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RESEARCH ARTICLE Open Access

The influence of climatic conditions on the
transmission dynamics of the 2009 A/H1N1
influenza pandemic in Chile
Gerardo Chowell1,2*, Sherry Towers1,3, Cécile Viboud2, Rodrigo Fuentes4, Viviana Sotomayor4, Lone Simonsen2,5,
Mark A Miller2, Mauricio Lima6, Claudia Villarroel7, Monica Chiu4, Jose E Villarroel4 and Andrea Olea4

Abstract

Background: The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in
shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the
spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere
country covering a long and narrow strip comprising latitudes 17°S to 56°S.

Methods: We analyzed the dissemination patterns of the 2009 A/H1N1 pandemic across 15 regions of Chile based
on daily hospitalizations for severe acute respiratory disease and laboratory confirmed A/H1N1 influenza infection
from 01-May to 31-December, 2009. We explored the association between timing of pandemic onset and peak
pandemic activity and several geographical and demographic indicators, school vacations, climatic factors, and
international passengers. We also estimated the reproduction number (R) based on the growth rate of the
exponential pandemic phase by date of symptoms onset, estimated using maximum likelihood methods.

Results: While earlier pandemic onset was associated with larger population size, there was no association with
connectivity, demographic, school or climatic factors. In contrast, there was a latitudinal gradient in peak pandemic
timing, representing a 16-39-day lag in disease activity from the southern regions relative to the northernmost
region (P < 0.001). Geographical differences in latitude of Chilean regions, maximum temperature and specific
humidity explained 68.5% of the variability in peak timing (P = 0.01). In addition, there was a decreasing gradient in
reproduction number from south to north Chile (P < 0.0001). The regional mean R estimates were 1.6-2.0, 1.3-1.5,
and 1.2-1.3 for southern, central and northern regions, respectively, which were not affected by the winter vacation
period.

Conclusions: There was a lag in the period of most intense 2009 pandemic influenza activity following a South to
North traveling pattern across regions of Chile, significantly associated with geographical differences in minimum
temperature and specific humidity. The latitudinal gradient in timing of pandemic activity was accompanied by a
gradient in reproduction number (P < 0.0001). Intensified surveillance strategies in colder and drier southern
regions could lead to earlier detection of pandemic influenza viruses and improved control outcomes.

Keywords: A/H1N1 influenza pandemic, Acute respiratory infection, Influenza-like-illness, Reproduction number,
Spatial heterogeneity, School cycles, Climatological variables, Specific humidity, Temperature, Chile
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Background
Increasing our understanding of host, environmental, and
pathogen specific factors modulating the transmissibility
and spatio-temporal dynamics of pandemic influenza has
the potential to guide mitigation and surveillance stra-
tegies. Several factors have been put forward as potential
drivers of the spatio-temporal dynamics of influenza pan-
demics, including population contact rates, travel patterns,
climatic conditions, and geography. Recent studies of the
2009 A/H1N1 influenza pandemic have quantified the
role of demographic factors, school cycles and social dis-
tancing measures (e.g., school closure) on disease trans-
mission [1-5], but their effect combined with climatic
factors is less clear [6,7]. In particular, experimental stu-
dies indicate that aerosol transmission of 2009 A/H1N1
influenza is sensitive to temperature and humidity levels
[8]. Moreover, the timing and intensity of the 2009 A/
H1N1 pandemic waves varied substantially across regions
of the world [1,2,9-14], suggesting a potential link with
local meteorological conditions. Further, the occurrence of
recrudescent waves of pandemic activity in the South-
Eastern US in winter 2010 was associated with low hu-
midity levels [15].
The first cases of 2009 A/H1N1 pandemic influenza

were confirmed on April 21–23 in California, USA, and
Mexico [16,17], and soon after the pandemic virus be-
came the dominant respiratory virus in the Southern
Hemisphere’s temperate countries [18,19]. Timing of
pandemic activity coincided with the typical influenza
winter season in this region which spans the months of
May-September. Few studies have characterized A/H1N1
transmission dynamics in the Southern Hemisphere
[2,5,20], and no study has explored variation in disease
transmission at a small spatial scale in this region. Here we
characterized the spatio-temporal dynamics of the 2009 in-
fluenza pandemic across Chile, a country which combines
an extended latitudinal range with a solid epidemiological
surveillance system. In this work, we assessed the relative
contribution of environmental conditions, demographic
factors, contact rates, and international travel patterns on
pandemic A/H1N1 transmission, by modeling a large data-
set of weekly hospitalizations for severe acute respiratory
infection and laboratory-confirmed A/H1N1 influenza in-
fection in the 15 administrative regions of Chile.

Methods
Geographical context
Chile is a South American country covering a long and
narrow strip between the Andes mountains to the east
and the Pacific Ocean to the west, ranging between lati-
tude 17° and 56°S and longitudes 66° and 76°W. Chile’s
climate ranges from dry and desert in the north, Medi-
terranean in the centre, and rainy temperate in the
south. The population of Chile is about 17 million with

40% of the population concentrated in the metropolitan
region that includes the Capital, Santiago. Chile is
divided into 15 contiguous administrative regions.

Epidemiological data
We relied on a large individual-level dataset comprising
all hospitalizations for severe acute respiratory infection
(hereafter referred to as SARI) reported by all public and
private hospitals to the Chilean Ministry of Health du-
ring 01-May to 31-December 2009. The SARI symptom
definition for children < 5 years included pneumonia or
severe pneumonia together with any of the following
symptoms: hypoxemia, dehydration or loss of appetite,
respiratory difficulty, or hemodynamic compromise. The
SARI definition for older individuals included any of the
following symptoms: tachypnea, hypotension, dyspnea,
cyanosis or hypoxemia [21]. The case definition did not
change throughout the pandemic period.
A total of 6146 SARI hospitalizations were reported to

the Chilean Ministry of Health from May 1 to December
31, 2009, of which 3373 were laboratory tested (54.9%)
via reverse transcriptase polymerase chain reaction (RT-
PCR), performed by the Instituto Nacional de Salud
Pública de Chile (ISP). A total of 1809 SARI hospitaliza-
tions (29.4%) were laboratory confirmed with A/H1N1
pandemic influenza, giving a positivity rate (A/H1N1-
SARI/tested SARI) of 53.6%. For each hospitalized pa-
tient, we obtained age, gender, reporting region, and date
of symptoms onset.

Population data
Previous studies have found population size to be partly
correlated with spatial variation in timing of the 2009 A/
H1N1 pandemic across geographic units (e.g. [1,2,22]).
We obtained regional estimates of population size for
2009 from the Instituto Nacional de Estadísticas [23].

Climate data
Transmission of influenza in the laboratory setting has
been found to be significantly associated with temperature
and humidity levels [24-29]. To evaluate the link between
pandemic influenza transmission and meteorological
conditions in Chile, we collected daily regional time series
of minimum and maximum temperature, precipitation,
relative humidity, and specific humidity, reported by
local meteorological stations for 2009 to the Dirección
Meteorológica de Chile (Figure 1) [30]. Because relative
humidity and specific humidity data were not available
for all 15 regions, we supplemented our climate data
using information from the National Oceanic and Atmos-
pheric Administration records, accessible from the Wea-
ther Underground website (http://www.wunderground.
com/). As a reference, in May 2009 during the initial pan-
demic growth phase in Chile, the minimum (respectively,
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maximum) temperature ranged from 0.77°C (6.4°C) in the
southernmost region of Magallanes to 16°C (22°C) in the
northernmost region of Arica y Parinacota. Average pre-
cipitation was almost null in the 5 northernmost regions
and highest in the Southern region of Los Rios (11.5 mm).
Specific humidity varied from 3.3 g/kg in the southern-
most region of Magallanes to 9.3 g/kg in the northern re-
gion of Tarapacá (Additional file 1: Figure S1).

International flight passenger data
We obtained data on the monthly number of inter-
national passengers arriving to international airports in
Chile in 2008 and 2009 from Junta de Aeronáutica Civil
[31]. We used 2008 data as a control for the potential
impact of the pandemic on air travel. A total of 166,832
international passengers arrived to international airports
of Chile in April 2009, representing a 1.5% reduction
relative to April 2008. A larger reduction in incoming
international air traffic was observed in May 2009 rela-
tive to May 2008 (12.5%).

International arrival data at regional seaports
We obtained data on the monthly number of inter-
national arrivals at Chilean seaports in 2009 from the
Dirección General de Terrirorio Marítimo y Marina
Mercante de la Fuerza Armada de Chile [32]. A total of

581 and 552 international arrivals were documented at
Chilean seaports in April and May 2009, respectively.

Statistical analysis
Geographic patterns
We analyzed region- and age-specific time series of A/
H1N1-positive SARI hospitalizations by day of symptom
onset to analyze the geographic dissemination patterns
of the pandemic across Chile (Figure 2). For each region,
we recorded the cumulative number of A/H1N1-positive
SARI hospitalizations during Apr-Dec 2009, the date of
pandemic onset defined by the first A/H1N1-specific
SARI hospitalization, and the date of pandemic peak
defined as the date with maximal incidence by geo-
graphic regions. All regions experienced a single peak of
pandemic activity. We analyzed the association between
the dates of pandemic onset and peak timing with popu-
lation size, latitude of population centres, climatic fac-
tors averaged during the exponential growth phase by
geographic region and international inflow of air traffic
and arrivals at seaports in May 2009 using univariate
Spearman correlations. Finally, we built a multivariate
linear regression model with all predictor variables to
disentangle the factors explaining geographical variation
in pandemic onset and peak timing across Chilean
regions. We generated a simplified model by means of a
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Figure 1 Average minimum temperature, maximum temperature, precipitation, and specific humidity for the months of May, June,
and July 2009 across Chilean regions as reported by the Dirección Meteorológica de Chile.
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backward stepwise elimination procedure. As a sensiti-
vity analysis, we repeated these analyses with all SARI
hospitalizations.

Spatial autocorrelation
We also quantified the extent of spatial autocorre-
lation across geographic regions in our epidemio-
logical data using Moran’s I statistic [33] which is

given by: I ¼
n
Xn

i¼1

Xn

j¼1

wijzizj

S0

Xn

i¼1

z2i

ði≠jÞ where n=15 is the

number of Chilean regions, and wij is a nearest-
neighbor spatial matrix where wij = 1 whenever
regions i and j share borders (contiguous regions) and
equals 0 otherwise. In addition, zi ¼ xi � �x where xi is
the number of A/H1N1-positive SARI hospitalizations
per 100,000 people in region i, �x is the mean inci-
dence across regions and S0 is a normalization con-

stant, such that S0 ¼
Xn

i¼1

Xn

j¼1

wij ði≠ jÞ . We explored

spatial autocorrelation during the main pandemic

months of May, June and July 2009. We assessed sta-
tistical significance via randomization by generating
an empirical null distribution (no-auto-correlation)
given by generating 10,000 artificial time series by
permuting regions of the original data. That is, statis-
tical significance was evaluated under the assumption
that the statistics computed using the observed data
was sampled from the reference distribution [34].

Impact of winter vacation period
School activities have been found to be significantly cor-
related with influenza transmission rates [3,35-37] and
changes in age distribution of pandemic influenza inci-
dence patterns [1,2,38]. We evaluated the geographic
specific effect of the school closing period by exploring
daily trends in the ratio of incident A/H1N1-positive
SARI hospitalizations among the student population
(5–20 years) to incident cases among all other age
groups. The winter vacation period started on July 11,
2009 in most regions of Chile and coincided with the
peak timing in the northern regions as shown in Figure 3.
To avoid low case counts we aggregated the 15 region-
specific time series into 3 broad geographic areas re-
ferred to as northern, central and southern areas.

Figure 2 Pandemic onset (denoted by symbol >) and pandemic peak (denoted by symbol ^) timing across the 15 Chilean regions
sorted from north (top) to south (bottom) Chile.
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Estimation of the reproduction number
Because region-specific time series were generally sparse
during the initial pandemic phase, we estimated the
reproduction number of the 2009 A/H1N1 influenza
pandemic across Chile using daily time series of A/
H1N1-positive SARI hospitalizations for the 3 broad
geographic areas (northern, central and south Chile). In
the early stages of an epidemic, the epidemic grows ex-
ponentially, as the effect of increasing incidence on the
depletion of the susceptible population remains small
[39-41]. The exponential growth rate, r, can be estimated
from the exponential growth phase of the pandemic, using
a Poisson maximum likelihood method as explained in
the Additional file 2: Supplement. The reproduction num-
ber can be derived by substituting the estimate for “r” into
an expression derived from the linearization of the
classical Susceptible-Exposed-Infectious-Recovered (SEIR)
transmission model [41,42]:

R ¼ ð1þ r
b1

Þð1þ r
b2
Þ ð1Þ

where 1/b1 and 1/b2 are respectively the mean latent and
infectious periods which are assumed to be exponentially
distributed. Hence, the mean generation interval between

two successive cases is given by Tc = 1/b1 + 1/b2. We
assumed a mean generation interval of three (1/b1 = 1.5
days and 1/b2 = 1.5 days) and four days (1/b1 = 2 days and
1/b2 = 2 days) [43-46]. As a sensitivity analysis, we also
obtained an upper bound R estimate for the extreme case
of a fixed generation interval [41].
This study is covered by a formal collaborative agree-

ment signed between the first author and representatives
of the Chilean Ministry of Health. This study did not re-
quire ethics committee approval; epidemiological data
were de-identified. Data employed in this study were
collected for epidemiological surveillance purposes.

Results
Overall description of pandemic activity, May-Dec 2009
The first case of 2009 A/H1N1 influenza infection in Chile
was reported on May 17th, 2009, coinciding with the fall
season (see Additional file 1: Table S1 for a chronology of
main events). Of note, the Chilean Ministry of Health
recommended against non-essential travel to the US and
Mexico after the initial pandemic alert on May 17th, and
epidemiological surveillance was reinforced.
The time series of daily number of SARI hospitaliza-

tions and A/H1N1-positive SARI hospitalizations are
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shown in Figures 2 and 3 for the 15 regions of Chile .
The incidence curves of SARI hospitalizations were sig-
nificantly correlated with those of A/H1N1-positive
SARI hospitalizations (Figure 3, Spearman rho = 0.86,
P < 0.0001. The pandemic A/H1N1 virus spread asyn-
chronously across the 15 Chilean regions, following a
South to North travelling pattern (Figure 2). The exponen-
tial growth phase consisted of 38 days for the northern geo-
graphic area (May 18th to June 24th), 30 days for the
central area (May 18th to June 16th) and 18 days for the
southern area (May 18th to June 4th).
We did not detect significant spatial autocorrelation in

our region-specific time series of A/H1N1-positive SARI
hospitalizations during the highest incidence months of
May (P = 0.61), June (P = 0.09), or July (P = 0.60). We
obtained similar results when using the time series of all
SARI hospitalizations (P > 0.12).

Timing of pandemic onset
The onset date of the first SARI hospitalization across
Chilean regions was associated with population size, with
more populous regions experiencing earlier pandemic
onset than low population regions (Spearman rho = −0.61,
P = 0.02), but this correlation did not reach statistical sig-
nificance using A/H1N1-positive SARI hospitalizations
(Spearman rho = −0.4, P = 0.14). Moreover, pandemic onset
was not correlated with latitude (rho = −0.14, P = 0.61), in-
flow of international air traffic passengers (rho = 0.3,
P = 0.28) or the number of international arrivals at Chilean
seaports (rho = 0.18, P = 0.52) in the first month of the
pandemic in May 2009. The timing of local pandemic onset
was not significantly correlated with climatological variables
including minimum temperature (rho = 0.15, P = 0.62),
maximum temperature (rho=−0.001, P=0.99), precipitation
(rho = −0.3, P = 0.30), relative humidity (rho = −0.05,
P = 0.89) and specific humidity (rho = −0.08, P = 0.80), after
adjusting for population size. Our sensitivity analysis based
on all SARI hospitalizations gave similar results to those
obtained using A/H1N1-positive SARI hospitalizations.

Timing of pandemic peak
We found a strong latitudinal gradient in pandemic peak
timing identified from daily A/H1N1-positive SARI hospi-
talizations, with Southern regions experiencing earlier
pandemic activity than Northern regions (Spearman rho =

0.80, P = 0.0002; Figure 2). A similar pattern was observed
in the time series of all SARI hospitalizations (rho = 0.83,
P = 0.0001). Specifically, the southernmost regions
(Biobio, Araucania, Los Rios, Los Lagos, Aysen, and
Magallanes) peaked 16-39-days earlier relative to the
northernmost region (Arica y Parinacota). A similar
geographical pattern was found in weekly reports of
influenza-like-illnesses across 29 influenza sentinel units
covering northern, central and southern regions of Chile
(correlation between peak influenza-like-illness and lati-
tude, Spearman rho = 0.43, P = 0.02; Additional file 1:
Figures S2–S3). Next, we assessed the role of climate con-
ditions, demographic factors, and international connecti-
vity patterns in driving geographical variations in pandemic
peak timing.
Peak timing was significantly correlated with most cli-

matic factors studied during the exponential growth phase
by geographic region including minimum temperature
(Spearman rho = 0.64, P = 0.009), maximum temperature
(Spearman rho = 0.59, P = 0.02), precipitation (Spearman
rho = −0.88, P < 0.0001), and relative humidity (Spearman
rho = −0.70, P = 0.008). In contrast, pandemic peak timing
was not correlated with specific humidity (Spearman rho =
0.34, P = 0.25), population size (Spearman rho = −0.37, P =
0.18), incoming international air travel passengers (Spear-
man rho=0.08, P = 0.77), or incoming international seaport
arrivals (Spearman rho = −0.005, P = 0.98). Stepwise multi-
variate regression identified maximum temperature, spe-
cific humidity and latitude as the only significant
predictors of regional pandemic peak timing (R2 = 68.5%,
P = 0.01, Table 1), with earlier peak timing occurring in
colder regions and at lower levels of specific humidity. Our
sensitivity analysis based on the time series of all SARI hos-
pitalizations gave consistent results; using all SARI hospita-
lizations the best model with maximum temperature,
specific humidity and latitude explained 79.7% of the va-
riability in peak timing (P = 0.002, Table 2).

Reproduction number
We estimated the mean R for the northern, central and
southern geographic areas based on daily laboratory-
confirmed A/H1N1-positive SARI hospitalizations. The
exponential growth phase consisted of 38 days for the
northern area (May 18th to June 24th), 30 days for the
central region (May 18th to June 16th) and 18 days for

Table 1 Best-fit multivariate linear regression model of peak timing in A/H1N1-positive SARI hospitalizations derived
via backward elimination procedure

Predictor variable Coefficient (95% CI) Coefficient of variation (R2) P value

Maximum temperature −2.80 (−5.1, -0.47) 68.5% 0.01

Specific humidity −5.96 (−11.27, -0.65)

Latitude 2.47 (1.08, 3.87)

Intercept 221.41 (121.56, 321.26)
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the southern region (May 18th to June 4th (Figure 4).
The corresponding R estimates for the northern, central,
and southern geographic areas were 1.19 (95% CI: 1.13,
1.24), 1.32 (1.27, 1.37), and 1.58 (1.45, 1.72), respectively
assuming a three day mean generation interval, and 1.25
(95% CI: 1.18, 1.32), 1.43 (1.36,1.50), and 1.81 (1.62, 2.0),
respectively assuming a four day mean generation inter-
val. The results show a decreasing gradient in R from
southern to northern Chile. We perform pair-wise Pear-
son-χ2 comparisons of the R estimates to test the null
hypothesis that the estimates are drawn from the same
mean. The pair-wise comparisons revealed significant
geographical differences between regions at P < 0.001
level or better, with the largest difference being between

the southern and northern regions at P < 0.0001. Upper
bound R estimates based on a fixed generation interval
yielded slightly higher values (Table 3).

Impact of winter school vacation period
School vacation were synchronous across Chile, started
on July 11, 2009, and lasted for 15 days. To assess the
potential impact of school vacation on pandemic trans-
mission, we evaluated trends of A/H1N1-positive SARI
hospitalizations among students and non-student
popualtions. At the national scale, the ratio of student
to non-student cases decreased significantly by 76%
during the 15-day winter vacation period relative to the

Table 2 Best-fit multivariate linear regression model of peak timing in all SARI hospitalizations derived via backward
elimination procedure

Predictor variable Coefficient (95% CI) Coefficient of variation (R2) P value

Maximum temperature −1.93 (−3.34, -0.51) 79.7% 0.002

Specific humidity −4.5 (−7.75, -1.26)

Latitude 1.9 (1.05, 2.76)

Intercept 181.68 (120.61, 242.75)
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Figure 4 Exponential model fits to the incidence data (in logarithmic scale) across northern, central and southern areas of Chile. Data
are the dots and the lines indicate the best fit of the exponential model to the exponential rise portion of the incidence curves as described in
the supplementary document.
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preceding 15-day period (Wilcoxon test, P = 0.001).
Given the asynchrony in pandemic activity across Chile,
the school vacation period coincided with different
phases of the pandemic in different regions. In the
northern area, the pandemic peaked at about the same
time as the start of the winter vacation period. In con-
trast, pandemic activity in the central and southern
regions had substantially declined when the winter va-
cation period began (Figure 5). Accordingly, the change
in age distribution of cases associated with the winter
vacation period was most pronounced in the North
(220% reduction in the student to non-student ratio;
Wilcoxon test, P = 0.02), intermediate in the central

geographic area (75% reduction, Wilcoxon test, P =
0.03), and non-existent in the Southern area (Wilcoxon
test, P = 0.2).

Discussion
To the best of our knowledge this is the first study to ex-
plore the relationship between spatio-temporal variation
in the dynamics of the 2009 A/H1N1 pandemic and
demographic and climatic factors, and international travel
patterns across a large range of latitudes. We found that
the 2009 A/H1N1 pandemic influenza in Chile was char-
acterized by a South to North gradient of increasingly late
peak activity and decreasing disease transmissibility.

Table 3 Mean estimates of the reproduction number and corresponding 95% confidence intervals for the 2009 A/H1N1
influenza pandemic by geographic region

Distribution of
generation interval

Geographic area

Northern area Central area Southern area

3-day serial
interval

4-day serial
interval

3-day serial
interval

4-day serial
interval

3-day serial
interval

4-day serial
interval

Exponentially-
distributed

1.19 (1.13, 1.24) 1.25 (1.18, 1.32) 1.32 (1.27, 1.37) 1.43 (1.36, 1.50) 1.58 (1.45, 1.72) 1.81 (1.62, 2.0)

Fixed generation
interval

1.19 (1.14, 1.25) 1.27 (1.19, 1.35) 1.34 (1.29, 1.40) 1.48 (1.40, 1.57) 1.68 (1.50, 1.87) 1.99 (1.72, 2.30)

The epidemic growth phase used to estimate the reproduction number consisted of 38 days for the northern area (May 18th to June 24th), 30 days for the central
area (May 18th to June 16th) and 18 days for the southern area (May 18th to June 4th).
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Figure 5 Changes in the age distribution of SARI hospitalizations in Chile, May-December 2009. Daily time series of SARI hospitalizations
among students (5–20 years, red curve) and other age groups (blue curve) and daily ratio of student to nonstudent SARI hospitalizations. The
grey shaded area indicates the winter school vacation period from July 11th to July 26th, 2009.
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Geographical variation in pandemic peak timing was asso-
ciated with differences in latitude and climatic conditions,
with latitude, maximum temperature and specific humi-
dity accounting for 69-80% of the variability. Our findings
could have important public health implications. In par-
ticular, intensified surveillance strategies in southern
regions could lead to earlier detection of novel influenza
viruses and improved pandemic control outcomes.
The latitudinal gradient evidenced in laboratory–

confirmed A/H1N1 SARI hospitalizations in this study is
confirmed by geographical patterns in weekly incidence of
influenza-like-illnesses reported to the Chilean Ministry of
Health (Additional file 1: Figures S2–S3). In addition, our
data are consistent with previous studies of laboratory-
confirmed A/H1N1 influenza reporting peak pandemic
activity on June 22, 2009 in the central region of Santiago
[47], and on June 7–13, 2009, in the southern city of
Puerto Montt [48].
The south–north gradient in peak timing observed in

our study is consistent with a decreasing trend in the
reproduction number in the same direction and is sta-
tistically associated with maximum temperature and
specific humidity. These findings are in agreement with
experimental studies suggesting that influenza transmis-
sion is more efficient under dry and cold conditions
[24-29]. In particular, Chile experienced a south–north
gradient in climatic conditions during May 2009 as
pandemic activity was building up, ranging from 3.3 to
9.3 g/kg for specific humidity and 6.4°C to 22°C for
maximum temperature.
The northward gradient of 2009 pandemic activity evi-

denced in Chile is reminiscent of the spread of the 2009
pandemic in Brazil, with the Southernmost regions of
this country being hit earlier and experiencing greater
severity than the Northernmost regions [49]. In contrast,
seasonal influenza originates from low-population regions
in the equatorial North of Brazil and travels to highly
populous regions in the subtropical South over a 3-month
period [50], together with a weak transmissibility gradient
[51]. In light of the intriguing Brazilian experience, it
would be interesting to contrast the spread of the 2009
pandemic with that of seasonal influenza in Chile. Unfor-
tunately, SARI surveillance data was limited to the pan-
demic period in Chile and no comparable information
exists for prior years.
Although the main period of pandemic activity in Chile

seems primarily correlated with local climatic conditions,
we note that the timing of introduction of the first A/
H1N1 cases (pandemic ‘onset’) was weakly associated with
population size, with larger population centers experien-
cing earlier introductions than less populous regions. This
hierarchical pattern of spread is in agreement with sea-
sonal influenza epidemics in the United States [52], the
2009 A/H1N1 influenza pandemic in Peru [2] and Mexico

[1], and the 1918 influenza pandemic in England and
Wales [53,54]. The Chilean experience also suggests that
despite early introduction of the A/H1N1 virus in a large
population center like Santiago in May 2009, located in
the center of the country, local climatic conditions were
not favorable for immediate full-scale transmission of the
pandemic virus.
Winter school vacation period started on July 11th

and coincided with the beginning of the downward
phase of the pandemic in northern regions, similar to
the 2009 pandemic experience in Peru [2]. In contrast,
pandemic activity was well into the declining phase by
the time winter vacations started in southern and central
regions. Accordingly, the shift in the age distribution of
cases associated with the winter vacation period was
most pronounced in the northern area. A similar pattern
has been reported in previous studies [1,2]. Of note, a
widespread teachers strike involving public schools
across Chile (approximately from May 18th to June 8th,
2009) could have slowed down the initial growth rate of
the pandemic, although we were not able to quantify the
effect of the strike here.
Our reproduction number estimates are consistent

with previous studies reporting estimates in the range
1.2-2.1 for Chile, using national ILI and laboratory-
confirmed influenza A/H1N1 cases [5,20,55]. Further, R
was estimated to be 1.8 (95% CI: 1.6, 2.0) for the south-
ern region of Puerto Montt [48], in line with our R esti-
mate for Chile’s southern region (R~ 1.6-2.0). Overall,
our transmissibility estimates for Chile are consistent
with the range of global estimates reported for
community-based settings at 1.2-2.4 [1,2,5,18,43,48,56-
63], while higher estimates have been obtained in
school settings [2,44,64,65]. The surprising gradient of
pandemic A/H1N1 transmissibility observed from
South to North Chile could be associated with differ-
ences in climatic conditions, prior immunity, or base-
line differences in influenza transmission between
regions, similarly to those reported for Brazil [51]. Un-
fortunately, the resolution of our data did not allow for
more detailed analysis.
Chile experienced a single pandemic wave in 2009 as

did other Southern Hemisphere countries including
Argentina [11], Australia [12,13], New Zealand [12] and
Peru [2]. Other countries experienced multiple pan-
demic waves, including Mexico, the United States, and
the United Kingdom [9,10,66]. The timing of pandemic
waves has been correlated with population density,
school cycles and the season in which the novel in-
fluenza virus is introduced into local populations [1,2].
Our 2009 pandemic study set in Chile adds to our
current understanding of the role of climatic conditions
in modulating the transmission dynamics of pandemic
influenza.
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Several strengths and caveats of our study are worth
noting. We used data on all SARI hospitalizations as well
as a subset of hospitalizations that were laboratory-
confirmed for A/H1N1 infections, representing all public
and private hospitals in Chile. Testing rates for A/H1N1
influenza remained at 35% throughout the pandemic
and were comparable to those of other countries [1].
Moreover, national respiratory virus surveillance for
influenza-like-illness demonstrated that A/H1N1 predo-
minated among other respiratory viruses in 96% of
individuals aged 5 years and over [47]. In contrast, RSV
co-circulated with A/H1N1 influenza among children
< 5 years, although influenza remained the dominant
virus in this age group [18,47]. Because a total of 365
(5.7%) of the SARI hospital records were missing the
date of symptoms onset, we used the date of notification
for 197 of these records for which the date of notifica-
tion was available. Differences in reporting across
regions cannot be ruled out, although there was no evi-
dence of weaker reporting rates in less populous regions.
On the contrary, regions with lower population sizes
reported more SARI hospitalizations proportionally than
larger regions in Chile. We note that our estimates of
the reproduction number were derived using simple
methodology relying on the initial growth rate of the
pandemic across geographic areas of Chile [41,67]. More
detailed epidemiological data providing information on
the number of imported cases could have allowed the
use of more refined estimation methods, but were not
available to us (see e.g., [68,69]).

Conclusions
In conclusion, there was a lag in the period of most in-
tense 2009 pandemic influenza activity from southern to
northern regions of Chile, significantly associated with
geographical differences in maximum temperature and
specific humidity. The latitudinal gradient in timing of
pandemic activity was accompanied by a gradient in
reproduction number (P < 0.0001). These two findings
suggest that meteorological conditions may have modu-
lated the transmissibility of 2009 A/H1N1 influenza in
Chile. Our results could have significant public health
implications for pandemic influenza control. Specifically,
intensified surveillance strategies in southern regions
could lead to early detection of pandemic influenza
viruses and improved control outcomes. Furthermore,
the spatial differences in the timing of local pandemic
influenza in our study demonstrate the advantages of
using high-resolution data to detect heterogeneous pan-
demic patterns. More studies are needed to determine
whether these findings may be generalized to seasonal
influenza epidemics and may be integrated in pandemic
preparedness scenarios.

Additional files

Additional file 1: Table S1. Timeline of events relevant to the
detection, control, and school activities during the 2009 influenza
pandemic in Chile. Figure S1. Daily average minimum temperature in
northern, central and southern regions of Chile. The northern geographic
area comprises the 5 northernmost regions of: 1) Arica y Parinacota, 2)
Tarapacá, 3) Antofagasta, 4) Atacama, and 5) Coquimbo; the broad
central area includes the regions of 1) Valparaíso, 2) Metropolitana, 3)
O’Higgins, and 4) Maule; and the broad southern geographic area
includes the southernmost regions of 1) Bíobío, 2) Araucanía, 3) Los Ríos,
4) Los Lagos, 5) Aysén, and 6) Magallanes. Figure S2. Pandemic peak
timing based on weekly time series of influenza-like-illness (ILI) cases for
29 Chilean ILI sentinel sites of Chile during 52 epidemiological weeks in
2009 as reported to the Chilean Ministry of Health and shown in
geographic order from north (top) to south (bottom). We found a
significant shift in the peak timing from southern to northern provinces
(Spearman rho = 0.43, P = 0.02). Provinces from north to south: Arica,
Iquique, Antofagasta, Atacama, Coquimbo, Valparaíso - San Antonio, Viña
del Mar - Quillota, Aconcagua, Metropolitano Norte, Metropolitano
Occidente, Metropolitano Central, Metropolitano Oriente, Metropolitano
Sur, Metropolitano Sur Oriente, O'Higgins, Maule, Ñuble, Concepción,
Talcahuano, Bio Bio, Arauco, Araucanía Norte, Araucanía Sur, Valdivia,
Osorno, Del Reloncaví, Aysén, Magallanes, Chiloé. Figure S3. Weekly
number of consolidated influenza-like-illness (ILI) cases in northern,
central and southern geographic regions of Chile in 2009. The northern
region is comprised by provinces: Arica, Iquique, Antofagasta, Atacama,
Coquimbo; central region provinces: Valparaíso - San Antonio, Viña del
Mar - Quillota, Aconcagua, Metropolitano Norte, Metropolitano
Occidente, Metropolitano Central, Metropolitano Oriente, Metropolitano
Sur, Metropolitano Sur Oriente, O'Higgins, Maule; southern region
provinces: Ñuble, Concepción, Talcahuano, Bio Bio, Arauco, Araucanía
Norte, Araucanía Sur, Valdivia, Osorno, Del Reloncaví, Aysén, Magallanes,
Chiloé.

Additional file 2: Estimation of the reproduction number.
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