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Abstract. Glaciers are widely recognized as unique demon-

stration objects for climate change impacts, mostly due to

the strong change of glacier length in response to small cli-

matic changes. However, glacier mass balance as the direct

response to the annual atmospheric conditions can be better

interpreted in meteorological terms. When the climatic sig-

nal is deduced from long-term mass balance data, changes in

glacier geometry (i.e. surface extent and elevation) must be

considered as such adjustments form an essential part of the

glacier reaction to new climatic conditions. In this study, a

set of modelling experiments is performed to assess the in-

fluence of changes in glacier geometry on mass balance for

constant climatic conditions. The calculations are based on a

simplified distributed energy/mass balance model in combi-

nation with information on glacier extent and surface eleva-

tion for the years 1850 and 1973/1985 for about 60 glaciers

in the Swiss Alps. The results reveal that over this period

about 50–70% of the glacier reaction to climate change (here

a one degree increase in temperature) is “hidden” in the ge-

ometric adjustment, while only 30–50% can be measured as

the long-term mean mass balance. For larger glaciers, the

effect of the areal change is partly reduced by a lowered sur-

face elevation, which results in a slightly more negative bal-

ance despite a potential increase of topographic shading. In

view of several additional reinforcement feedbacks that are

observed in periods of strong glacier decline, it seems that

the climatic interpretation of long-term mass balance data is

rather complex.

Correspondence to: F. Paul

(frank.paul@geo.uzh.ch)

1 Background

Glacier changes are widely recognized as the best natural in-

dicators of climatic change (e.g. Lemke et al., 2007) which

is also a result of their systematic and globally coordinated

monitoring for more than a century (WGMS, 2008). Today,

this monitoring follows a tiered strategy within the global

terrestrial network for glaciers (GTN-G) as part of the global

climate/terrestrial observing systems (GCOS/GTOS) (Hae-

berli, 2006). The network includes the annual measurement

of mass balance at about 60 glaciers and of length changes at

about 600 glaciers (e.g. WGMS, 2008). While glacier mass

balance can be interpreted as the direct and undelayed reac-

tion to the annual atmospheric conditions, length changes are

a delayed, enhanced and filtered signal which reflect atmo-

spheric changes in an integrated way on longer (i.e. climatic)

time scales (e.g. Haeberli et al., 2007).

The high correlation of mass balance with atmospheric

conditions (mainly temperature and precipitation) permits to

derive mass balance from meteorologic parameters (cf. Oer-

lemans, 2001). For this and other reasons it was (and still

is) quite popular to extend the short record of mass bal-

ance time series back in time with data from climate sta-

tions (e.g. Letréguilly and Reynaud, 1990; Greuell, 1992;

Huss et al., 2008; Vincent et al., 2004), upper air conditions

from radiosonde measurements (e.g. Rasmussen and Con-

way, 2001), or other proxies (e.g. Linderholm and Jansson,

2007; Watson and Luckman, 2004). Indeed, such extended

mass balance time series might no longer be independent

proxies of climatic change and have thus to be treated sepa-

rately from the measured data (Braithwaite, 2009). However,

mean values of mass balance over longer time periods can

also be determined independent of climatic data, e.g. from

cumulative length changes (e.g. Haeberli and Hoelzle, 1995;

Hoelzle et al., 2003).
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For long-term extensions of mass balance time series it is

important to consider the changes in glacier geometry (extent

and surface elevation). Because nearly all mass balance mea-

surements have been started for hydrological purposes, they

refer to the most recent geometry of a glacier. As the geomet-

ric changes form an essential part of the dynamic reaction of

a glacier to climatic change, the reported mass balance values

only reflect a part of the climatic forcing (cf. Harrison et al.,

2009) and measured cumulative values increasingly deviate

from it. Of course, changes in glacier extent are also a re-

sponse to changes in surface elevation (glacier thickness) and

analysing both independently is only possible with a model.

To use time series of mass changes for climate change stud-

ies, they have to be independent of climatic data and related

to a fixed geometry, the so-called reference surface mass bal-

ance (cf. Elsberg et al., 2001; Cox and March, 2004).

While it is possible to directly convert a mean mass change

(or ice melt) into the required change of the energy bal-

ance (Haeberli and Hoelzle, 1995), there is also an addi-

tional climatic interpretation of a long-term mass balance

series: in principal, a glacier should reach a new equilib-

rium state by adjusting its surface properties after a glacier

specific response time (e.g. Johannesson et al., 1989). Al-

though this concept is a theoretical one (due to the continuous

climate forcing), a more or less stationary front of a “nor-

mal” glacier (i.e. without extensive debris cover or a calv-

ing terminus) can be interpreted as an indicator of a glacier

extent that is in balance with the prevailing climatic condi-

tions. Of course, both need to last for a decade or so to

distinguish it from the turning point of short-term oscilla-

tions. In the European Alps, the periods 1850–1860, 1920–

1930 and 1970–1980 have seen such equilibrium extents for

small to medium-sized glaciers (WGMS, 2008). However,

for the largest glaciers with response times longer than a few

decades, this is likely only the case for the Little Ice Age

(LIA) extents.

Starting from an equilibrium state and assuming a step

change in one of the climatic parameters as for example a

sudden temperature increase, glaciers should shrink and the

mass balance related to the actual glacier surface should be-

come less negative and progressively reach zero again (after

full dynamic response). For an ongoing climatic forcing (e.g.

a linearly increasing instead of a step change) annual val-

ues will remain negative and for an accelerated forcing mass

balance becomes increasingly more negative, maybe until a

glacier disappears (Pelto, 2010; Harrison et al., 2009). The

latter trend (increasingly negative mass balances over shrink-

ing glacier areas) is currently observed in the Alps (Haeberli

et al., 2007) but also in many other regions of the Northern

Hemisphere (WGMS, 2008). In the Alps, it is likely a re-

sponse to a one degree temperature increase (step change)

around 1985 (Beniston, 2005).

In part, the increasingly negative trend might already be

reinforced by positive feedbacks which increase the energy

available for melt. The latter can include a gradually de-

creased albedo of bare ice due to pollution (Oerlemans et

al., 2009; Paul et al., 2005), enhanced down-wasting due to

surface lowering (Raymond et al., 2005; Paul and Haeberli,

2008) and disintegration of glaciers (Carturan and Seppi,

2007; Paul et al., 2004). Indeed, for many glaciers in the Alps

down-wasting rather than retreat is the dominant reaction to

the strongly increased temperatures after 1985 (Paul et al.,

2007a; Paul and Haeberli, 2008). When a glacier front does

not retreat to higher elevations (i.e. with lower temperatures),

but large parts of the surface melt down and decrease in ele-

vation, glacier melt is enhanced by a reinforcement feedback

(Raymond et al., 2005; Fischer, 2010). In particular large

glaciers with flat tongues at low elevations suffer from this

feedback (e.g. Larsen et al., 2007; Schiefer et al., 2007; Paul

and Haeberli, 2008). Thus, mass balance values reported

from the Alps in the past decade do already include more

than the response to climatic change and their interpretation

is less clear than in previous periods (cf. also Fischer, 2010).

Additionally, changes in glacier extent make the direct cli-

matic interpretation of measured or reconstructed mass bal-

ance difficult (Harrison et al., 2009).

The aim of this study is to assess the influence of a chang-

ing glacier extent and surface elevation on modeled mass

balance for a larger sample of different glaciers using data

from two points in time. The experiments should reveal

which part of the climate forcing is “visible” in the mea-

sured mass balance and which part is “hidden” in the ge-

ometric change. In order to investigate the maximum pos-

sible effect, reconstructed glacier extents from the LIA and

from the 1970s (outlines from the Swiss glacier inventory)

were used. Both periods were characterized by near equilib-

rium conditions for glacier extent. This is important for the

calculation of mass balance sensitivities, as these should be

calculated with respect to a zero balance to reduce the influ-

ence of glacier hypsography. For glaciers with a geometry

close to an equilibrium state, the balanced budget assump-

tion is more realistic. Glacier surface elevation is taken from

a reconstructed digital elevation model (DEM) for the LIA

extent (1850) and a DEM from swisstopo representing the

mid-1980s, both having a 25 m cell spacing. The mass bal-

ance is calculated with a distributed energy balance model

of intermediate complexity (Machguth et al., 2006b; Paul et

al., 2009) that allows calculations over larger regions with

several glaciers and sparse input data (here restricted to the

daily variability of potential global radiation, temperature,

and precipitation).

2 Study region and input data

2.1 Study region

The selection of the study site is driven by the availability

of the required input data and its representativeness for the

anticipated effects. The selected region is centred around
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Fig. 1. The study region around Great Aletschglacier in a synthetic oblique perspective view created from a pan-sharpened satellite image

(Landsat TM with IRS-1C) and glacier outlines from 1850 (red) and 1973 (blue) draped over a DEM. The region covered is 40 km by 41 km

in size. The inset map shows the location of the test site in Switzerland (black square). The DEM is reproduced by permission of swisstopo

(BA100472).

Great Aletschglacier (Fig. 1), which is the largest glacier

in the Alps (area: 86 km2, length 23 km). The region con-

tains glaciers of all sizes, types and expositions, rugged high-

mountain topography, and a steep precipitation gradient from

the wet north to the drier south. For this region digitized

glacier outlines and 100 m equidistance elevation contour

lines from ca. 1850 are available from Wipf (1999). Com-

pared to other parts of the world, the Swiss topographic maps

from the LIA around 1850 are of a high (maybe unique)

quality and have already been used for reconstruction of sur-

face topography and geometric extent (Maisch et al., 2000).

Moreover, digitized glacier outlines from the 1973 Swiss

glacier inventory (Paul, 2007) and the DEM25 level 1 from

swisstopo (25 m cell spacing) which was compiled in the

mid-1980s are used. It is assumed that this is representative

also for the mid-1970s topography, as little change in glacier

extent occurred between the mid 1970s and 1980s (Paul et

al., 2004) and reported mass balance values indicate nearly

balanced budgets during that period (WGMS, 2007).

2.2 DEM reconstruction

The DEM from 1850 was reconstructed by combining 100 m

contour lines with the glacier outlines from 1850 and the

DEM25 within a Geographic Information System (GIS). The

first step is a conversion of the DEM25 to contour lines

with 25 m equidistance and their replacement inside the 1850

glacier outlines with the 100 m contour lines from 1850. In

a second step, these contours were interpolated within the

GIS to a 50 m cell size DEM using the topogrid routine in

Arc/Info (ESRI, 2004). Finally, the 50 m DEM was bilin-

early interpolated to 25 for smoothing and the final eleva-

tions inside the 1850 glacier outlines were replaced in the

recent DEM25 with the interpolated ones. A shaded relief

of the 1850 DEM clearly displays artefacts in flat regions of

some glacier tongues close to the original contour lines, but

often the elevation difference (5–30 m) is much smaller than

the elevation change from the LIA to the mid 1970s (50–

300 m). Towards the accumulation area however, the eleva-

tion changes decrease and the artefacts create more and more

erroneous results (e.g. the 1985 surface can be higher than in

1850). In these regions, the interpolated 1850 DEM was reset

to the DEM25. The size of the replaced regions varies from

glacier to glacier (between 30 and 70%). Glaciers smaller

than 0.5 km2 in 1850 were excluded from the analysis.

2.3 Climatic data

The applied distributed mass balance model requires only

limited inputs, but includes the most relevant processes gov-

erning mass balance variability in high-mountain topography

(Oerlemans, 2001; Paul et al., 2008): temperature (T ), pre-

cipitation (P ) and potential global radiation (R). The mean

daily temperature values are generated by a cosine function

from an annual mean and range following Oerlemans (1992).

The mean annual values for 1850 (15 ◦C) were selected to

give a mass balance that is close to zero in the mean for the

entire region. A 1 ◦C higher temperature is used for the sim-

ulations with the 1970s glacier extent (Böhm et al., 2001).

The precipitation distribution (annual sums) is taken from

the 2 km gridded climatology by Schwarb et al. (2001),

which refers to the period 1971–1990 (Frei and Schär, 1998).

This data set is also used for the 1850 model run, as there is

no evidence for a trend in precipitation totals since that time
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Figure 2 a/b

a) b)

2 km

Global radiation (W/m2)Annual precipitation (mm)

2 km

Fig. 2. (a) Mean annual precipitation from the Schwarb et al. (2001) climatology resampled from 2 km to 25 m cells with glacier outlines

from 1850. (b) Mean daily potential global radiation as modeled by SRAD for day 212 of a year (31 July) using the reconstructed DEM

from 1850.

(Begert et al., 2005) and local precipitation gradients should

not have changed too much. Moreover, precipitation is used

in some experiments as an additional, locally adapted tuning

factor for each glacier, which allows to be less accurate with

the absolute values. To get a smoothed input data set, the

2 km precipitation grid was bilinearly resampled to the 25 m

cells of the model domain (Fig. 2a).

Global radiation has a high temporal and spatial variabil-

ity. For this study the temporal variability due to cloud cover

is neglected by assuming a constant cloud factor of 0.5 for

each day of the year and the entire model domain (Meerkötter

et al., 2004). However, the spatial variability of the poten-

tial (i.e. cloud-free) global radiation is fully accounted for by

calculating a mean daily value for each day of the year and

the two DEMs from the computer code SRAD (Wilson and

Gallant, 2000). All topographic factors (e.g. slope, aspect,

sky view factor) are included and changes in global radiation

receipt due to a changed glacier geometry are explicitly con-

sidered. In Fig. 2b the spatial distribution for the 1850 DEM

and day 212 (31 July) is shown as an example.

3 The mass balance model

The general approach of the applied surface energy and mass

balance model is to include the most important variables for

Alpine glaciers (T , P , R) with high precision, while oth-

ers are parameterized more roughly (cf. Oerlemans, 2001).

Such simplified calculations provided rather good results

compared to measurements or more complex modeling ap-

proaches (Machguth et al., 2006b, 2009; Hock et al., 2007).

Details of the model used here were described by Paul et

al. (2008) and a validation of model performance can be

found in Machguth et al. (2006b) and Paul et al. (2009). The

focus is thus here on a short description of some of its basic

characteristics. The model physics (e.g. the parameterization

of longwave incoming and outgoing radiation) is based on

the models developed by Oerlemans (1991, 1992) and Klok

and Oerlemans (2002) with some modifications to include a

forcing by meteorological data in raster format. The model

starts at day 274 (on October first of a year) with zero snow

depth at all cells of the respective DEM and calculates cu-

mulative mass balance for each cell at daily steps for a full

hydrologic year (until 30 September).

Mean daily temperature is derived from a synthetic cosine

curve (minimum 30 January) with an annual mean value (see

Table 1) and a temperature range of 7.5 ◦C. The extrapolation

to the elevation of each DEM cell uses a constant lapse rate

of 6.25 ◦C km−1 as applied in previous studies. Precipitation

in the model occurs on each fifth day with 1/73 of the annual

sum according to the interpolated climatology by Schwarb et

al. (2001). Though artificial, this frequency is rather similar

to the natural frequency of larger precipitation events. The

mean daily potential global radiation is considered using the

pre-calculated SRAD grids for each day of the year.

The calculation of turbulent fluxes depends on tempera-

ture and humidity but not on wind speed. However, the ex-

change coefficient for the turbulent fluxes is allowed to in-

crease down-glacier to mimic an increased surface roughness

(Oerlemans, 1992). For this purpose a mean equilibrium

line altitude (ELA) of 2900 m is used for the entire model

domain. Some other meteorological parameters that are re-

quired in the model (e.g. air pressure, humidity) use fixed

climatologic mean values that are extrapolated to the DEM

with their specific gradients (Machguth et al., 2006b; Paul

et al., 2008). A snow albedo of 0.7 is used for freshly fallen

snow (with an exponential ageing curve) and ice albedo is set

to 0.3. Snow thickness (in m w.e.) and the spatio-temporal

The Cryosphere, 4, 569–581, 2010 www.the-cryosphere.net/4/569/2010/



F. Paul: The influence of changes in glacier extent and surface elevation on modeled mass balance 573

Table 1. Overview of the performed model runs. DEM: used digital elevation model, Temp.: used temperature, Mean mb: mean (area

weighted) mass balance for the entire region, Mass balance range: range of individual values, Figures: the results are presented in the

indicated figures with the number in brackets refering to the scatter plots.

Run DEM Temp. Mean Mass balance Comment Figure

mb range

A1 1850 15 0 −1.3–1.7 initial run 1850 3b (7a)

A2 1850 15 0 ±0.1 tuned to zero mass balance –

A3 1850 16 0.64 0.35–0.87 temperature sensitivity 1850 6 (7a, b)

B1 1985 16 0 −2–1.5 initial run 1973 –

B1T 1985 15 +0.42 −1.3–1.8 for experiment E1 and E3a/b –

B2 1985 16 0 ±0.1 tuned to zero mass balance –

B3 1985 17 0.58 0.26–0.84 temperature sensitivity 1973 (7b)

change of the snow line during the year is explicitly modeled.

For a thin snow pack the albedo is reduced according to Klok

and Oerlemans (2002) and the ice albedo is used when snow

thickness is zero. Net balances are derived in the GIS for

each glacier from zone statistics using the respective glacier

extents (1850 or 1973) as a zone and the obtained mass bal-

ance distribution (from the 1850/1985 DEM) as the values.

4 Experiments

To obtain comparable results, a rather synthetical set-up is

used for the experiments. Three modeling steps can be dis-

tinguished: (1) application of the mass balance model using

different mean temperatures and the DEMs from 1850 and

1985 as an input (cf. Table 1), (2) zonal averaging with the

1850 and 1973 extents for calculation of a mean mass bal-

ance per glacier (cf. Table 2), and (3) calculation of differ-

ences to a reference data set (cf. Table 3). For step (1), model

run A1 serves as a reference for the 1850 glacier geometry

and B1 for the 1973/1985 conditions. For both runs also a

tuning run is performed (A2, B2) that has adjusted precipita-

tion amounts to obtain a zero mass balance for each glacier

as a starting point for the sensitivity runs (A3, B3). They use

one degree higher mean annual air temperatures but the same

tuned precipitation grid as in A2 and B2 (Table 1). One addi-

tional run (B1T) was performed that is based on B1 but uses

a one degree lower temperature.

For the tuning, the precipitation sensitivity (change in

mean mass balance due to a 10% lower precipitation) was

calculated for each glacier and modeled mass balances were

divided by this sensitivity to derive the related correction

factors. The precipitation grid (Fig. 2b) was corrected with

these glacier specific factors (ranging from −74% to +65%)

and new mass balances were calculated. After the sec-

ond iteration modeled mass balances were close to zero

(±0.02 m w.e.). The zero balance tuning is required to elim-

inate the influence from the initial balance on the calculated

Table 2. Overview of the glacier extents used for spatial averaging

of the calculated mass balance from the model runs listed in Table 1

(column “Run”).

Code Temp. Run DEM Extent Comment

AR 15 A1 1850 1850 Reference experiment

with the 1850 DEM

AS 15+1 A3 1850 1850 Temperature sensitivity

for 1850

BR 16 B1 1985 1973 Reference experiment

with the 1985 DEM

BS 16+1 B3 1985 1973 Temperature sensitivity

for 1973

E1 15 B1T 1985 1850 Change of DEM

E2 15 A1 1850 1973 Change of extent

E3a 15 B1T 1985 1973 Change of DEM and

extent (1850 entities)

E3b 15 B1T 1985 1973 Change of DEM and

extent (1973 entities)

sensitivity. For example, a reduced sensitivity could be pos-

sible for a glacier that has already a negative balance with its

ELA located in the steeper accumulation region. In this case,

the size change of the ablation region is only small for a given

ELA shift. The precipitation sensitivity was not re-calculated

starting from a zero balance.

Based on the model runs from step (1), different combina-

tions of zonal averaging (listed in Table 2) were performed

in step (2). The reference runs AR (BR) are based on the

initial runs A1 (B1) and use the respective extent from 1850

(1973) for zonal averaging of mass balance values. The sen-

sitivity experiments AS (BS) are based on the sensitivity runs

A3 (B3) and also use the respective extent from 1850 (1973)

for zonal averaging. To determine the influence of glacier ex-

tent and surface elevation change on mass balance, the model

runs A1 and B1T were combined with different extents. In

Experiment 1 (E1) mean mass balance values are calculated
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Table 3. Overview on the calculated differences. For each differ-

ence input 2 is subtracted from input 1.

Difference Input 1 Input 2 Figure

D1 A1 E1 4a

D2 A1 E2 4b

D3 A1 E3a 5a

D4 D3 E3b 5b

D5 A2 A3 6

D6 B2 B3 –

from model run B1T and the 1850 extents, in E2 mean val-

ues are calculated from model run A1 and the 1973 extents,

and in E3 mean values are calculated from run B1T but with

the 1973 extents. Due to glacier split after 1850, the 1973

extents are considered in two different ways: in E3a all parts

that belonged to the former 1850 extent are treated as one en-

tity and in E3b all entities in 1973 are considered separately

(Table 2).

In the final step (3) the differences of modeled mean mass

balances are calculated (Table 3). Difference 1 (D1) provides

the change in mass balance due to a change of the DEM (i.e.

surface elevation), D2 due to a change of the extent, and D3

due to changes in both the DEM and glacier extent. The dif-

ference D4 results from the different assignment of glacier

zones in E3b and is calculated as the difference to D3 to en-

hance the changes. With these differences it is possible to

separately assess the change in mass balance due to surface

lowering, decreased glacier extent and a combination of both

adjustments. The differences D5 and D6 refer to the sensi-

tivity model runs A3 and B3.

5 Results

For Figs. 3b, 4, 5 and 6, mean values and the steps of half

standard deviations used for colour coding refer to area-

weighted means. In general, this value is biased towards

the largest glacier and the slightly different arithemtic means

are also disussed below. Each figure has its own legend and

range of values to better illustrate their spatial variability and

to avoid cross-comparisons of individual glaciers. The latter

could be misleading as the images refers to different enti-

ties and values cannot be simply added up. Only glaciers

>0.5 km2 are considered.

5.1 Reference runs

In Fig. 3a the mass balance distribution as obtained by the

model is shown for the reference run (A1) and the 1850

glacier extent. For better visibility the image is clipped with

the glacier cover. The change in mass balance follows ele-

vation closely, because the ice albedo has been fixed to 0.3

and the potential global radiation in the flat ablation regions

of the larger glacier tongues has only a limited variability

(Fig. 2b). In the accumulation region, the pattern of the pre-

cipitation distribution (Fig. 2a) takes over and governs the

spatial variability. The modeled ablation at the terminus of

−10 m w.e. a−1 at Great Aletschglacier (1450 m a.s.l.), and

−12 m w.e. a−1 at both Grindelwald Glaciers (1200 m a.s.l.)

are in agreement with other approaches using midpoint and

minimum elevation together with a fixed mass balance gra-

dient (Haeberli and Hoelzle, 1995). The modeled accumula-

tion of 3.5 m w.e. near Jungfraujoch (3550 m a.s.l.) is rather

high, but only found in small regions. They likely result from

unconsidered processes in the mass balance model (e.g. wind

drift) and too high precipitation values in the input data set

for this region.

The mean mass balance for each glacier without any tun-

ing (AR) is depicted in Fig. 3b, using the above mentioned

colour coding. Though the area weighted mean mass balance

is close to zero (arithmetic mean is 0.14±0.84 m w.e.), there

is a large spread of values between −1.3 and 1.7 m w.e. a−1

for individual glaciers. In general, a distinct spatial pattern

with more negative values in the west and east of the study

region and balanced to positive values in the central part can

be seen. In particular very small glaciers and those at the

northern Alpine rim have positive mass balances. For the lat-

ter this is obviously due to higher precipitation (Fig. 2a) and

reduced global radiation (Fig. 2b). The very negative mass

balance of Unteraarglacier (UAG in Fig. 3b) is most likely

due to its low surface elevation. In reality, the glacier tongue

is covered by a thick debris layer which might reduce abla-

tion by a factor of two or more (Huss et al., 2007).

5.2 Experiment 1: change of the DEM

In Fig. 4a the results from experiment 1 (E1) are presented.

In E1, glacier extent and climate is constant (1850) but the

DEM is changed. This reveals the change in mass balance

due to the surface lowering alone. Such calculations are pos-

sible as the entire domain is covered by glacier ice in the

model and mean mass balance does simply result from sta-

tistical calculations with the respective glacier zone. In prin-

ciple, two opposite effects change mass balance in the two

DEMs: on the one hand, the decrease in elevation results in

higher temperatures which enhances melt and, on the other

hand, the glacier surface can be subject to a stronger shad-

ing (better radiation protection) which reduces ablation (e.g.

Arnold et al., 2006).

In consequence, the net effect is small and differences in

both directions occur (−0.15 to 0.12 m w.e. a−1) yielding on

average (arithmetic mean) a very small negative value of

−0.02 ± 0.05 m w.e. that is not significant. However, the

area-weighted mean is −0.05 ± 0.05 m w.e. (Fig. 4a) indi-

cating a trend with glacier size. Indeed, on a scatter plot

with glacier size versus mass balance difference slightly in-

creasing negative values can be found towards larger glaciers.

This implies that both effects occur for smaller glaciers and
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Figure 3 a/b

a) b)

2 km

JFJ

GAG

UAGLGG

UGG

OAG

Fig. 3. (a) Mass balance distribution as obtained for the reference run using the DEM and outlines from 1850. (b) Resulting mean mass

balance values for each glacier (colour coding in 1/2 standard deviations) for the same model run. Locations mentioned in the text are

indicated (JFJ: Jungfraujoch, LGG/UGG: Lower/Upper Grindelwaldglacier, OAG: Oberaletschglacier, GAG: Great Aletschglacier, UAG:

Unteraarglacier).

a) b)

2 km

Fig. 4. (a) Change in mean mass balance due to a change of the DEM (difference 1). (b) Change in mean mass balance due to a change of

glacier extent (difference 2).

www.the-cryosphere.net/4/569/2010/ The Cryosphere, 4, 569–581, 2010



576 F. Paul: The influence of changes in glacier extent and surface elevation on modeled mass balance

Figure 5 a/b

a) b)

2 km

Fig. 5. (a) Change in mean mass balance due to a change of the DEM and glacier extent (difference 3). (b) As Fig. 5a, but here the change

in mean mass balance considers glacier split (difference 4).

2 km

Fig. 6. Mass balance sensitivity for a one degree temperature in-

crease based on the DEM and outlines from 1850 (difference 5).

the increase in temperature due to the lowered surface eleva-

tions is more pronounced for larger glaciers. A small neg-

ative effect of the surface lowering on the mass balance has

also been found in the study by Fischer (2010) for Hintereis-

ferner in Austria.

5.3 Experiment 2: change of the extent

In experiment 2 (E2) only the glacier extents are changed and

the mass balance from the reference run (A1) with the sur-

face of the 1850 DEM is used for calculation. The resulting

differences are depicted in Fig. 4b. The change in areal ex-

tent alone results in much more positive mass balances (up to

1.25 m w.e.) for all glaciers (0.47±0.28 m w.e. in the arith-

metic mean) with a markedly different spatial pattern than

for E1 (Fig. 4a). In particular, the flat and highly debris

covered glacier tongues of Unteraar- and Oberaletschglacier,

both with little change in radiation exposure after the areal

change, and those glaciers on the northern slopes do not ben-

efit much from the change in extent. Some glaciers even

have a slightly more negative mean mass balance after their

reduction in size which is basically due to their special to-

pographic conditions, i.e. they lost strongly shaded parts of

their tongues.

5.4 Experiment 3: change of the DEM and the extent

In experiment 3 (E3a and E3b) both, the DEM and the glacier

extent were changed (Fig. 5a). As expected, the mass bal-

ance difference is very similar to E2 in the arithmetic mean

(0.46 ± 0.28 m w.e.) and more different to E2 in the area

weighted mean (0.36 ± 0.29 m w.e.) as the enhanced melt

due to surface elevation decrease is more pronounced for the

larger glaciers (E1). When the change is related to the 1973

glacier entities (E3b), several tributaries have a much more

positive balance (up to 0.9 m w.e.) compared to E3a, while

others have more negative balances as they lost contact with
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Fig. 7. (a) Comparison of the mean mass balance from the reference run without tuning (AR) with the mass balance sensitivity starting from

a tuned zero balance (AS). (b) Scatter plot comparing the mass balance sensitivity for the 1850 DEM and glacier extent with the sensitivity

for the 1973 extent and the 1985 DEM (sensitivity runs AS and BS).

higher accumulation areas (Fig. 5b). For large glaciers that

only disconnect from a small tributary, only minor changes

in mass balance occur.

5.5 Mass balance sensitivity

The spatial variability of the mass balance sensitivity from

model run A3 (DEM from 1850) and outlines from 1850

(experiment AS in Table 2) is presented in Fig. 6. All

glaciers have a negative mass balance sensitivity, mostly

between −0.35 and −0.87 m w.e. (the arithmetic mean is

−0.63±0.12 m w.e.) for a 1 ◦C increase in temperature (as

the sensitivity run A3 is subtracted from zero, values are pos-

itive in Fig. 6). The values are in good agreement with other

studies using different approaches for calculating sensitivity

(e.g. Braithwaite and Zhang, 1999; Oerlemans and Fortuin,

1992). The pattern in Fig. 6 shows a surprising similarity

to the pattern of the mass balance distribution in the refer-

ence run (A1) without tuning (Fig. 3b). Indeed, a linear re-

gression of mass balance and mass balance sensitivity gives

a correlation coefficient of r = 0.89 (Fig. 7a). This implies

that the mass balance sensitivity (starting from a zero bal-

ance) can also be seen in an untuned reference run of the

model. It is assumed that the similarity is a result of the

area-elevation distribution (hypsography) of each glacier that

might have a strong influence on both values (Furbish and

Andrews, 1984).

The mass balance sensitivity was also calculated for the

recent DEM (B3) and the 1973 glacier extent (BS in Table 2)

to assess how the sensitivity has changed compared to the

more recent geometry. Both sensitivities are compared in

the scatter plot of Fig. 7b. Apart from eleven glaciers that

show virtually no change, the sensitivity for all glaciers de-

creased by up to 0.15 m w.e. a−1. To a certain extent this can

be explained by the new position of the equilibrium line (EL),

which is for the smaller extent higher up and thus closer to

steeper terrain. In this terrain, the ca. 150 m upward shift of

the EL (i.e. 1 ◦C temperature increase) would result in a com-

parably smaller change of the size of the ablation area than

in flatter regions of a glacier.

6 Discussion

6.1 Interpretation of the results

Mean measured or indirectly inferred annual mass balance

for Alpine glaciers over the period 1850 to the mid 1970s

was about −0.2 to −0.3 m w.e. a−1 (Haeberli and Hoelzle,

1995; Bauder et al., 2007; Hoelzle et al., 2003; Haeberli et

al., 2007; Steiner et al., 2005). Over the same time period,

temperatures in the Alps increased by nearly 1 ◦C (Böhm et

al., 2001). According to the sensitivity studies, such an in-

crease would lead to a mean mass balance change of about

−0.63 m w.e., which is about 2–3 times higher than mea-

sured. According to the experiments presented here, the

changes in extent alone result in about 0.47 m w.e. more pos-

itive balances (arithmetic mean), while the surface lowering

alone has a negligible effect in the arithmetic mean but ac-

counts for about 0.05 m w.e. more negative balances in the

area weighted mean as the negative effect slightly increases

towards larger glaciers. Both changes combined cause about

0.46 m w.e. more positive balances (0.36 in the area weighted

mean), which is about the difference between the recon-

structed mean mass balance and the theoretical one from the

temperature sensitivity. The mean value for both changes

(0.36) is slightly different from the sum of the individual val-

ues as the changes do not scale linearly.

The split of tributaries can have strong impacts on the

mean mass balance of the new parts given that they are
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sufficiently different in size or hypsography. In reality such

a separation from tributaries can have severe impacts on the

fate of a glacier (e.g. Caresèr glacier, Carturan and Seppi,

2007) or create problems for the correct extrapolation of

mass balance measurements (e.g. Hintereisferner, Fischer,

2010). As a general figure, the changes in glacier geometry

over the 1850 to 1973/1985 period were responsible for about

1/2 to 2/3 of the response to the temperature increase. The

observed near zero mass balances of many Alpine glaciers

that occurred during the 1970s can thus be explained with the

reconstructed mean mass balance combined with the com-

pensation by geometric changes.

Due to the temperature increase of another degree in the

1980s, the current extents of most glaciers are again out of

balance. The currently observed rapid glacier retreat in the

Alps (Citterio et al., 2007; Lambrecht and Kuhn, 2007; Paul

et al., 2004, 2007a) will thus continue. Assuming that no fur-

ther temperature increase will occur, about 40% of the glacier

area of the 1970s would have to disappear for a 150 m in-

crease in ELA (Paul et al., 2007b; Zemp et al., 2006).

6.2 Implications for mass balance reconstructions

The model results have several implications: for proper de-

termination of former mass balances an accurate reconstruc-

tion of glacier extent is much more important than that of the

surface elevation. This is good news, as the reconstruction of

former elevation contours is more error-prone and more un-

certain than the determination of former glacier extent. Even

where historic topographic maps are available, the elevation

contour lines for glacier surfaces are often more hand drawn

than measured. Hence, artefacts (like an undulating surface)

that can result from the spatial interpolation of a DEM from

contour lines with a large equidistance can be neglected.

In principle, somewhat higher surface temperatures at

lower elevations and at the same time a slightly stronger

shading in these regions could cancel each other out and for

some smaller glaciers in this study the increased shading is

even the dominant effect. However, the results demonstrate

that the lowering of the surface elevation has a negative ef-

fect on the mass balance for larger glaciers as also found in a

recent study by Fischer (2010). This has also a consequence

for the currently observed down-wasting of the larger Alpine

glaciers (Paul et al., 2007a; Paul and Haeberli, 2008): when

their extent does not change too much (e.g. the glacier ter-

minus rests in a stable position), the down-wasting is self-

accelerating and able to melt down the ice without further cli-

mate change. The related processes were recently observed

at the disintegrating tongues of Triftglacier and Gauliglacier

and have now started at the tongue of Rhoneglacier (see

www.swisseduc.ch). In these cases, the formation of lakes

in overdeepened glacier beds accelerates glacier melt even

further.

Another consequence is related to reconstructing mass bal-

ance back in time. When the actual glacier extent and sur-

face elevation is considered for mass balance calculation (hy-

drologic balance), more negative mass balances result for a

glacier under the same climatic forcing. The direct compar-

ison of mass balances for glaciers with different extents is

thus misleading. For such a comparison the geometric con-

ditions must be the same. Correspondingly, holding glacier

extent constant in forward calculations of mass balance (for

increasing temperatures) results in more negative balances

than actually occur as glacier size is overestimated. On the

other hand, reconstructions back in time will be more pos-

itive than in reality when glaciers were larger in the past.

Such effects are currently only roughly considered in models

that calculate past or future glacier changes (e.g. Radic and

Hock, 2006). As Nemec et al. (2009) have shown in a tran-

sient model run (1865 to 2005) for Morteratsch Glacier, the

mass balance for a fixed geometry was about 46% more neg-

ative than the hydrological one, which is in good agreement

with the results obtained here.

The general decrease in the mass balance sensitivity for

smaller glacier extents has to be considered for long forward

integrations in coupled mass balance/flow models. However,

this might be limited to the “classical” Alpine glacier type

with increasingly steep backwalls towards higher elevations

and finally avalanche-fed cirque type glaciers that might not

change at all (Hoffmann et al., 2007; DeBeer and Sharp,

2009). In the case of ice caps/ice fields or other glacier types

with a different hypsographic curve (more flat towards higher

elevations), the sensitivity will likely increase (Furbish and

Andrews, 1984). Alpine glaciers that do no longer have an

accumulation area will finally also disappear (Maisch et al.,

2000; Pelto, 2010).

6.3 Possible errors of the modelling

The applied mass balance model as well as the input data in-

clude simplifications that have an influence on the modeled

mass balance in absolute terms. However, the main results of

the study would not change much if a more complex model

or a more accurate extrapolation of the glacier surface had

been used as the differences in mass balance analysed here

are much less influenced by such uncertainties. Moreover, a

mass balance model that is based on the energy balance ap-

proach is less sensitive to small errors in the input data as

some of the errors tend to cancel each other out. For exam-

ple, regions where artefacts of the reconstructed DEM are

present (e.g. a wave pattern) have in most cases two sides,

one where mass balance is too negative and one where it is

too positive compared to a “correct” surface. In the mean for

an entire glacier, both local deviations compensate. How-

ever, near the glacier front extrapolation artefacts result in

surfaces with a concave instead of a convex curvature and a

related underestimation of the solar radiation receipts. This

has to be considered when individual glaciers are analysed in

detail, for example with mass balance profiles.
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The mass balance model does not consider reduced melt-

ing for debris-covered glacier parts or redistribution of snow

by wind and avalanches. As is obvious from Fig. 3a, several

small glaciers located at high elevations have nearly no abla-

tion area. This indicates that absolute precipitation amounts

are too high and/or that snow redistribution can be impor-

tant (e.g. Machguth et al., 2006a; Paul et al., 2009). In the

sensitivity model runs, this is compensated for by adjusting

the precipitation until a zero mass balance is obtained for

each glacier. Related high correction factors point to glaciers

where such processes can be important for the mass balance

of the respective glacier (Paul et al., 2008).

7 Conclusions

The model runs and zonal averaging experiments presented

in this study have shown that from a glacier’s response to cli-

mate change (as given by its mass balance sensitivity) about

50–70% is “hidden” in its geometric adjustment and only

30–50% can be measured or reconstructed (for the LIA to

1973 period). Thereby, the decrease in areal extent results

in a mass balance that is on average 0.47 m w.e. more posi-

tive, while the lowering of the surface gives only more neg-

ative balances for the larger glaciers but no change (in the

mean) for smaller glaciers. For the latter, the effects of an

increased shading due to a lowered glacier tongue can also

result in a more positive balance. In total and in the mean,

the change in mass balance due to the geometric response

combined with the measured/reconstructed balances result

in adjusted glacier extents for the approximately one degree

higher temperatures of the 1970s compared to 1850.

The strong influence of glacier extent on mean mass bal-

ance has several implications: first, both the direct interpre-

tation of mass balance values that refer to a variable geome-

try and the climatic interpretation of reconstructed/modeled

past/future mass balance values is a very complex issue. Sec-

ond, the same climatic forcing results in more negative mass

balances for larger glacier extents and vice versa. Finally,

mass balance sensitivities slightly decreased from the LIA to

the 1970s glacier extents, for nearly all glaciers in the sample

(by 0.06 m w.e. a−1 on average). This implies that in steep

mountain topography shrinking glaciers are becoming less

sensitive to climatic change and might thus be able to stabi-

lize their extent. For icefields or icecaps this effect is likely

opposite.
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Jóhannesson, T., Raymond, C., and Waddington, E.: Time-scale for

adjustment of glaciers to changes in mass balance, J. Glaciol.,

35(121), 355–369, 1989.

Klok, E. J. and Oerlemans, J.: Model study of the spatial distri-

bution of the energy and mass balance of Morteratschgletscher,

Switzerland, J. Glaciol., 48(163), 505–518, 2002.

Lambrecht, A. and Kuhn, M.: Glacier changes in the Austrian Alps

during the last three decades, derived from the new Austrian

glacier inventory, Ann. Glaciol., 46, 177–184, 2006.

Larsen, C. F., Motyka, R. J., Arendt, A. A., Echelmeyer, K. A., and

Geissler, P. E.: Glacier changes in southeast Alaska and north-

west British Columbia and contribution to sea level rise, J. Geo-

phys. Res., 112, F01007, doi:10.1029/2006JF000586, 2007.

Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato,

G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., and Zhang,

T.: Observations: Changes in Snow, Ice and Frozen Ground, in:

Climate Change 2007: The Physical Science Basis. Contribution

of Working Group I to the Fourth Assessment Report of the In-

tergovernmental Panel on Climate Change, edited by: Solomon,

S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.

B., Tignor, M., and Miller, H. L., Cambridge University Press,

Cambridge, United Kingdom and New York, NY, USA, 2007.
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