant molecules, and interrupt monolayer function; 

particularly in the solid phase during compression [3, 31].  This would result in a less rigid surface 

film with increased elasticity, which was noted herein.  

3.4.2 Study Relevance – Public Health Aspects 

Given the widespread use of cannabis, it is important to fully understand the effects that this herbal 

material and related compounds have on the body (i.e. the respiratory system) post administration. 

Cannabis smoke is known to cause lung irritation, frequently resulting in similar airway problems as 

per cigarette smoke [8, 32].  Signs associated with cannabis smoke inhalation include persistent 

cough, a high risk of pulmonary infections and excess phlegm production (i.e. respiratory issues) [25, 

32].  Pulmonary irritants also result in inflammation, mucosal oedema and protein accumulation 

within the lung.  The net effect is impaired pulmonary integrity [29].  Pulmonary surfactant is 

important in preventing alveolar collapse, airway stenosis and reduced expiratory flow. As such, 

deviation in lung surfactant structure-function activity is undesirable for the individual.  Although 

smoking via combustion is a cheaper and easier method of cannabis delivery, vaporisation may offer 

a promising and safer alternative to the inhalation of combustion products whilst retaining the 

outcome(s) associated with smoke inhalation [28]. 
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4. Conclusion

This study demonstrates that cannabis smoke has a greater detrimental effect on the surface 

tension lowering ability and compressibility of pulmonary surfactant monolayers as compared to 

cannabis vapour.  Consequently, further to the inhalation of cannabis smoke the work of breathing 

for the individual would increase.  Chronic exposure to cannabis smoke can result in debilitating 

respiratory disease (e.g. asthma and obstructive pulmonary function).  The vaporisation of cannabis 

may have a harm reduction effect over the longer term due to reduced levels or the absence of toxic 

by-products, hence the mechanism holds promise.  Additional work is required to establish mass 

balance effects (i.e. titrated outputs) during cannabis pyrolysis and cannabis vaporisation. 
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Common terpenoids identified from the cannabis samples include β-Caryophyllene, the most common 

sesquiterpenoid in cannabis and caryophyllene oxide, the component responsible for cannabis 

identification by drug-sniffing dogs.
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