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The influence of conifer forest canopy cover on
the accuracy of two individual tree measurement
algorithms using lidar data

Michael J. Falkowski, Alistair M.S. Smith, Paul E. Gessler,
Andrew T. Hudak, Lee A. Vierling, and Jeffery S. Evans

Abstract. Individual tree detection algorithms can provide accurate measurements of individual tree locations, crown
diameters (from aerial photography and light detection and ranging (lidar) data), and tree heights (from lidar data).
However, to be useful for forest management goals relating to timber harvest, carbon accounting, and ecological processes,
there is a need to assess the performance of these image-based tree detection algorithms across a full range of canopy
structure conditions. We evaluated the performance of two fundamentally different automated tree detection and
measurement algorithms (spatial wavelet analysis (SWA) and variable window filters (VWF)) across a full range of canopy
conditions in a mixed-species, structurally diverse conifer forest in northern Idaho, USA. Each algorithm performed well in
low canopy cover conditions (<50% canopy cover), detecting over 80% of all trees with measurements, and producing tree
height and crown diameter estimates that are well correlated with field measurements. However, increasing tree canopy
cover significantly decreased the accuracy of both SWA and VWF tree measurements. Neither SWA nor VWF produced tree
measurements within 25% of field-based measurements in high canopy cover (i.e., canopy cover >50%) conditions. The
results presented herein suggest that future algorithm development is required to improve individual tree detection in
structurally complex forests. Furthermore, tree detection algorithms such as SWA and VWF may produce more accurate
results when used in conjunction with higher density lidar data.

Résumé. Les algorithmes de détection d’arbres individuels peuvent fournir des mesures précises de la localisation des arbres
individuels, du diameétre de la couronne (& partir de photographies aériennes et de données lidar) et de la hauteur des arbres (a
partir de données lidar). Cependant, pour que les algorithmes puissent €tre utiles pour la gestion des foréts dans le contexte de
la récolte du bois, de la comptabilité du carbone forestier et des processus écologiques, il est nécessaire d’évaluer les
performances de ces algorithmes de détection d’arbres basés sur les images pour une grande diversité de conditions de
structure du couvert. Nous évaluons la performance de deux algorithmes fondamentalement différents de détection et de
mesure automatisées d’arbres (I’analyse spatiale en ondelettes (ASO) et le filtrage par fenétre mobile (« VWE, variable
window filters »)) pour une gamme compléte de conditions du couvert, dans une forét mixte structuralement diversifiée de
coniféres dans le nord de I'ldaho, aux Etats-Unis. Chacun des algorithmes a bien performé dans des conditions de couvert
faible (couvert de <50 %), permettant de détecter plus de 80 % de tous les arbres mesurés et de produire des estimations de
hauteur d’arbre et de diametre de couronne qui sont bien corrélées avec les mesures de terrain. Cependant, I’accroissement du
couvert d’arbres diminue de facon significative la précision des mesures d’arbres dérivées des algorithmes ASO et VWE. Ni
ASO ni VWF n’ont donné de mesures d’arbres supérieures a 25 % comparativement aux mesures de terrain dans des
conditions de couvert dense (c.-a-d. couvert >50 %). Les résultats présentés dans cet article suggerent que des développements
additionnels sont nécessaires au niveau des algorithmes pour améliorer la détection d’arbres individuels dans les foréts
structuralement plus complexes. De plus, les algorithmes de détection d’arbres, tels que ASO et VWEF, peuvent produire des
résultats plus précis lorsqu’ils sont utilisés conjointement avec des données lidar & plus haute densité.

[Traduit par la Rédaction]

Introduction private forest industries. Forest inventories conducted in regions
that contain vast expanses of forest typically require significant

Accurate inventories of forest resources are of great economic expenditure of time and money. In an attempt to reduce costs,
and ecological importance to resource management agencies and land managers often augment traditional forest inventory data
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with forest measurements derived from high spatial resolution
remotely sensed data collected across large spatial extents.
Historically, analog aerial photography has provided a means to
manually measure many forest attributes including stand
density, crown diameter, crown closure, and tree height (e.g.,
Spurr, 1948; Hagan and Smith, 1986; Biggs, 1991; Fensham et
al., 2002). However, manual photo interpretation techniques are
often time consuming and highly subjective, limiting the
practicality of measuring individual tree dimensions from analog
aerial photography (McRoberts et al., 2002; Zagalikis et al.,
2005). More recently, high spatial resolution digital remote
sensing data (e.g., IKONOS, QuickBird, and light detection and
ranging (lidar)) have been used in combination with automated
processing algorithms to detect and measure individual tree
dimensions (Fournier et al., 1995; Gougeon, 1995; Asner et al.,
2003; Wulder et al., 2004; Falkowski et al., 2006; Strand et al.,
2006; Popescu, 2007).

Tree measurements derived via automated analysis of
remotely sensed data have provided a means to rapidly estimate
many forest attributes including tree biomass and diameter
distributions across wide extents (Palace et al., 2008; Popescu,
2007) and to quantify carbon fluxes resulting from decadal-
scale tree encroachment (Strand et al., 2008). A variety of
techniques have been developed to automatically detect and
measure individual trees from remotely sensed data
(Palenichka and Zaremba, 2007). Some of the most widely
applied methods include (i) feature matching (Greenberg et al.,
2006), (ii) local maximum filtering (Wulder et al., 2004),
(iii) object-based methods (Wang et al., 2004; Strand et al.,
2006; Palenichka and Zaremba, 2007), (iv) variable window
filters (VWF) (Popescu and Wynne, 2004; Popescu, 2007), and
(v) image segmentation (Chubey et al., 2006; Chen et al., 20006;
Hyyppi et al., 2001, Leckie et al., 2003).

Recent studies have presented and evaluated a novel object-
based algorithm for locating and measuring individual trees
from remotely sensed data. This technique, termed spatial
wavelet analysis (SWA), employs a two-dimensional (2D)
wavelet transform to automatically extract the location and size
(i.e., tree height and crown diameter) of individual trees from
high resolution remotely sensed data (Falkowski et al., 2006;
Garrity et al., 2008; Smith et al., 2008; Strand et al., 2006;
2008). The SWA tree detection and measurement algorithm is
fundamentally different to many previously published
approaches. First and foremost, SWA is inherently multiscale,
enabling the detection and measurement of objects with
characteristic shapes (i.e., trees) across a range of different
sizes, with limited user input. In contrast, many popular tree
detection algorithms such as image segmentation (e.g., Persson
et al., 2002) or image filtering (e.g., Wang et al., 2004) must be
applied at different scales in order to detect and measure trees
of varying sizes. Secondly, SWA does not require a priori
information regarding stand or tree characteristics (e.g.,
empirical tree height /crown diameter relationships). This is in
direct contrast to VWF algorithms, which employ empirical
relationships or other functions to determine the appropriate
image filter sizes for isolating individual trees (Popescu and
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Wynne, 2004; Chen et al., 2006), and to feature matching
methods, which extract individual trees by matching templates
of a fixed known size and shape to image objects (i.e.,
individual trees) (Greenberg et al., 2006).

Falkowski et al. (2006) determined the efficacy of the SWA
algorithm by comparing lidar-based SWA tree measurements to
field-based tree measurements, as well as to lidar-based tree
measurements derived from a VWF algorithm (Popescu and
Wynne, 2004). SWA and VWF provided comparable
measurements of individual tree heights. However, due to a
weak species-specific relationship between tree height and
crown diameter across their study area, Falkowski et al. (2006)
demonstrated that SWA provided more accurate estimates of
tree crown diameter when compared with crown diameter
estimates from the VWF algorithm. The study conducted by
Falkowski et al. (2006) was limited in that it only evaluated the
two algorithms in open canopy conditions (i.e., canopy cover
<50%), where potential problems arising from high tree density
and crown overlap would be minimal. However, a major
shortcoming of many automatic tree extraction techniques is
that their accuracy is largely dependent upon the structural
complexity and density of forest stands; high detection
accuracy is attained in open single-story stands, whereas
comparatively lower accuracy is attained in closed multistory
stands (Maltamo et al., 2004). This is due to the fact that trees
growing closely together often have overlapping or
interlocking crowns, making it difficult to isolate individual
trees. Furthermore, as forest canopy cover increases, trees in
subdominant (i.e., intermediate or suppressed) canopy cohorts
become occluded by the overstory forest canopy, leading to low
tree detection rates in these cohorts (Chen et al., 2006; Hyyppa
et al., 2001; Persson et al., 2002; Wang et al., 2004). Although
numerous studies have discussed these limitations, few have
directly evaluated how increasing canopy complexity
influences the accuracy of tree detection and measurement
algorithms. For such methods to be truly useful for operational
forest inventory, the accuracy of automated tree detection and
measurement algorithms must be quantified across a full range
of canopy structure conditions. Therefore, the objective of this
current study is to build upon the previous works of Falkowski
et al. (2006) and Popescu and Wynne (2004) by evaluating the
accuracy of the SWA and VWF algorithms across a full range
of conifer forest canopy structure conditions. Since canopy
cover is directly related to individual tree crown overlap as well
as the probability of subdominant trees being occluded by
overstory trees, we assessed the accuracy of the SWA and VWF
algorithms across a gradient of canopy cover (0%—100%
canopy cover). Algorithm performance was evaluated by
quantifying omission and commission errors related to tree
detection. Furthermore, the accuracy of the lidar-derived
individual tree measures (height and crown diameter) derived
using both automated techniques was determined through
comparison with field reference measurements. In terms of tree
location, tree height, and crown diameter accuracies, we
hypothesized that the performance of the SWA and VWF
algorithms is inversely proportional to forest canopy cover.

© 2008 CASI
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Methods

Study area and sample design

This study was conducted on the Palouse Range (previously
called Moscow Mountain), which lies 9 km northeast of the city
of Moscow in north-central Idaho, USA (latitude 46°44'N,
longitude 116°58'W). The Palouse Range is approximately
30000 ha in area and comprises a mixed-conifer temperate
forest surrounded by an agricultural matrix. Dominant tree
species on the Palouse Range include Pseudotsuga menziesii
(PSME), Abies grandis (ABGR), Thuja plicata (THPL), and
Larix occidentalis (LAOC). Other less common species
occurring throughout the study area include Pinus ponderosa,
Pinus contorta, Pinus monticola, and Picea engelmannii. The
land on the Palouse Range is primarily owned by private timber
companies; however, there are parcels of public land and
private non-timber production land scattered throughout. The
wide range of management objectives of each landowner,
coupled with the region’s complex topography, has created a
forest that is diverse in both forest structure and species
composition.

Eighty-three 0.04 ha forest inventory plots were located and
sampled across the Palouse Range via a stratified sampling
design (Falkowski et al., 2005; Pocewicz et al., 2004). The
sampling design incorporated elevation, solar insolation, and
leaf area index gradients as strata, to ensure that the full range
of forest community types and canopy conditions existing
across the Palouse Range were sampled. Once located, the
position of each forest inventory plot was precisely located by
logging at least 150 global positioning system (GPS) points at
each plot center with a Trimble ProXR GPS. After applying a
differential correction, each plot location had a three-
dimensional precision of +0.8 m in the horizontal plane and
+1.1 m in the vertical plane. Following GPS data collection,
diameter at breast height (DBH), species, and distance and
bearing from plot center (i.e., location) were recorded for every
tree or snag >2.7 cm DBH within the 0.04 ha forest inventory
plot. Individual tree heights and crown diameters were also
measured for a subsample of trees within the inventory plot.
During this subsampling procedure, the plot was partitioned
into four quadrants (NW, NE, SW, and SE). A laser rangefinder
(Impulse 200, Laser Technology Inc., Englewood, Colo.) was
then used to measure the height and crown diameter of trees
with the largest and smallest DBH for each species within each
quadrant. Plot-level canopy cover was estimated by averaging
four spherical densitometer measurements taken at the north,
south, east, and west edges of each inventory plot. Crown
classes (dominant, codominant, intermediate, or suppressed)
(Helms, 1998) were assigned to distinct canopy cohorts at the
plot level. The crown class of each cohort was based upon the
relative, plot-level canopy position of the majority of trees
within a particular cohort. Following data collection, missing
tree heights were predicted based upon species-specific height-
diameter equations embedded within the forest vegetation
simulator growth and yield model (Crookston and Dixon,
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2005). See Falkowski et al. (2005) for a more detailed
description of the study area, sampling design, and field data
collection procedures.

Lidar acquisition and processing

Lidar data (1.95 m nominal post spacing) were acquired
across the study area in the summer of 2003 (Leica ALS 40
System; Horizon’s, Inc., Rapid City, S.D.). The system
operated at a wavelength of 1064 nm and was flown at
approximately 2500 m elevation above mean terrain. Once
acquired, the lidar flight lines were trimmed to remove returns
with a scan angle greater than 18° while maintaining complete
coverage across the study area. The raw lidar data were then
classified into ground and non-ground returns via the multi-
scale curvature classification algorithm (Evans and Hudak,
2007). A high resolution digital elevation model (DEM) was
interpolated from the ground returns. The interpolated DEM
had root mean square errors (RMSEs) of 0.306 and 0.166 m in
high canopy cover and low canopy cover forests, respectively
(Evans and Hudak, 2007). Following DEM generation, the
height above ground surface was calculated for each non-
ground lidar return through DEM subtraction. Rasterized
canopy height models (CHMs) were created at a spatial
resolution of 0.5 m for each of the selected forest inventory
plots from the non-ground lidar returns using a natural-
neighbor algorithm.

Locating and measuring trees with spatial wavelet
analysis

SWA was applied to each lidar-derived CHM to
automatically identify the location (x,y) of each tree and
estimate their crown diameters and heights. SWA has been
shown to be a robust individual tree detection and measurement
method in both aerial photography (Strand et al., 2006; 2008;
Garrity et al., 2008; Smith et al., 2008) and lidar (Falkowski et
al., 2006) datasets. The SWA algorithm, which is described in
detail elsewhere (Strand et al., 2006; Falkowski et al., 2006;
Smith et al., 2008), convolves a series of sequentially larger 2D
Mexican hat wavelet functions with the lidar-derived CHM.
The algorithm, which implements a discrete approximation of
the continuous wavelet transformation, uses the Mexican hat
wavelet basis function because its shape is similar to the shape
of individual conifer tree crowns (Falkowski et al., 2006).
When the horizontal dimension of the 2D wavelet (i.e., wavelet
dilation scale) is approximately equal to the horizontal size of
an object within the CHM (i.e., an individual tree diameter), it
is retained. This wavelet size corresponds to the crown
diameter of an individual tree in the CHM at location x,y. After
all possible wavelet sizes (1-15 m) have passed over the CHM,
the maximum height value within each retained wavelet
diameter is extracted. This height value represents an
estimation of the height of the individual tree at location x,y
(Figure 1).
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Figure 1. Graphical output from the spatial wavelet analysis algorithm. A lidar canopy height model with wavelet-derived tree crown
diameters displayed as red circles. The text within each red circle corresponds to individual tree crown diameters (A) and tree heights (B) in
meters. The color ramp represents the height of the canopy height model in meters.

Locating and measuring trees with variable
window filters

The VWF algorithm (Popescu and Wynne, 2004) was also
used to identify the location and estimate the size of individual
trees within each CHM. The VWF algorithm, which is
currently executed as the TreeVaW software program (Popescu,
2008), determines the location of each tree by passing a series
of local maxima (LM) filters over the CHM. The size of each
LM filter is a function of the height of each pixel within the
lidar CHM, and is calculated based upon an allometric
relationship between tree height and tree crown diameter. The
location and values of each identified LM correspond to the
location and height of individual trees, respectively, and the
size of the LM filter corresponds to the crown diameter for each
identified tree (Popescu and Wynne, 2004).

Because the VWF algorithm relies upon allometric data for
successful operation, it was necessary to adapt the algorithm
for the Palouse Range study area by modifying the equation it
implements to estimate crown diameter from tree height.
However, the relationship between tree height and crown
diameter for trees occurring on the Palouse Range is species-
specific (Figure 2). When calculated across all tree species in
the forest inventory dataset, the strongest relationship between
tree crown diameter and tree height is a linear function
described by the following equation:

cd = 0.14h + 2.56 (1)
where cd is the tree crown diameter, and / is the tree height in
meters. This linear function has an r? of 0.34 and a RMSE of
1.31 m.

S4

SWA and VWF evaluation

For the purpose of this study, the inventory plots were
partitioned into four canopy cover strata (0-25%, 25%—-50%,
50%—75%, and 75%-100%). Two separate random samples
were then taken; one for estimating errors of omission and
commission, and one for estimating the accuracy of tree
measurement from the SWA and VWF algorithms. Errors of
omission and commission were estimated from a random
subset of forest inventory plots within each of the five canopy
cover strata. Since plots with low canopy cover typically have
fewer trees than plots with higher canopy cover, the random
selection process was repeated until there were approximately
30 trees within each stratum. For the second random sample (to
quantify VWF and SWA tree measurement accuracy), 30
individual trees with field-measured heights and crown
diameters were randomly selected from each canopy cover
stratum (120 total trees). The range in tree heights and crown
diameters for the 120 selected trees was 5.12—-36.8 m and 1.60—
14.55 m, respectively (mean tree height = 16.65 m; mean tree
crown diameter = 4.96 m). Seventy-two of the 120 selected
trees were in dominant canopy cohorts, 29 were in codominant
canopy cohorts, and 19 were in subdominant canopy cohorts
(i.e., intermediate or suppressed canopy cohorts). Figure 3
displays the distribution of tree heights and crown diameters
within each canopy cover stratum as well as by the four
dominant tree species. Table 1 presents tree density statistics
and canopy cover distributions across all canopy cover strata.

Errors of omission and commission

Field-measured tree locations within each selected plot
(from the first random sample described above) were paired
with corresponding SWA and VWF tree locations based upon

© 2008 CASI
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Figure 2. Height-crown diameter relationship for the trees on the Palouse Range. (Left) A scatterplot of height-crown diameter for all 10 tree
species within the study area. (Right) A scatterplot displaying only four of the most common species. The red line is the linear model defined
by Equation (2).

proximity of the estimated field-measured tree to SWA and
VWF locations with similar tree heights. In most cases, the
field-measured tree location was within the boundary of a
crown diameter estimated by SWA or VWF. However, when a
field-measured tree location was not within an estimated crown
diameter, a limiting distance threshold was implemented.
Specifically, field-measured tree locations of greater than 2.5 m
outside the edge of an estimated crown diameter boundary were
not assigned to that particular SWA or VWF identified tree. A
distance of 2.5 m was chosen because it corresponds to the
average crown radius of dominant and codominant trees within
the dataset. When a field-measured tree could not be
successfully paired with a tree identified by the SWA or VWF
algorithms, an error of omission was recorded. Errors of
commission were recorded when there were no field-measured
tree locations near trees identified by SWA or VWF. Two sets
of omission and commission errors were calculated; one set
including all trees within the inventory plots, and one set only
including trees from dominant and codominant canopy cohorts.

Tree height and crown diameter accuracy

The 120 trees selected in the second random sample were
paired with corresponding field-measured trees via the same
process described above. The accuracy of tree heights and
crown diameters for each tree measurement algorithm (i.e.,
SWA and VWF) was then determined through a comparison
with field-measured tree heights and crown diameters. The
estimated tree dimensions were statistically compared within

© 2008 CASI

each of five canopy cover strata (0%—25%, 25%—-50%, 50%—
75%, 75%—-100%, as well as 0%—100%) using Pearson’s
correlation coefficients (r), RMSEs, and mean difference (MD;
Equation 2) statistics. MD can be described as
MD = Mean(Y; - 1)) (2)
where Y; is the estimated tree measurement and Y; is the field-
based tree measurement. The percentage of trees detected was
also calculated within each canopy cover stratum.
Equivalence tests were used to determine if the SWA- and
VWE-based tree measurements were similar (i.e., equal) to
field-measured tree dimensions. We also assessed whether the
similarity of tree measurements changed as a function of tree
canopy cover. Equivalence tests, which are widely applied in
the field of biostatistics (Wellek, 2003; Robinson et al., 2005),
are used to test the null hypothesis of “no significant
difference” between two sample populations (H,: there is a
difference between sample populations; H,;: the sample
populations are equal). We chose a regression-based
equivalence test (Robinson et al., 2005) to test for intercept
equality (i.e., the mean of SWA or VWF measurements is equal
to the mean of field-based measurements) and slope equality to
1 (i.e., if the pairwise tree measurements are equal, the
regression will have a slope of 1). The region of equivalence
was set to +25% (of the mean) for the intercept (b,) and +25%
for the slope (). The null hypothesis of dissimilarity between
SWA or VWF tree measurements and field-based tree
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Figure 3. Boxplots displaying the distribution of tree heights and crown diameters by canopy cover class and by species.

measurements is rejected if the interval of equivalence (+ 25%)
contains two joint one-sided 95% confidence intervals (o0 =
0.05) for the slope or intercept. All statistical analyses were
conducted in the freeware statistical software package, R (R
Development Core Team, 2007). Equivalence testing was
conducted with the equivalence package within R (Robinson,
2007).

Results

Errors of omission and commission

When considering dominant, codominant, and subdominant
canopy cohorts, the VWF algorithm had an omission error of
35% across the entire dataset (0%—-100% canopy cover),
whereas the SWA algorithm had an omission error of 43%
(Table 2). Both algorithms had omission errors of less than
10% in the lowest canopy cover strata (0%—25%). However, as
cover increased from 0 to 100%, the number of trees correctly
detected by each algorithm decreased. The VWF algorithm had
lower omission errors than the SWA algorithm within all
canopy cover strata. Commission errors in the 0%-100%

S6

Table 1. Tree density by canopy cover strata and total land area
within each strata across the Palouse Range study area.

Canopy Standard Land area
cover (%) Mean deviation Range (ha)

0-25 40 19 57 11408
25-50 107 13 35 3003
50-75 154 16 57 5984
75-100 225 19 62 10 985

Note: Units are trees per ha.

canopy cover strata were 6% and 15% for the SWA and VWF
algorithms, respectively. The highest rates of commission
errors occurred in the 0%—-25% and 25%-50% canopy cover
strata for the SWA and VWF algorithms, respectively. Both
methods had a 3% commission error in the highest canopy
cover strata (75%—-100%; Table 2).

When considering only dominant and codominant canopy
cohorts, the VWF algorithm had an omission error of 29%
across the entire dataset (0%—100% canopy cover), whereas the
SWA algorithm had an omission error of 37% (Table 3). VWF

© 2008 CASI
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Table 2. Omission and commission errors for the spatial wavelet analysis (SWA) and variable window

filters (VWEF) within each canopy cover stratum.

C All trees Excluding subdominant trees

ano

coverpy Omission error (%) Commission error (%)  Omission error (%) Commission error (%)
(%) SWA VWF SWA VWE SWA VWE SWA VWF
0-100 43 35 6 15 94 85 8 18
0-25 8 4 12 17 16 9 13 19
25-50 44 33 5 28 40 29 6 31
50-75 59 39 6 13 48 36 8 16
75-100 61 56 3 3 50 43 4 4

Table 3. Goodness-of-fit statistics between estimated
and field-measured tree heights.

Canopy
cover (%) Correlation RMSE (m) MD (m)
Tree height: SWA
0-100 0.89 3.96 0.34
0-25 0.99 1.69 -1.07
25-50 0.90 2.33 0.66
50-75 0.84 4.30 2.14
75-100 0.68 5.93 -0.10
Tree height: VWF
0-100 0.89 4.06 -0.08
0-25 0.98 222 -1.24
25-50 0.92 2.05 -0.09
50-75 0.88 4.08 1.56
75-100 0.73 5.60 -0.53

had an omission error of 9% in the lowest canopy cover stratum
(0%—-25%), whereas SWA had an omission error of 16%. As
cover increased from 0% to 100%, the number of trees
correctly detected by each algorithm decreased. Again, the
VWF algorithm had lower omission errors than the SWA
algorithm within all canopy cover strata. Commission errors in
the 0%—100% canopy cover strata were 8% and 18% for the
SWA and VWF algorithms, respectively. The highest rates of
commission errors occurred in the 0%-25% and 25%-50%
canopy cover strata for the SWA and VWF algorithms,
respectively. Both methods had a 3% commission error in the
highest canopy cover strata (75%—100%; Table 3).

VWEF and SWA tree height accuracy

The SWA algorithm detected 96 of the 120 selected trees
(80%). Furthermore, using SWA, we were able to detect 97% of
trees within dominant canopy cohorts, 62% of trees within
codominant canopy cohorts, and 42% of tree within
subdominant canopy cohorts. Using the VWF algorithm, we
detected 85% of the 120 selected trees; 94% of trees within
dominant canopy cohorts, 79% of trees within codominant
canopy cohorts, and 58% of trees within subdominant canopy
cohorts. Overall, the measurement of tree height from lidar data
via the SWA (r = 0.89, RMSE = 3.96 m) and VWF (r = 0.89,
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Table 4. Goodness-of-fit statistics between estimated
and field-measured tree crown diameters.

Canopy
cover (%) Correlation RMSE (m) MD (m)
Crown diameter: SWA
0-100 0.50 1.71 0.21
0-25 0.70 2.02 0.08
25-50 0.38 1.45 0.56
50-75 0.26 1.81 0.69
75-100 0.22 1.29 -0.52
Crown diameter: VWF
0-100 0.61 1.60 -1.03
0-25 0.85 1.47 —-1.41
25-50 0.20 1.51 -1.02
50-75 0.80 1.53 -0.91
75-100 0.34 1.39 -0.74

RMSE = 4.06 m) algorithms produced similar results.
Furthermore, changes in canopy cover had similar effects upon
the accuracy of tree height measurements obtained from each
method; as canopy cover increased, the accuracy of tree height
measurements decreased (Table 4). In terms of mean difference,
the SWA method slightly overpredicted tree height, whereas the
VWEF algorithm slightly underpredicted tree height across the
entire sample of 120 trees (MD = 0.34 and —0.08 for SWA and
VWEF, respectively). Although tree canopy cover did influence
the degree of bias for each method, no pattern in bias emerged
across the canopy cover strata; some strata had negative MD
statistics, while others exhibited positive MD statistics.
Figures 4 and 5 present results from the statistical
equivalence test. A brief explanation on how to interpret the
equivalence test graphs is warranted. The grey polygon
represents the +25% region of equivalence for the intercept,
and the red vertical bar represents a 95% confidence interval for
the intercept. The mean of field-measured tree dimensions are
equivalent to the SWA- or VWF-derived tree dimensions when
the red vertical bar is completely within the grey polygon.
If the grey polygon is lower than the red vertical bar, the VWF
or SWA measurements are biased low; if it is higher than SWA or
VWE, then measurements are biased high. The grey dashed line
represents the +25% region of equivalence for the slope, and the
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Figure 4. Equivalence test graphs for tree heights derived from the spatial wavelet analysis (SWA) algorithm (A1) and variable window filters
(VWF) algorithm (B1). A2 and B2 display equivalence test graphs within each canopy cover (CC) stratum.
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black vertical bar represents a 95% confidence interval for the
slope. When the black vertical bar is contained completely
within the grey dashed line, the pairwise measurements are
equal. A bar that is wider than the region outlined by the grey
dashed lines indicates highly variable predictions. The blue
circles are the pairwise measurements, and the solid black line is
a best-fit linear model for the pairwise measurements. Tree
heights derived from the SWA and VWF methods were
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statistically equivalent across the entire sample of 120 trees
(Figures 4A1 and 4B1). When partitioned into canopy cover
strata, the methods were equivalent in the 0%—25% and 25%-—
50% canopy cover strata, and unequivalent in the 50%—-75% and
75%—-100% strata (Figures 4A2 and 4B2). Further investigation
of the equivalence graphs revealed much more prediction
variability in the 75%-100% canopy cover stratum (i.e., the
confidence interval of the slope (black bar) is much wider than
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Figure 5. Equivalence test graphs for tree crown diameters derived from the spatial wavelet analysis (SWA) algorithm (A1) and variable
window filters (VWF) algorithm (B1). A2 and B2 display equivalence test graphs within each canopy cover (CC) stratum.

the region of equivalence for the slope (indicated by the grey SWA algorithm (r = 0.50, RMSE = 1.71 m) applied to all

dashed lines; Figure 4)). 120 trees (0%—100% canopy cover; Table 4). The accuracy of
tree crown diameter measurements extracted via the SWA

VWF and SWA tree crown diameter accuracy algorithm decreased as canopy cover increaseed, and very low
accuracies were achieved above 50% canopy cover. This

For tree crown diameter measurements, the VWF algorithm pattern did not hold true for tree crown diameter measurements
(r=0.61, RMSE = 1.60 m) was slightly more accurate than the derived from the VWF algorithm. In general, the accuracy of
© 2008 CASI S9
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VWEF tree crown diameter measurements decreased with an
increase in canopy cover. However, VWF crown diameter
measurements in the 25%-50% canopy cover stratum (r = 0.20,
RMSE = 1.51 m) were much lower than VWF crown diameter
measurements within any other canopy cover stratum (Table 4).
The MD statistic indicated that, in general, the SWA algorithm
overestimates tree crown diameter, whereas the VWF algorithm
underestimates tree crown diameter. Furthermore, as canopy
cover increased, the bias of SWA tree crown diameter
measurements tended to increase. The opposite was true for
VWF tree crown diameter measurements: as canopy cover
increased, VWF measurements exhibited less bias.

The mean tree crown diameter derived from the SWA
algorithm was statistically equivalent to the mean field-
measured crown diameter for all 120 trees. However, the slope
equivalence test revealed that the pairwise SWA and field
crown diameter measurements are not equivalent. This
relationship held true across all canopy cover strata.
Furthermore, as canopy cover increased, the variability of SWA
crown diameter predictions increased significantly (Figure 5).
On the other hand, the pairwise VWF and field crown diameter
measurements were statistically equivalent when considering
all 120 selected trees. However, the means were not equivalent
and exhibited a slightly low bias. When partitioned into canopy
cover strata, the mean and pairwise VWF tree crown diameter
measurements were not equivalent to the field-based
measurements across all canopy cover strata (see Figure 5).

Discussion

Two automated algorithms (SWA and VWF) for estimating
the location, height, and crown diameter of individual trees
from lidar data were compared and evaluated across a full range
of canopy cover conditions (0%—-100% canopy cover). In
general, tree location errors attained by the SWA and VWF
algorithms were inversely proportional to forest canopy cover.
In terms of omission errors, VWF outperformed SWA,
especially in the 25%—50% and 50%—75% canopy cover strata.
However, the SWA algorithm had fewer commission errors
within most of the canopy cover strata. This was most
pronounced in the 25%-50% canopy cover stratum, where
SWA had a 23%-25% lower commission error as compared
with VWF. The omission and commission error differences
between SWA and VWF cover is not surprising, given that the
SWA algorithm, in its current implementation, only considers
the horizontal domain when identifying individual trees. In
other words, tree detection by SWA is only a function of
wavelet diameter, not height. As a result, SWA tended to detect
clumped trees as one object, rather than as individuals
(Figure 6). This results in an under-identification of individual
trees, and fewer commission errors. Although the lidar CHM
inherently includes vertical information, SWA is insensitive to
tree height when determining crown diameter. High tree
clumping was less of a problem for VWEF, because the
algorithm operates in both the vertical and horizontal domains.
Since VWEF identifies the location of individual trees solely
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Figure 6. Lidar canopy height model with predicted crown
diameters by the wavelet (red circles) and variable window filters
(VWF) (blue circles) methods. When trees are clustered, spatial
wavelet analysis (SWA) detects fewer trees than VWE

based upon local maxima within a lidar CHM, clumped trees
were typically identified as individuals (Figure 6). This also
results in a higher rate of commission error for the VWF
algorithm; local maxima algorithms may detect multiple
maxima within the same tree (e.g., a tree with multiple apices,
or long extending branches may be detected as more than one
individual (Solberg et al., 2006)). Further research could
potentially improve the SWA algorithm by developing three-
dimensional wavelets that take advantage of the vertical tree
height information the lidar data provide.

Excluding subdominant canopy cohorts from the analysis
reduced the omission errors for both algorithms. However, the
improvement was more pronounced in the 75%—-100% canopy
cover stratum. Furthermore, excluding the subdominant canopy
cohorts increased commission errors for both algorithms across
all canopy cover strata. These results indicate that SWA and
VWF were able to detect some trees in subdominant canopy
cohorts, especially when canopy cover was below 75%. Indeed,
when considering the 120 trees selected for tree measurement
accuracy, SWA and VWF were able to detect 42% and 58% of
trees within subdominant canopy cohorts, respectively.

SWA and VWF tree height measurements display similar
accuracies when compared with field measurements of tree
height via goodness-of-fit statistics (i.e., correlation
coefficients, RMSE, and MD). The difference in RMSEs
between the tree heights derived from each method was only
10 cm overall, and each method had equal correlation
coefficients (r = 0.89). Increasing canopy cover resulted in a
decrease in accuracy for tree heights measured via both
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methods, and the accuracy of each method was relatively low
above 50% canopy cover. Equivalence tests indicate that,
although the mean of SWA and VFW height measurements
were equal to the mean of field height measurements, the
pairwise measurements were unequal at the 25% equivalence
level above 50% canopy cover (i.e., VWF and SWA trees
heights are >25% different than field-measured tree heights in
high canopy cover conditions). The MD statistics and
equivalence tests indicate that there was no consistent bias in
tree height measurements across canopy cover strata.
Furthermore, the equivalence test graphs indicate that above
50% canopy cover, there was a high variability in SWA and
VWF measurements, and that both methods underpredicted
high tree heights and overpredicted low tree heights. This result
is surprising, given that previous studies have found lidar data
to consistently underestimate tree heights due to laser pulse
canopy penetration and the low probability of a pulse actually
striking the apex of a tree (e.g., Gaveau and Hill, 2003;
Maltamo et al., 2004; Falkowski et al., 2006). There are a few
possible explanations for these discrepancies. First, crown
dominance is likely influencing the accuracy of each method
(Maltamo et al., 2004). For example, SWA or VWF may not
detect trees within codominant canopy cohorts that are close to
dominant trees. However, if detected, the height of the
codominant tree will likely be overestimated due to crown
overlap. Second, the accuracy of field-based tree height
measurements is likely to be lower in high canopy cover
conditions. This is due to the fact that, when measuring tree
heights in the field, it is often difficult to identify the exact top
of a tree in dense canopies. In such situations, the location of a
tree apex may need to be approximated. Doing so incorrectly
will result in either over- or underestimation of tree heights
(Clark et al., 2004). The influence of GPS error is also an
unquantified source of uncertainty in the current study.
Previous research has shown that the accuracy of Trimble
ProXR GPS units decrease with increasing canopy density. For
example, a study conducted by the US Forest Service, in a
similar forest type to the one presented herein, demonstrated
that the error of a ProXR GPS was 2.73 m when collecting an
average of 60 GPS positions and performing a differential
correction (USDA Forest Service, 2008). Although we
collected at least 150 GPS positions at each inventory plot and
performed a differential correction, it is likely that the GPS plot
location error increases with an increase in canopy cover. This
leads to a less accurate stem map in areas with high canopy
cover, ultimately making it very difficult to objectively
determine if a sample tree had actually been detected in high
canopy cover situations.

One additional caveat worth mentioning is the fact that the
accuracy of lidar height measurements is largely dependent
upon the accuracy of the lidar-derived DEM. The DEM used in
this study exhibited higher errors in forests with dense canopies
(Evans and Hudak, 2007), as would be expected, suggesting
another source of uncertainly influencing lidar-derived tree
height measurements. Without conducting a detailed total
station survey, it is next to impossible to precisely quantify
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errors associated with inaccurate field measurements (tree
location, tree height, and GPS measurements) and lidar-derived
DEMs.

In terms of tree crown diameter, the goodness-of-fit statistics
indicate that the VWF algorithm was slightly more accurate
than the SWA algorithm when considering all 120 trees
analyzed in this study (RMSE difference = 10 cm). However,
both VWF and SWA crown diameter measurements were
poorly correlated with field measurements. Although the means
of SWA and VWF crown diameter measurements were
equivalent to the mean field-based crown diameter in some
canopy cover strata, the pairwise tree crown diameter
measurements were not within 25% of the field measurements
across all canopy cover conditions. Furthermore, the SWA and
VWF crown diameter measurements were extremely variable
in all canopy cover strata. The relatively poor performance of
the SWA algorithm can be attributed to tree proximity, as
previously discussed in regard to tree detection. However, since
the VWF algorithm predicts tree crown diameter as a function
of tree height, the low accuracy of VWF crown diameter
measurements is likely a result of the weak relationship
between tree height and crown diameter across the Palouse
Range study area. Furthermore, in forests with many different
tree species, the accuracy of the VWF method decreases (see
Figure 3). Since SWA does not require empirical, site-specific
allometry data, it is more suited than VWF for measuring tree
crown diameters where no empirical data exist, or where the
relationship between tree height and crown diameter is weak.
However, it is also worth noting that the accuracy of the SWA
algorithm could vary depending upon tree species. For
example, in its current implementation, SWA searches for
objects that are similar in shape to the 2D Mexican hat wavelet,
which closely approximates the shape of most trees across the
Palouse Range. However, there are a few species, such as Pinus
ponderosa, with crown morphology significantly different than
the shape of the Mexican hat wavelet. In such situations, SWA
may over- or underestimate tree crown diameter, or may fail to
detect the tree altogether.

Conclusions

This study presents a rigorous assessment of how two
automated tree detection algorithms perform across a full range
of conifer canopy covers. The results presented herein
demonstrate that increasing tree canopy cover has a significant
negative impact upon the accuracy of both SWA and VWF tree
measurements in a mixed-conifer forest. Although the two
methods were statistically equivalent to field-based
measurements when canopy cover was less than 50%, neither
method produced tree measurements within 25% of field-based
measurements in dense canopy where cover was greater than
50%. As a result, we suggest that both algorithms should be
used cautiously at canopy cover greater than 50%. Due to error
propagation, this is especially true when using the SWA- or
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VWEF-derived height and crown diameter measurements to
estimate other tree parameters such as stem DBH or biomass.

It is worth pointing out that the forests of the Palouse Range
are highly variable in terms of species composition and canopy
structure. Although the VWF algorithm has been shown to
perform better in areas where there is a strong relationship
between tree height and crown diameter (Popescu, 2007), it is
necessary to refine tree detection and measurement algorithms
to (in the case of VWF) perform better where this height-crown
diameter allometry is highly species-specific, or to (in the case
of SWA) more effectively use the vertical dimension in
delineating individual trees via lidar data.

In addition to improving individual tree detection and
measurement algorithms, future research should be conducted
to precisely quantify potential sources of error and uncertainty
when measuring individual trees with lidar data. Specifically,
such research should focus upon investigation of the influences
lidar-derived DEM errors and field measurement errors have
upon the accuracy of individual tree detection techniques.
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