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Abstract Convection in terrestrial bodies occurs within spherical shells described by the ratio, f , of their

bounding radii. Previous studies that have modeled convection with a temperature-dependent viscosity

noted the strong effect of f on transition to the stagnant-lid regime. Here we analyze stagnant-lid

convection in 2-D and 3-D systems with curvatures including relatively small-core shells (f as small

as 0.2) as well as in thin shell and plane-layer cases. Several peculiarities of convection in a strongly

temperature-dependent viscosity fluid are identified for both high and low curvature systems. We

demonstrate that effective Rayleigh numbers may differ by orders of magnitude in systems with different

curvatures, when all other parameters are maintained at fixed values. Furthermore, as f is decreased,

the nature of stagnant-lid convection in small-core bodies shows a divergence in the temperature and

velocity fields found for 2-D annulus and 3-D spherical shell systems. In addition, substantial differences

in the behavior of thin shell (f = 0.9) and plane-layer (Cartesian geometry) models occur in both 2-D and

3-D, indicating that the latter (emulating a toroidal topology rather than spherical) may be inappropriate

approximations for modeling variable viscosity convection in thin spherical shells. Our findings are

especially relevant to understanding and accurately modeling the thermal structure that may exist in

bodies characterized by thin shells (e.g., f = 0.9) or relatively small cores, such as shells comprising the

Galilean satellites and other moons.

1. Introduction

Convection in the cryoshells of icy satellites and silicate mantles of rocky moons and planets is characterized

by a strongly temperature-dependent viscosity that can result in the formation of an immobile (or stagnant)

conductive lid at the topof theupper thermal boundary layer of the system. Formationof a stagnant lid occurs

for heating conditions ranging from entirely internal to purely basal and is dependent on both total energy

input (i.e., internal heating rate and the rate of basal heat input) and the gradient of the viscosity variation

with temperature. The formation of the stagnant lid (Christensen, 1984; Reese et al., 1999; Solomatov, 1985;

Solomatov & Moresi, 1996) also requires that a critical viscosity contrast must be established between the

cold fluid at the surface of the shell and the warm fluid in the system’s interior. Consequently, the onset of

stagnant-lid convection (SLC) is a function of multiple parameters affecting the mean temperature of the

convecting fluid.

Multiple studies have worked toward quantifying the dependence of mean temperature and heat

flux on mantle geometry and energy input in both vigorously convecting isoviscous (Choblet, 2012;

Deschamps et al., 2010; Jarvis, 1993; Jarvis et al., 1995; Moore, 2008; Shahnas et al., 2008; Sotin &

Labrosse, 1999; Vangelov & Jarvis, 1994; Weller et al., 2016) and temperature-dependent viscosity systems

(Deschamps & Lin, 2014; Yanagisawa et al., 2016; Yao et al., 2014). Findings show that system geometry,

like rheological character, affect temperature and heat loss as strongly as the energy input associated with

the heat sources. In addition, system properties may affect mean temperature differently depending

on the geometry. For example, an increase in lower mantle viscosity (due to the effect of pressure) has a

geometry-dependent impact on mean temperature and convective regime (O’Farrell et al., 2013).
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Exact conditions required for SLC (and conversely a mobile surface) therefore remain somewhat equivocal.

Furthermore, the parameterization of mean temperature and heat flow differs in two-dimensional systems

versus three dimensions. Cartesian geometry studies have found that the behavior inferred from the analy-

sis of 2-D convection models may diverge from the parameterizations obtained from 3-D convection studies

(Deschamps & Lin, 2014). Hernlund and Tackley (2008) found that output diagnostics (i.e., mean temperature

and Nusselt number) for 2-D spherical annulus calculations are within 5% of the values obtained in identical

calculations performed in a 3-D spherical shell geometry. However, their study only focused on investigation

of an Earth-like core-to-planet radius ratio.

Geometrical analoguesof spherical shell convection suchas convection in cylinders andaxisymmetric spheres

were first used to study the influence of curvature and aspect ratio onmean temperature andNusselt number

(Jarvis, 1993; Vangelov & Jarvis, 1994). The controlling parameter that determines the degree of curvature is

the ratio of core radius (Rcore) to outer shell radius (Router), f (= Rcore∕Router). The difference in radii is the layer

depth, d(= Router − Rcore). Jarvis et al. (1995) explored the influence of relative core size on temperature and

convective planform in isoviscous systems and found convection in cold spherical shells characterized by a

singleplume rising from the corewhen f is 0.3 or less. Yaoet al. (2014) reported similar planformswith viscosity

contrasts up to 105 but relatively loweffective Rayleigh numbers. These authors derivedparameterizations for

the interior temperature and heat flux in variable core size spherical shell SLC (Yao et al., 2014) heated solely

by an isothermal core. However, they note the absence of SLC when f ≤ 0.4 in systems featuring parameter

values that result in SLC when f is larger (Yao et al., 2014).

The nature of convection, whether occurring presently or in the past, in bodies with small-core radii relative

to the thickness of the overlying shell may be particularly relevant to the evolution of the icy satellites of

the outer solar system and Earth’s Moon. Estimates of the f ratio for Io’s silicate mantle range from approx-

imately 0.4–0.5 (Sohl et al., 2002), while the ratio of the inner to outer radii of Europan silicate mantle,

between its metallic core and outer ice shell, is estimated to be between 0.3 and 0.4 (Schubert et al., 2009),

although arguments for a Europan silicate mantle with f in the range 0.1 to 0.5 exist (Sohl et al., 2002).

Uncertainty in the thickness of Ganymede’s outer icy shell means that the f ratio of its silicate mantle is

also difficult to constrain. Upper bounds on the thickness of its outer layer imply that it has an f ratio of

0.4 at the most (Sohl et al., 2002). Estimates of the f ratio in the icy shells of medium-sized icy satellites like

Miranda range from 0.25 to greater than 0.5, dependent upon the partitioning of rock to ice in the body’s

core (Hammond & Barr, 2014). Much tighter constraints exist on the radius of the core of the Earth’s Moon.

Recent analysis of Apollo era lunar seismological data (Weber et al., 2011) suggests that the Moon harbors

a small inner core. The inferred f ratio for the Moon’s silicate mantle is approximately 0.2 (e.g., Matsuyama

et al., 2016).

Cryoshells comprising the outermost layer of most icy moons are estimated to range in thickness from 10

to 200 km, resulting in a spherical shell geometry where f is greater than 0.8 (Barr, 2008; Hammond & Barr,

2014; Nimmo et al., 2003). Convective regimes hypothesized in these bodies range from possibly mobile

and plate-like on Europa (Kattenhorn & Prockter, 2014), to either episodic (O’Neill & Nimmo, 2010) or sim-

ply sluggish-lid on Enceladus and Ganymede (Barr, 2008; Hammond & Barr, 2014), to SLC on the midsized icy

moons of Saturn (Multhaup & Spohn, 2007). Because the shells are so thin, modelers commonly use small

plane-layer calculations to investigate the nature of convection in these bodies. However, the limitation on

convectivewavelength in Cartesianboxesmay artificially influence convective regimes.Moreover, plane-layer

geometries have a toroidal topology rather than spherical.

With recognition that the role of initial conditions is sometimes important in determining convective regime

(Crowley & O’Connell, 2012; O’Neill et al., 2016; Weller et al., 2015), robust conclusions regarding the impact

of the relative core size on the mean temperature in a convecting shell of fluid may still be reached. In

the study presented here, we focus on differences in the transition to and character of SLC that are found

with different f values. We extend previous work by focusing on SLC in relatively small-core bodies and

comparisons of Cartesian systems to global thin shell models. As f decreases, obtaining SLC requires the

specification of higher viscosity contrast. To identify the parameters leading to SLC, we perform a large

number of simulations of convection in a spherical annulus geometry (Hernlund & Tackley, 2008). Upon

identifying parameters that yield SLC in cases featuring small cores we then examine a small number of

3-D models and compare their thermal properties to those found in 2-D calculations featuring identical

parameters.
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2. Method

Thermally driven convection in a Boussinesq fluidwith infinite Prandtl number ismodeled in two-dimensional

spherical annulus and three-dimensional spherical shell geometries. A hybrid finite-difference/finite-volume

code, StagYY (Tackley, 2008) solves the governing equations using a parallelized multigrid method. The

flow is modeled implementing the nondimensional form of the conservation of mass, momentum, and

energy equations:

∇ ⋅ u = 0, (1)

− ∇P + ∇ ⋅

(

�(∇u + ∇uT )
)

= −RaT r̂, (2)

and

�T

�t
= ∇2T − u ⋅ ∇T , (3)

respectively.

The nondimensional parameters are time, t; the velocity field, u; the nonhydrostatic pressure, P; the dynamic

viscosity, �; the temperature, T ; and the Rayleigh number,

Ra = �0g�ΔTd
3∕�∗�, (4)

which determines the convective vigor of the system. The parameters comprising Ra include g, the acceler-

ation due to gravity; �, the thermal expansion coefficient; �∗, a reference viscosity; �, the system’s thermal

diffusivity; and ΔT , the superadiabatic temperature difference across the shell thickness, d. Our calculations

emulate convection in a planetary mantle or ice shell. Consequently, we shall refer to the system’s bound-

aries as the surface and core-mantle boundary (CMB). The surface and CMB are modeled as free slip in

each calculation and are isothermally fixed to nondimensional temperatures of T = 0 and T = 1, respectively.

Consequently, secular cooling is notmodeled. Dimensional temperatures are obtained from nondimensional

temperatures through multiplying T by ΔT and adding the surface temperature, Tsurf. For the remainder of

this work we shall use T to represent the dimensional temperature.

A linearized (Boussinesq) equation of state, �(T) = �0(1 − �(T − T0)), describes the density � as a function

of temperature where �0 is the density at dimensional temperature T = T0. The controlling parame-

ters that determine the convective regime are the ratio of core radius (Rcore) to outer shell radius (Router),

f (= Rcore∕Router), the reference Rayleigh number, Ra (equation (4)) and the rheology law describing how the

viscosity depends on temperature. The dimensional reference viscosity �∗ appearing in the Rayleigh num-

ber has a nondimensional value of 1.0 and corresponds to a dimensional reference temperature of T∗ (unless

stated otherwise T∗ = Tsurf + 0.5ΔT in the calculations presented, corresponding to a nondimensional

temperature of 0.5, and Tsurf is the dimensional surface temperature held fixed throughout the study). We

model an exponential increase in viscosity with decreasing temperature but employ a linearized approxi-

mation for the T−1 (Arrhenius) dependence of the argument of the exponential on T (usually referred to

as a Frank-Kamenetskii rheology (King, 2009; Noack & Breuer, 2013; Solomatov, 1995; Stein et al., 2013)).

Specifically, the viscosity is
�(T) = �∗ exp(−�(T − T∗)∕ΔT). (5)

Following this approach, the viscosity contrast across the system from top to bottom isΔ�T = exp(�).

For each geometry (i.e., f value) examined, unless stated otherwise, we beginwith an isoviscous rheology and

an initial condition that is conductivewith randomperturbations. Upon reachinga steady state, a temperature

field snapshot is used as the initial condition for the next case in the suite of calculations in which Δ�T is

systematically increased.

All of the results presented are from solutions that are thermally stable. Calculations are integrated forward

until a statistically steady state is achieved. Global energy balance provides a convergence criterion that

is obtained by comparing the difference in nondimensional surface and bottom heat flux (Ftop and Fbot,

respectively). Specifically, if Ftop and Fbot for the system are steady then

Ftop = Fbotf
2. (6)
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We determine that a calculation has reached a statistically steady state when the left and right-hand side of

equation (6) agree to within a difference of less than 1% over an integration period of at least 10 transit times

(where the transit time is defined as tt = d∕Vrms and Vrms is the volume averaged root-mean-square [rms]

velocity of the system). Time averages of model output reported below are performed over at least 10 transit

times satisfying the above heat flux criterion.

A middepth Rayleigh number, Ram, is obtained when the time-averaged middepth temperature is used to

evaluate the viscosity at middepth and this quantity replaces �∗ in equation (4). Using equation (5) the

middepth Rayleigh number becomes

Ram = Ra exp(�	m), (7)

where 	m = (Tm − T∗)∕ΔT is the nondimensional temperature difference between the average dimensional

middepth temperature, Tm, and the reference temperature (this is effectively identical to the temperature in

the well-mixed adiabatic interiors of stagnant-lid systems, often described in other studies). Temperatures for

the well-mixed interiors are not known a priori so that the convective vigor quantified by Ram is only known

once steady solutions are obtained.

The rms surface velocity Vsurf and volumetric velocity Vrms provide metrics for determining whether a sys-

tem has converged to a stagnant-lid mode of convection; specifically, the mobilityM = Vsurf∕Vrms (e.g., Stein

et al., 2013; Tackley, 2000). Previous authors investigating Cartesian geometry systems (e.g., Stein et al., 2014;

Tackley, 2000) have stated that M> 0.9 characterizes a mobile-lid convection regime. That is, cases where

surface velocity magnitude is comparable to or greater than mean interior velocity magnitude are consid-

ered mobile. In this study, we adoptM ≥ 1.0 as a threshold above which a system is designated mobile and

note that isoviscous cases are mobile by this criterion for all f values modeled. If M < 0.01, we consider the

system to be in the stagnant-lid regime. Intermediate values of M correspond to a transitional regime. Stein

et al. (2013) consider values of M < 0.01 and Vsurf < 1 as necessary conditions for the system to be identi-

fied as stagnant lid. Throughout this study we also identify stagnant-lid cases where the condition on Vsurf is

satisfied as well as the criterion forM.

We extend previous studies by exploring spherical geometries with different f for basally heated convection.

Unless stated otherwise, each calculation investigated has a fixed Ra = 3.2 × 105. Employing the rheology

equation (5) above, transitions frommobile- to SLC are determined by systematically increasing the viscosity

contrast parameter � (beginningwith an isoviscous case) while keeping the value of f fixed. A critical viscosity

contrastΔ�SLC is determined thatmarks the onset of SLC for various curvatures. The rangeof curvatures tested

generally includes f = 0.3, 0.4, 0.5, 0.55, 0.7, and 0.9 (thus sampling the geometries of the silicate mantles of

dwarf planets, Earth-like bodies, and the thin outer shells of icy moons). In addition, we compare findings to

aspect ratio 10 two-dimensional Cartesian geometry calculations. The viscosity contrasts considered range

between 1 and 108 where 1 represents the isoviscous case.

3. Results

We first consider convection in a 2-D spherical annulus and aspect ratio 10 Cartesian geometries. Here we

isolate the effect of core surface area on convective regimes. The degree of system curvature increases

as f decreases. In general, we focus on systems where f = 0.3, 0.4, 0.5, 0.7, and 0.9. Several calculations

characterized by f = 0.2 are also included to illustrate the peculiarities of small-core systems.

In the accompanying supporting informationdocument,wepresent all tables referred to in section 3 followed

by a selection of resolution-test examples.

3.1. Influence of Core-Size on the Convective Regime and Temperature

In Figure 1, we plot temperature field snapshots for calculations featuring different f and Δ�T values. (The

notation log denotes a base 10 logarithm in all figures of this paper unless stated otherwise.) These snapshots

show the effect that viscosity contrast has on flow pattern and convective regime as a function of system

geometry and the range of behavior possible within the regimes defined. In Figure 1a flow patterns corre-

sponding to examples of the transitional regime (0.01 < M < 1.0) in Cartesian geometry drastically contrast

between a flow featuring robust large downwelling sheets (M = 0.73 and Δ�T = 103) and a system with a

hot convective interior and a sluggish lid (M = 0.04 and Δ�T = 105). The stagnant-lid regime is well estab-

lished with Δ�T = 107 (i.e., M = 10−4) and is characterized by a hot convective interior featuring drip-like
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Figure 1. Selected nondimensional temperature field snapshots for Cartesian and spherical geometries with purely

basal heating. (a) Temperature fields in an aspect ratio 10 geometry with log(Δ�T ) = 3, 5, and 7 from top to bottom,

respectively. (b) Temperature fields for convection in spherical annuli with f = 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9 from left to

right and log(Δ�T ) = 5, 6, and 7 (log base 10) from top to bottom, respectively. The temperature for all snapshots

correspond to the color bar. Mobility values for all cases are inset.

downwellings at the base of a conductive lid. In the first row of Figure 1b, for all f values, spherical annulus

convection with fixed viscosity contrastΔ�T = 105 and increasing core size satisfies the mobility condition of

the transitional regime (0.01 < M < 1.0). The temperature field plots reveal a fundamentally different flow

in the spherical geometry models in comparison to the Cartesian geometry case with the same parameters

(Figure 1a,middle panel).When f ≤ 0.7, a hemispherical dichotomydevelops characterizedbyhot upwellings

that are dominant in one hemisphere and a large downwelling in the opposite hemisphere. When f = 0.9,

distinct hemispheres are no longer found. Given that the annuli are solutions in the equatorial cross section

of a spherical shell with no variation in colatitude, upwelling and downwelling features in the 2-D solutions

can be thought of as a crescent-like sheet of maximum thickness in the equatorial plane that tapers until van-

ishing at the poles of the sphere. (That is, in a spherical geometry where the colatitude 	 = 
∕2 coincides

with the plane of the annulus; a 3-D spherical harmonic decomposition of the solution obtained would have

only sectoral harmonics, analogous to the segments in an orange.) The volume of the downwelling depends

on the viscosity contrast and decreases asΔ�T increases. The onset of SLC, hereafter referred to as SLC occurs

with the elimination of the cold (blue) downwelling. In the second row of Figure 1b, the small core (f ≤ 0.4)

cases are convectingwith a sluggish-lid character and each system is at the threshold of SLC. In the final rowof

Figure 1b (Δ�T = 107), SLCoccurs for all curvatures except the f = 0.2 case. However, evenwhena stagnant-lid

is present, as f decreases mean temperature decreases so that upwelling strength increases. Thus, when f is

small, SLC is obtained with distinct upwellings and a thermal boundary layer above the core.
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Figure 2. Horizontally averaged temperature profiles for selected viscosity contrasts. Curvature is represented by the

color scheme: f = 0.3 (blue), f = 0.4 (cyan), f = 0.5 (green), f = 0.7 (magenta), f = 0.9 (red), and f = 1.0 (black).

Convective regimes are denoted by dashed lines (transitional) and solid lines (stagnant lid) and the horizontal

dot-dashed lines mark the base of the conductive stagnant lid.

Figure 2 shows temporally averaged temperature profiles for selected thermal viscosity contrasts. Due to the

high viscosity contrasts required to obtain SLC when f = 0.2, we generally analyze behavior when f ≥ 0.3

and present only select cases for f = 0.2. Transitional regime cases are denoted by dashed curves and SLC is

denoted by solid curves (as determined by the mobility criterion). In each stagnant-lid case, the base of the

conductive lid is marked by a horizontal dot-dashed line; the depth of the lid is calculated by finding the y

intercept of the line tangent to the inflection point on the profile of the vertically advected heat (Davaille &

Jaupart, 1993). In the stagnant-lid regime, the upper thermal boundary becomes thinner as curvature

decreases (i.e., f increases).

Due to the asymmetry in the areas of the heating and cooling surfaces, in isoviscous convection the temper-

ature gradient across the upper thermal boundary layer decreases as f is decreased (e.g., Vangelov & Jarvis,

1994). In convectionwith a strongly temperature-dependent viscosity, as curvature increases the temperature

change across the stagnant lid is reduced for the same reason. Thus, a higher viscosity contrast is required to

obtain the same viscosity increase across the conducting lid. Moreover, the temperature of the deep interior

(i.e., middepth) is closer to the reference temperature when f is smaller so that the viscosity increase across

the upper thermal boundary layer is much less than in higher f geometries. For example, Figure 2 shows that

when f = 0.3 andΔ�T = 106.5 the difference in viscosity between the surface and the top of the lower thermal

boundary layer is approximately (Δ�T )
1∕2. However, for f > 0.5 similar behavior is not observed in any cases.

In summary, the viscosity contrast across the upper thermal boundary layer must be increased by increas-

ing the global viscosity contrast, in order to obtain the contrast required across the upper thermal boundary

layer that allows for decoupling of the conductive lid and convecting interior. An additional consequence
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Figure 3. All panels except the upper right show mobility (solid curve, right-hand scale), volume-averaged rms velocity

(open triangles, left-hand scale) and surface rms velocity (closed triangles, left-hand scale) as a function of thermal

viscosity contrast for systems with different curvature, f . Triangles with a vertex at the top indicate that for the

associated datum point, viscosity was increased relative to the field used to obtain the initial condition, and triangles

with a vertex at the bottom (i.e., pointing down) indicate that viscosity was decreased relative to the field used to obtain

the initial condition. In the f = 0.3 and f = 0.7 cases, data are presented for two suites of calculations, one where

viscosity is systematically increased and the other where it is decreased. In the latter case mobility is plot with a dashed

curve. (For other f values, the only cases plotted correspond to viscosity contrast being increased.) In the upper right

panel, open circles denote time averaged middepth temperatures, closed circles denote the temperature difference

between the hottest and coldest regions at middepth and the solid black curve denotes the ratio of the lateral thermal

contrast difference to the average (only the cases where viscosity is being increased are plotted). All calculations feature

Ra((T∗ − Tsurf)∕ΔT = 0.5) = 3.2 × 105 . Green symbols denote cases with M> 1.0 (mobile lid), black symbols with

0.01 < M < 1.0 (transitional), blue symbols with M < 0.01, and red symbols denote M < 0.01 and Vsurf < 1 (stagnant lid).

The upper horizontal dotted line denotes M = 1.0, the lower horizontal dotted line denotes M = 0.01 and the solid

horizontal line denotes Vsurf = 1.

of the effect of curvature on producing a cooler global mean temperature occurs below the conducting lid.

Using the thickness of the conductive lid as a reference for determining the thickness of the convecting layer,

the viscosity variation across the latter,Δ�CL, is seen to increase as curvature increases.

For the highest viscosity contrast examined, the intersection of the temperature profiles and the dashed lines

in Figure 2 show that the viscosity contrast across the convective layer remains below 102 except for in the

highest curvature case (f = 0.3) where temperature variation across the convecting layer is greater than 0.4

and viscosity variation is almost 3 orders of magnitude. For larger f SLC cases, once viscosity contrasts exceed

Δ�T = 106 further increases only add to the contrast across the stagnant lid. These findings are consistent

with the analysis presentedbyYao et al. (2014) that implies the convective layer is almost isoviscous regardless

of the value � once SLC is obtained (Davaille & Jaupart, 1993; Solomatov, 1995). However, with f < 0.5 the

convective layer features largerΔ�CL and greater sensitivity ofΔ�CL to � .

Figure 3 plots mobility, volume-averaged velocity and surface rms velocity versus the magnitude of the vis-

cosity contrast Δ�T for varying curvature f . For the case f = 0.3, the upper right panel of Figure 3 shows the

onset of an increase in mean temperature of the system interior, as well as temperature contrasts, asM drops

below 1.0 (upper left panel). In particular, the thermal field transitions between end-member states charac-

teristic of themobile and stagnant-lid regimes, whilemobility drops by approximately 2 orders ofmagnitude.

Comparing the f = 0.3 and f = 1.0 cases shows that the thermal viscosity contrast required for the onset of SLC
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Figure 4. Convective regimes for purely basally heated calculations are plotted as a function of curvature f and

logarithm of the thermal viscosity contrast log(Δ�T ). Color indicates the temporally averaged mobility of the indicated

case. To emphasize the onset of stagnant-lid convection symbols are used to indicate convective regime by rounding

the mobility values to a single digit. Circles correspond to mobile regime (M ≥ 1.0), squares correspond to stagnant-lid

cases (M < 0.01), and triangles correspond to transitional cases. Diamonds represent stagnant-lid convection with

M < 0.01 and Vsurf < 1. Mobility values for all cases represented in this figure are listed in the supporting information

(Tables S1–S3).

at this Ra differs by an order of magnitude. Specifically, if only the mobility criterion is considered the onset

of SLC is obtained with Δ�T ≈ 107 for f = 0.3 and Δ�T ≈ 106 for f = 0.7. Augmenting the mobility criterion

with the stricter surface velocity condition, Vsurf < 1 (Stein et al., 2013), we find the contrast required for the

onset of SLC is increased. For a Cartesian geometry, the onset of SLC occurs for a lower viscosity contrast with

Δ�T ≈ 105.5 (andΔ�T ≥ 106 when Vsurf < 1). For each core size, the decreasing values inmobility result from a

decreasing surface velocity and corresponding increase in interior velocity. The latter effect occurs as viscosity

dropswith the global temperature increase that accompanies the decrease in surface velocity.When the tem-

perature below the stagnant-lid increases above the reference temperature, the Rayleigh number increases

above the reference value and the convection becomes characterized by a Vrms that is increased relative to

the isoviscous case. The onset of SLC (defined by a critical value of Δ�T as a function of f , Δ�SLC) follows a

monotonically decreasing but nonlinear trend in f − log(Δ�T ) space (discussed further in section 5.2).

In the panels corresponding to f = 0.3 and 0.7 in Figure 3 data are plotted for two suites of calculations. In

the first case (the case used for all geometries) each experiment uses a solution corresponding to the next

lowest viscosity contrast as the initial condition, starting from the isoviscous solution that is obtained from a

randomly perturbed conductive field. In the second suite, a stagnant-lid solution is the starting initial condi-

tion and viscosity is systematically decreased (further information is given in the figure caption). For the two

geometries examined we generally find convergence of the solutions (yielding a six-vertex star) for a given

viscosity contrast for each of the initial conditions but withminor differences. Where the solutions differmore

substantially we find that the difference is explained by the number of convection cells in the final state. We

discuss this further in section 3.3.

Figure 4 summarizes convective regime as a function of logarithm of thermal viscosity contrast, for varying

curvature f when Ra = 3.2 × 105. Color indicates the temporally averaged mobility of the cases shown. The

onset of SLC determined by a mobility criterion alone (M < 0.01) is shown by square symbols. As f decreases

the viscosity contrast required to reach the stagnant-lid regime increases. An irregular trend in the circles and

triangles (i.e., nonmonotonic increase inΔ�T with f ) occurs due to variation in the number of convection cells

(discussed further in section 3.3).

In addition to convective regime, middepth temperature changes substantially as a function of the log(Δ�T )

for different geometries. Temperatures increase by more than a factor of 4 for f = 0.3 versus f = 0.9 when

Δ�T = 105 (for convection in the transitional regime). When Δ�T = 107 all geometries (except f = 0.2)

exhibit SLC, but interior temperatures in f = 0.9 and Cartesian geometries are more than 30% above the

temperature in a f = 0.3 case. Prior to the onset of SLC, temperature is strongly dependent on the number of

downwellings present. In this context, the downwellingswe refer to feature cold fluid sourced from the upper
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Figure 5. Middepth Rayleigh number as a function of viscosity contrast.

Curvature is represented by the color scheme: f = 0.2 (purple), f = 0.3

(blue), f = 0.4 (cyan), f = 0.5 (green), f = 0.55 (brown), f = 0.7 (magenta),

f = 0.9 (red), and f = 1.0 (black). The inset defines the correspondence

between symbols and the number of downwelling observed in the case

reported, where the term downwelling refers to cold fluid sourced from the

upper thermal boundary layer sinking deep into the convecting system

(for example, see Figure 1). Open symbols indicate stagnant-lid convection.

thermal boundary layer, which participates in the convection.We find that

in the transitional regime, single downwellings dominate when f ≤ 0.55.

For isoviscous shells with this curvature, Jarvis et al. (1995) noted a funda-

mental change to single plume convective planform when f ≤ 0.5. The

cooler mean temperatures of small-core systems result in higher mean

viscosities and lower effective Rayleigh numbers. The potential for gen-

erating instabilities, producing multiple upwellings, warmer interiors, and

higher effective Rayleighnumbers is greater for shellswith large cores, due

to the greater heat input delivered per unit volume of convecting fluid by

a larger basal heating surface.

3.2. The Effect of T∗

Given a viscosity that decreases with increasing temperature, and a nondi-

mensional reference temperature equal to 0.5, there is a fundamental

difference between basally heated Cartesian geometry and spherical shell

convection. When � is increased beyond an isoviscous starting point

(i.e., � = 0), mean system viscosity decreases monotonically in the former

case, while increasing until a local maximum is reached in the latter geom-

etry (before decreasing). Equivalently, in a spherical shell the effective

Rayleigh number first decreases as Δ�T is increased from the isoviscous

state. For any f value, this same behavior will cause convection to eventu-

ally cease if T∗ is set equal to the CMB temperature and � is systematically

increased. In a spherical shell system T∗ should be set to, atmost, themean

temperature characterizing isoviscous convection, in order to obtain an

increase in the effective Rayleigh number as Δ�T is increased relative to

the isoviscous state.

This effect is illustrated with system results that are analyzed by plotting convective vigor (effective Rayleigh

number at middepth) against the viscosity contrast (Figure 5). The Rayleigh numbers, Ram, were calculated

by taking the time averaged temperature at middepth and applying equation (7). For all curvatures, the mid-

depth Ra is 3.2 × 105 in the isoviscous case. However, middepth temperatures are increasingly cooler as f

decreases. Accordingly, for cases with curvature f < 1 convective vigor first decreases with increasing viscos-

ity contrast, eventually reaching a minimum value. The minimum value increases with increasing curvature

(decreasing f ). When f = 0.3, asΔ�T is increased (e.g., whenΔ�T = 105), themiddepth Rayleigh number, Ram,

drops by more than 3 orders of magnitude relative to the Cartesian case and a factor of 30 relative to the iso-

viscous case. When f = 0.2 and Δ�T = 107 the Ram has dropped by approximately a factor of 50 relative to

the isoviscous case while all other cases have converged to the stagnant-lid regime with Ram at least a factor

of 50 greater than in the isoviscous case.

By adopting a value for T∗−Tsurf of 0.5ΔT , at first equation (5) appears to bepreferentially tailored tomodeling

Cartesian geometry systems. For example, as noted abovewhen T∗−Tsurf = 0.5ΔT it is only for this geometry

that Rayleigh number is not effectively lowered as Δ�T is first increased. The change in mean temperature

that occurs with f (e.g., in isoviscous convection) therefore suggests that it may be appropriate to change the

reference temperature T∗ to account for geometry so that transitions, say to the stagnant-lid regime,will occur

for the same viscosity contrast in different geometries. However, the rheology modeled by equation (5) does

not make T∗ an independent parameter from Ra. For example, if we set T∗ = Tsurf + 0.17ΔT (the mean of the

conductive temperature profile in an f = 0.3 spherical shell) then amuch larger volume of the shell will feature

nondimensional viscosities less than 1.0 (thus raising the effective Rayleigh number). Mathematically, this is

equivalent to holding T∗ equal to Tsurf + 0.5ΔT and increasing the Ra by a factor of (Δ�T )
0.5−0.17 = (Δ�T )

0.33

(which is equal to 20.9 forΔ�T = 104) because equation (5) can be written

�(T) = �∗ exp(−�((T − Tsurf)∕(ΔT) − 0.17)) = �∗ exp(−0.33�) exp(−�((T − Tsurf)∕(ΔT) − 0.5)), (8)

that is,

�(T) = �∗(Δ�T )
−0.33 exp(−�((T − (Tsurf + 0.5ΔT))∕ΔT)). (9)
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Figure 6. Nondimensional temperature field snapshots for basally heated spherical annulus models with

(T∗ − Tsurf)∕ΔT = 0.5 (top row) and T∗ − Tsurf = Tcond (bottom row). Each system has a viscosity contrast Δ�T = 106 .

Tcond(f = 0.3) = 0.17ΔT , Tcond(f = 0.4) = 0.23ΔT , Tcond(f = 0.5) = 0.29ΔT , Tcond(f = 0.7) = 0.38ΔT and

Tcond(f = 0.9) = 0.46ΔT (left to right, respectively). Mobility values are inset.

Accordingly, changing the reference temperature from Ti to Tf yields the same system as changing the

reference Ra to (Δ�T )
(Ti−Tf )∕ΔTRa while leaving the reference temperature as Ti .

In Figure 6 we present temperature field snapshots from calculations in which T∗ is set equal to the mean of

the conductive temperature profiles for cases with various geometries. When Δ�T = 106 the changes in T∗

are equivalent to multiplying the Rayleigh numbers by 95.5 (f = 0.3), 41.7 (f=0.4), 18.2 (f = 0.5), 5.2 (f = 0.7),

and 1.74 (f = 0.9) in comparison to cases where T∗ − Tsurf = 0.5ΔT . We limit the remainder of the study of

the role of f to cases where we vary only � with a fixed Rayleigh number and T∗ = 0.5ΔT + Tsurf (with an

understanding that variation of T∗ is equivalent to varying Ra).

3.3. Discontinuities and Anomalies in the Onset of Convective Regimes

In Figure 4, an apparent discontinuity (or at least a very high gradient) is observed for the onset of the tran-

sitional convective regime between systems with zero (f = 1.0) and low curvature (f = 0.9). The change to

convection in the transitional regime occurs with a viscosity contrast of Δ�T = 105 for each spherical sys-

tem examined whereas (for the aspect ratio 10 calculations we examined) Cartesian geometry convection

transitions with Δ�T = 102. Transitional regimes are characterized by downwelling/upwelling sheets in 2-D

Cartesian geometry versus sectoral-harmonic “segments” in 2-D spherical annulus systems. The fundamental

difference in the topology of the systems may explain the disparity in the required Δ�T for the onset of the

transitional regime.

Figure 5 shows that a transition to a single downwelling flow pattern typically precedes the onset of SLC as

Δ�T is increased. For the Rayleigh number specified here, prior to the transition to SLC, flow characterized by a

single downwelling appears to be a robust feature for curvatures with f ≤ 0.7. Moreover, single downwellings

are obtainable in our f = 1.0 calculations as convection cell widths do not need to exceed an aspect ratio of

5 (similar to the cell widths found with a single downwelling when f ∼ 0.50). However, when curvatures are

small (f ≥ 0.9) single downwelling flow is difficult to achieve because extremely long wavelength convection

cells must be generated. Consistent with this observation, it appears that the onset of transitional surface

mobility is delayed when long aspect ratio cells are obtainable. The aspect ratio 10 limit when f = 1.0 may

thus be an alternative explanation for the discontinuity in Figure 4 (between f = 0.9 and 1.0 transitional

regime onset).

Figure 7 compares f = 0.5 and f = 0.7 spherical annulus cases featuring viscosity contrasts increasing from

102 to 106. In the top two rows, for each adjacent pair the solution to the right is obtained starting from the

field to the left. In the bottom row, the solution to the left is obtained starting from the field to the right.

When f = 0.5, the number of convection cells decreases from four to a pair before the onset of SLC as Δ�T
is increased, and mobility decreases smoothly from left to right in the figure. In contrast, when f = 0.7 and

viscosity contrast is systematically increased, the number of convection cells changes sharply between the

Δ�T = 103 and 104 cases and mobility increases before starting a monotonic decrease as Δ�T is increased

further (see Figures 3 and 4). Similar behavior also occurs as viscosity contrast is decreased systematically

(bottom row) as mobility drops when four cells are superseded by multiple cells with a decrease in viscosity
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Figure 7. Temperature field snapshots featuring Δ�T = 102, 103 , 104, 105 , and 106 (left to right) for f = 0.5 (top) and

f = 0.7 (bottom two rows) curvatures. Mobility values are inset. In the top two rows, solutions are obtained from an

initial condition field with a factor of 10 lower total viscosity contrast. In the bottom row, solutions are obtained from an

initial condition with a factor of 10 higher total viscosity contrast (i.e., for each adjacent pair, the solution to the left is

obtained starting from the field to the right).

Figure 8. Observed middepth temperatures for basally heated stagnant-lid

convection calculations are plotted against predicted temperatures using

the equation for average temperature in the well-mixed interior below a

stagnant lid, (Tm − Tsurf)∕ΔT , determined by Yao et al. (2014). Open squares

represent the 3-D cases analyzed by Yao et al. (2014). The open circles

represent 2-D cases from this study with Ra = 3.2 × 105 . Triangles represent

our findings for 2-D calculations with the same parameters as cases marked

by open squares. Open triangles represent stagnant-lid convection and solid

triangles represent transitional convection. Open diamonds represent 3-D

stagnant-lid convection cases for f = 0.2(Δ�T = 108), f = 0.3(Δ�T = 107),

and f = 0.4(Δ�T = 106.5). Curvature is represented by the color scheme:

f = 0.2 (purple), f = 0.3 (blue), f = 0.4 (cyan), f = 0.5 (green), f = 0.55

(brown), f = 0.6 (orange), f = 0.7 (magenta), f = 0.9 (red), and

f = 1.0 (black).

contrast from 103 to 102. Generally, system mobility decreases monoton-

ically as Δ�T is increased when the number of convection cells does not

change, but trends can change when the downwelling number changes

with increasing (or decreasing) viscosity contrast.

Figure 7 also shows that different steady convective patterns are obtain-

able for the same set of system parameters and that the cell number is

dependent on the initial condition. Moreover, the time-dependent aver-

aging of the mobility calculated may yield some differences in values

for seemingly identical solutions (e.g., f = 0.7 cases with viscosity con-

trasts of 105 and 106). However, we did not find examples of the same

set of parameters yielding SLC for one initial condition versus transitional

or mobile-lid convection for a different initial condition. (Such behav-

ior, commonly termed “hysteresis,” has been widely observed in systems

that include stress-dependent viscosities (e.g., O’Neill et al., 2016; Weller &

Lenardic, 2012).)

4. Comparison Between 2-D and 3-D Systems

Figure 8 plots observed middepth temperatures for calculations of SLC

against the mean temperatures below the stagnant lid predicted by the

analysis of Yao et al. (2014). The colors correspond to specific f values as

in Figure 5 and T∗ − Tsurf = 0.5ΔT in all cases. The square symbols rep-

resent the 3-D spherical shell stagnant-lid cases reported by Yao et al.

(2014), and the triangles represent 2-D spherical annulus calculations fea-

turing the same parameters as the cases corresponding to the squares

(Ra varies). Open triangles represent SLC and solid triangles represent tran-

sitional convection. The circles plot all of the spherical annulus stagnant-lid

cases in our study featuring Ra = 3.2 × 105. (In the Yao et al. (2014) study,

stagnant-lid cases were not found for small-core systems [e.g., f ≤ 0.4].)

The diamonds correspond to three cases of SLC in 3-D spherical shells fea-

turing the same parameters as spherical annulus cases presented earlier
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Figure 9. Two-dimensional and 3-D nondimensional temperature field

snapshots comparing stagnant-lid convection in small-core spherical

geometries. Panels show (a) f = 0.4, (b) f = 0.3, and (c) f = 0.2 spherical

systems. Model parameters are identical in each panel, only the

dimensionality differs. For (a) and (b) the left-hand column shows

(T − Tsurf)∕ΔT = 0.7 and 0.6 isosurfaces, respectively, corresponding to hot

upwellings. For (c) the left-hand column shows the (T − Tsurf)∕ΔT = 0.6

isosurface superimposed on a vertical slice through the spherical shell. For

all panels the center column shows the same isosurfaces but from a viewing

angle rotated by 90∘ in the equatorial plane, relative to the viewing angle in

the left column. The isosurfaces are superimposed on a vertical slice

through the spherical shell. The right-hand column shows a spherical

annulus centered at the equator. The grid dimensions in the 3-D cases are

2 × (128 × 384 × 64) and in the 2-D case 1, 024 × 64 (for f = 0.3 and f = 0.2)

and 1, 280 × 64 (for f = 0.4).

in this paper. Observed lowest temperature cases for f = 0.5 (green) and

f = 0.7 (magenta) are much colder for the coldest 2-D case when com-

pared with the 3-D cases and correspond to the lowest viscosity contrast

investigated in this study. The anomalous temperatures occur because the

2-D calculations do not feature stagnant lids for the specified parameters.

Thus, the onset of SLC occurs for smaller Δ�T values in 3-D. However, we

find that when SLC occurs in a spherical annulus geometry it generally

results in hotter solutionswhen compared to convection in spherical shells

and that the disagreement increases as f decreases. In addition, we find

that when f ≤ 0.3 our 3-D spherical shell calculation does not agree as

well with the trend found by Yao et al. (2014). Given that only spherical

shells with f ≥ 0.5 were used to obtain the equation for predicted tem-

peratures in the study by Yao et al. (2014), it is not inconsistent to find that

small-core cases are less well fit by this equation. Moreover, the parame-

terizations given by Yao et al. (2014) assumed that the convection below

the stagnant lid is essentially isoviscous. Our findings (Figure 2) show that

this assumption breaks down when f ≤ 0.4.

Figure 9 showsdetails in thedifferencebetween2-D spherical annulus and

3-D spherical shell convection for cases where f = 0.4 with Δ�T = 106.5,

f = 0.3 with Δ�T = 107, and f = 0.2 with Δ�T = 108. In each panel, the

spherical annulus case is on the right. In their study, Yao et al. (2014) only

found weak convection with single plume flow and thick thermal bound-

ary layers in small-core geometries. Figure 5 clarifies that this is because

effective Ra is lowered by increasing � with T∗−Tsurf = 0.5ΔT and that Yao

et al. (2014) would have needed to examinemuch larger Ra andΔ�T cases

in order to obtain stagnant lids with f ≤ 0.4. Flow patterns in the spher-

ical shell calculations are characterized by multiple plumes and a robust

stagnant lid. The stagnant lid is depicted as a blue layer in the equatorial

slice, and the convective interior appears to be an almost uniform temper-

ature. In contrast to SLC in a Cartesian geometry system, these examples

of SLC with relatively small cores feature thermal boundary layers at the

core mantle boundary and hot plumes relative to the ambient mantle.

The spherical annulus case is hotter in each small-core geometry, but the

temperature field snapshots indicate similar separationdistancesbetween

the active upwellings in each geometry. Temperature differences are likely

explained by the topological difference between flows in a spherical shell

and spherical annulus. Upwellings obtained in spherical annulus geome-

tries model sectoral sheets that terminate at the poles of the sphere (normal to the plane in which the field is

calculated). A 3-D spherical shell calculation features columnar plumes. This difference is especially illustrated

in the f = 0.2 case where hot upwelling regions fill over 50% of the interior at all latitudes in a 2-D model.

In contrast, the two hot plumes in the 3-D case can occupy a smaller volume of the shell. In Figure 9c a slice

perpendicular to the plane featuring the two plumes is very low in temperature. No such slice exists through

the annulus topology. It appears that the impact of this difference on temperature, corresponding to a plan-

form difference, becomes amplified as f decreases. Previously, for isoviscous convection, Shahnas et al. (2008)

noted that planform variations affect mean temperature so that convection with plumes and sheets do not

follow the same parameterizations.

5. Discussion
5.1. Implications for Modeling

The thermal parameterization for SLC derived by Yao et al. (2014) for 3-D calculations implies that SLC fea-

tures a conductive thermal upper boundary layer atop an almost isoviscous convecting layer (i.e., the thermal

viscosityΔ�CL ≲ O(10)). Making this assumption for larger values of f (> 0.5), it follows that

1 −

(

Tm − Tsurf

ΔT

)

= �∕(�f ). (10)
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Figure 10. Observed (a) middepth temperature and (b) basal heat flux for stagnant-lid convection in basally heated

calculations, plotted against parameterized values. Solid squares plot 2-D observations against values predicted by an

equation based on 3-D findings derived by Yao et al. (2014). Solid diamonds plot the 2-D observations from this study

against the middepth temperature equation (10) and basal heat flux equation (11) obtained using the 2-D results. Color

corresponds to curvature as in Figure 8.

Yao et al. (2014) fit their results to find that � = 1.23±0.15 and  = 1.5±0.22. Using the results of our 2-D cal-

culations, we solved equation (10) for best fit keeping the coefficient � fixed at 1.23 and found  = 1.09±0.01.

Note that the parameter � is fixed so that the power-law dependence of our 2-D results can be compared

specifically with the exponential dependence derived by Yao et al. (2014) for fully 3-D results and so that the

equations converge for plane-layer geometries. For a viscosity contrast determined by � , in 2-D, the drop in

nondimensional temperature across the lower thermal boundary layer (left side of (10) is reduced compared

to the finding based on 3-D geometry calculations due to the reduced value of  . That is, annuli interiors are

always hotter than their 3-D counterparts in the SLC regime.

With the temperature jump across the lower thermal boundary layer given by the right side of 10, basal heat

flux is given by

Fbot = aRab
m
∕(�cf d). (11)

Yao et al. (2014) found a = 2.01 ± 0.26, b = 0.30 ± 0.01, c = 1.50 ± 0.01, and d = 1.91 ± 0.03. Using results

from the 2-D calculations and keeping a and b fixed, we obtain c = 1.61 ± 0.02 and d = 1.70 ± 0.05 in

equation (11). Again, we choose to fix a and b to isolate the power-law dependence of basal heat flux on the

effect of viscosity contrast and curvature in 2-D annulus versus 3-D systems (Yao et al., 2014).

The left panel in Figure 10 plots the observed middepth temperature from the spherical annulus calcula-

tions against the temperature drop determined with equation (10) for values of  obtained using both 2-D

and 3-D calculations. The right panel of Figure 10 plots the basal heat flux against the heat flux predicted

with equation (11) where c and d determined from both the 2-D and 3-D studies are utilized. As curvature is

increased, observed values for (Tm−Tsurf)∕ΔT and Fbot in annuli differ greatly from those calculated using Yao

et al.’s (2014) equation with exponents based on fitting results from 3-D spherical shells. Consistent with the

trend of the temperature drops exhibited in panel a, the basal heat fluxes observed are lower in the annuli

calculations and the disagreement between 2-D and 3-D systems increases as f decreases. Although the 2-D

parameterization is successful, we find that the parameterization of the 2-D results is poorest for thin shells.

In Figure 11a we plot predicted temperature drop across the basal boundary layer as a function of f using

equation (10) with  determined from both 2-D and 3-D calculations. Open diamonds plot the observed tem-

perature drop as a function of f and show that the 2-D parameterization works well in general but is less

successful for the f = 0.9 case. The soliddiamondcorresponds to a 3-D calculationpresentedherewith f = 0.3

and is reasonably well fit by the equation given by Yao et al. (2014) despite the fact that those authors did not

include data for stagnant-lid cases with f < 0.5 in their parameterization.

In Figure 11b we plot contours of constant middepth Rayleigh number, Ram in Fbot − f space. Perfect agree-

ment between the parameterization for Fbot and observations would result in the diamonds falling on top
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Figure 11. (a) Temperature drop across the bottom thermal boundary layer as determined from equation (10) plotted as

a function of f . The solid black curve indicates temperature contrast with the value of  derived by Yao et al. (2014) for

3-D spherical shell results. The dashed black curve is the temperature drop, �Tbot , derived from 2-D spherical annulus

results. (b) Basal heat flux plotted as a function of f . Each curve correspond to a constant value of the middepth Rayleigh

number, as indicated in the key. The solid blue curve is determined from the basal heat flux equation derived for 3-D

spherical shell results and the dashed colored curves are derived from the heat flux equation corresponding to 2-D

spherical annulus results. Plotted diamonds indicate observations of Fbot for cases with corresponding f and a middepth

Rayleigh number defined by color. Ra = 3.2 × 105 for all plotted data points and Δ�T = 107 for both the observations

and the calculation of the constant Ra curves. The colors of the open diamonds correspond to the same f values plotted

in Figure 2 and the solid diamond represents the 3-D spherical shell case shown in Figure 9.

of the curves of corresponding color. The position of each contour is determined by the value of � . Here we

present the results for Δ�T = 107 in order to incorporate the 3-D result. Generally, the parameterization of

the results for the annuli geometry is successful but the observed heat flux in the 3-D case tested is much

higher than expected for the corresponding Ram. This could be explained by the fact that a robust lower ther-

mal boundary layer exists in this 3-D calculation making it distinct from the cases used to determine the 3-D

parameterization.

5.2. Relatively Small Cores

Figure 12 plots snapshots of the profile of the second invariant of the stress tensor, � , (at the base of the stag-

nant lid) for f = 0.3 and 0.5 spherical annuli cases and a 10 × 1 plane layer case, where each system features

a viscosity contrast of Δ�T = 107. The horizontal coordinates in the figure are determined by the nondimen-

sional circumference 2
∕(1− f ) and position along the x axis is plotted in units of mantle depth. As curvature

is increased (f decreased) the stress oscillates on a much longer wavelength in comparison to stress in the

relatively large core and plane layer cases (in agreement with the finding that we observe fewer convection

cells in cases with smaller cores). In addition, stress magnitude increases with increasing curvature and the

f = 0.3 spherical annulus has amean stress about an order ofmagnitude larger than the plane-layer case. The

higher stresses observed at the base of the stagnant lid when f is smaller are a result of higher viscosity, due

to cooler temperatures, and the presence of (relatively hot) active upwellings driving relatively longer con-

vection cells. Together these phenomena resist the formation of a stagnant lid, providing an explanation for

the observation that larger viscosity contrasts are needed to induce a stagnant lid as the curvature increases.

In Figure 13 we plot the nondimensional basal heat flux as a function of nondimensional time from annuli

calculations. In addition to themean nondimensional basal heat flux increasewith decreasing f it can be seen

that the variability in the heat flux increases with decreasing f . Because an increasingly robust basal thermal

boundary layer is establishedwith smaller f values, we suggest this finding is consistentwith greater temporal

variability in the thermal boundary layer thickness resulting from plume mobility and thermal detachment.

However, in contrast to the variable time series shown in Figure 13, we find that the 3-D systems shown in

Figure 9 become decreasingly time dependent as f is decreased, to the point where nearly steady planforms
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Figure 12. Example snapshots of the second invariant of the stress tensor, � , at the base of the stagnant lid,

as a function of position. Colors correspond to f = 0.3 (blue) and 0.5 (green) spherical annuli cases and a 10 × 1 plane

layer case (black). All cases are characterized by a viscosity contrast of Δ�T = 107 . Dot-dashed lines denote the mean of

the curves with values given in the inset at the upper left.

are established when f ≤ 0.3. A steadier flow therefore accompanies the cooler 3-D cases (e.g., see Figure 8)

in accord with their lower effective Ra.

5.3. Modeling Thin Shells

In Figure 8, itwas observed that 2-Dmodels lag 3-Dmodels in reaching theonset of SLC (for example, compare

solid triangles with corresponding open square data points). In Figure 4, whenΔ�T = 105 we found that both

f = 1.0 and 0.9 cases occupy the transitional regime. However, the onset of SLC was observed for a small

Figure 13. Time series for basal heat flux for 2-D annuli cases with variable core sizes. The time series shown correspond

to the cases that yield the data points included in Figure 11 (where Δ�T = 107). Color corresponds to associated f value

as previously. The solid horizontal lines indicate the mean value of the heat flux over the time interval plotted where the

means (with associated standard deviations) and mobilities, M, are (blue) F̄bot = 21.5 ± 1.5, M = 0.0046 ± 0.0006; (cyan)

F̄bot = 19.7 ± 0.6, M = 0.0009 ± 0.0001; (green) F̄bot = 17.9 ± 0.6, M = 0.0004 ± 0.0003; (magenta) F̄bot = 13.1 ± 0.3,

M = 0.0010 ± 0.0008; (red) F̄bot = 9.5 ± 0.1, M = 0.0022 ± 0.0001; (black) F̄bot = 8.6 ± 0.3, M = 0.00003 ± 0.00001.
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Figure 14. Temperature field snapshots in 3-D geometries. On the left the interior of a 4 × 4 × 1 plane layer is shown

with upwellings in red ([T − Tsurf]∕ΔT = 0.95) and downwellings in blue ([T − Tsurf]∕ΔT = 0.85; the isosurface colors do

not correspond to the color bar). On the right the temperature in a f = 0.9 shell is shown at a radius of 9.5d (Rcore = 9d,

Router = 10d) from diametrically opposed viewing angles. A Rayleigh number Ra = 3.2 × 105 and a viscosity contrast of

Δ�T = 105 are used for both models. The resolution of the plane layer is 128 × 512 × 512. The resolution of the

thin-shelled sphere is 2 × (192 × 1152 × 96). See supporting information Table S5 for input and output parameters.

increase in Δ�T when f = 1.0. In Figure 14 we plot temperature fields from two 3-D calculations that are in

agreement with the findings indicated in Figures 4 and 8. The f = 1.0 case is in the stagnant-lid regime, the

f = 0.9 is not. In the f = 1.0 case the presence of a stagnant lid could be due to either the larger aspect ratio

or simply the dimensionality effect. The plane-layer 3-D case is similar to cases presented in previous studies

(e.g., Deschamps & Lin, 2014) and features cylindrical plumes and downwellings, in contrast to the sheets in

our 2-D plane-layer model. In particular, it differs dramatically from the spherical thin shell (f = 0.9) case that

features a hemispherical dichotomy characterized by a large “ring-like” downwelling in one hemisphere. The

persistence of robust downwellings in the f = 0.9 case was observed in f = 0.9 annuli in Figure 1. In 3-D

downwelling flow is maintained and forms a robust planform separating diametrically opposed regions of

upwelling with differing volumes.

6. Conclusions

Our calculations demonstrate that core geometry strongly affects estimates of the thermal viscosity contrast

required to obtain SLC. For example, in the Cartesian geometry case modeled, with the Rayleigh number

specified (e.g., Figure 4), the onset of SLC occurswith a viscosity contrastmore than 2 orders ofmagnitude less

than in the f = 0.2 case. Coregeometry also strongly affects the effective Rayleighnumber for a given viscosity

contrast (Figure 5) and viscosity structure in the convecting region below the stagnant-lid also changes as

f is varied. For example, plots of the azimuthally averaged temperature (Figure 2) show that the isoviscous

approximation for the convective layer underlying the stagnant lid is justifiable for f ≥ 0.5 but breaks down

for f ≤ 0.4.

A comparison of SLC in two- and three-dimensional spherical geometries finds that for systems characterized

by identical parameters, when f < 0.5, mean temperature in statistically steady systemswith different dimen-

sionalities may disagree bymore than 25% and basal heat flux bymore than 50%. Disagreement depends on

f and the viscosity contrastmodeled.With a fixed Rayleigh number, Ra, we find that for SLC in two dimensions

when f < 0.5 the viscosity contrast established across the upper thermal boundary layer increases relative to

three-dimensional convection. Similarly, the viscosity contrast across the thermal boundary layer enveloping

the core is decreased by 2-D modeling (e.g., Figure 9).

In small-f systems, vigorous active upwellings persist below sluggish lids and impart surface stresses that

resist the onset of SLC. Our findings may therefore help explain observations of disrupted surfaces that have

been inferred to be the result of early convection in ice shells in moons with small rocky cores (Hammond

& Barr, 2014). Specifically, although we have not modeled surface yielding, the higher stresses we observe
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in the stagnant lids of small-core systems imply that deformation could result more readily than previously

understood due to the focused plumes that characterize such systems (see Figure 12).

The results presented in this work are obtained with just one value for the reference Rayleigh number (with

the exception of the cases compared to the results from Yao et al., 2014, in Figure 8). Previously, Yao et al.

(2014) and Yanagisawa et al. (2016) discussed that convective regime (i.e., stagnant lid vs. mobile lid) is highly

dependent on the reference Rayleigh number as well as the viscosity contrast modeled. (Studies featuring

yield stresses have also noted that a higher reference Rayleigh number promotes surface mobility (e.g., Stein

et al., 2004, 2014).) Consequently, our findings do not imply that a smaller body with a smaller core, like the

Moon, is necessarily less likely to be characterized by a stagnant lid than the Earth, with its higher mantle

Rayleigh number. Moreover, smaller cores will be depleted of their heat more quickly when secular cooling is

modeled. This effect, in particular, should be the subject of further studies of the impact of core size on the

convective regime of an overlying mantle of rock or ice.

In annuli, as viscosity contrast is increased to produce a stagnant lid, robust thermal boundary layers con-

tinue to envelop the relatively small cores of the systems allowing for strong time dependence of the heat

flux from the core. However, in cooler interior 3-D systems, hot, core-enveloping boundary layers are less time

dependent due to lower effective Ra for the systems. An increase in plume vigor with small f and the fact that

planformdiffers substantially in 2-D and 3-Dmodelsmay contribute to the divergence of 2-D and 3-D findings

when f is small. Studies of isoviscous convection have previously reported breakdowns in the parameteriza-

tion of mean temperature when systems featuring downwelling sheets are compared with systems featuring

cylindrical downwellings (Jarvis, 1993; Shahnas et al., 2008). Our findings indicate that core heat flux time

series from small-core 2-D models amplify the degree of time dependence expected in 3-D systems.

Very long wavelength flow was commonly observed in thin shelled systems so that downwellings sourc-

ing material from a sluggish upper thermal boundary layer remain especially persistent as viscosity contrast

is increased. As a result, we found that Cartesian systems can poorly emulate thin shelled cases when the

aspect ratio of the former does not match the circumference of the latter. In particular, we find that the onset

of transitional and SLC in a relatively smaller aspect ratio occurs at a lower viscosity contrast. For example,

the circumference of an f = 0.9 annulus exceeds the rectangular geometry aspect ratio 10 case by more

than a factor of 6 so that parameters yielding SLC in the latter geometry resulted in mobile convection in

the former case. In three dimensions we observe similar behavior and thin shell solutions characterized by a

hemispherical dichotomy.

Taken collectively, the findings presented here indicate that caution should be applied when extrapolating

the findings from 2-D spherical calculations to 3-D systems or when extrapolating plane-layer geometry solu-

tions to the behavior in thin spherical shells. In contrast, Earth’s geometry (f = 0.55) places it in the range

of curvature where the results of 2-D and 3-D experiments agree more closely (at least in the stagnant-lid

regime). Unfortunately, in order to explore planetary evolution, our results indicate that the most computa-

tionally demanding stagnant-lid systems are specifically the cases that should be modeled in 3-D or at least

full spherical annuli. Specifically, small-core cases (which require the modeling of greater viscosity contrast in

order to obtain stagnant lids) and thin shell cases (which are poorly emulated by systems with smaller aspect

ratios) exhibit behavior that is highly dependent on both their curvature and dimensionality.
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