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Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Com-

mon Era climate. However, they are derived using different datasets and techniques, the

ramifications of which have hitherto been little explored. Here, we report the results of a

double-blind experiment that yielded 15 Northern Hemisphere summer temperature recon-

structions from a common network of regional tree-ring width datasets. Taken together as an

ensemble, the Common Era reconstruction mean correlates with instrumental temperatures

from 1794–2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large

volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean,

variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the

influence of subjectivity in the reconstruction process. We therefore recommend the routine

use of ensemble reconstruction approaches to provide a more consensual picture of past

climate variability.

https://doi.org/10.1038/s41467-021-23627-6 OPEN

A full list of author affiliations appears at the end of the paper.

NATURE COMMUNICATIONS |         (2021) 12:3411 | https://doi.org/10.1038/s41467-021-23627-6 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23627-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23627-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23627-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23627-6&domain=pdf
http://orcid.org/0000-0002-3821-0818
http://orcid.org/0000-0002-3821-0818
http://orcid.org/0000-0002-3821-0818
http://orcid.org/0000-0002-3821-0818
http://orcid.org/0000-0002-3821-0818
http://orcid.org/0000-0002-8509-8080
http://orcid.org/0000-0002-8509-8080
http://orcid.org/0000-0002-8509-8080
http://orcid.org/0000-0002-8509-8080
http://orcid.org/0000-0002-8509-8080
http://orcid.org/0000-0002-3419-2480
http://orcid.org/0000-0002-3419-2480
http://orcid.org/0000-0002-3419-2480
http://orcid.org/0000-0002-3419-2480
http://orcid.org/0000-0002-3419-2480
http://orcid.org/0000-0003-3106-4229
http://orcid.org/0000-0003-3106-4229
http://orcid.org/0000-0003-3106-4229
http://orcid.org/0000-0003-3106-4229
http://orcid.org/0000-0003-3106-4229
http://orcid.org/0000-0002-1687-1201
http://orcid.org/0000-0002-1687-1201
http://orcid.org/0000-0002-1687-1201
http://orcid.org/0000-0002-1687-1201
http://orcid.org/0000-0002-1687-1201
http://orcid.org/0000-0001-6103-2071
http://orcid.org/0000-0001-6103-2071
http://orcid.org/0000-0001-6103-2071
http://orcid.org/0000-0001-6103-2071
http://orcid.org/0000-0001-6103-2071
http://orcid.org/0000-0002-9777-3354
http://orcid.org/0000-0002-9777-3354
http://orcid.org/0000-0002-9777-3354
http://orcid.org/0000-0002-9777-3354
http://orcid.org/0000-0002-9777-3354
http://orcid.org/0000-0003-1062-3167
http://orcid.org/0000-0003-1062-3167
http://orcid.org/0000-0003-1062-3167
http://orcid.org/0000-0003-1062-3167
http://orcid.org/0000-0003-1062-3167
http://orcid.org/0000-0002-6797-4964
http://orcid.org/0000-0002-6797-4964
http://orcid.org/0000-0002-6797-4964
http://orcid.org/0000-0002-6797-4964
http://orcid.org/0000-0002-6797-4964
http://orcid.org/0000-0002-1737-4119
http://orcid.org/0000-0002-1737-4119
http://orcid.org/0000-0002-1737-4119
http://orcid.org/0000-0002-1737-4119
http://orcid.org/0000-0002-1737-4119
http://orcid.org/0000-0003-4506-7260
http://orcid.org/0000-0003-4506-7260
http://orcid.org/0000-0003-4506-7260
http://orcid.org/0000-0003-4506-7260
http://orcid.org/0000-0003-4506-7260
http://orcid.org/0000-0001-6839-8340
http://orcid.org/0000-0001-6839-8340
http://orcid.org/0000-0001-6839-8340
http://orcid.org/0000-0001-6839-8340
http://orcid.org/0000-0001-6839-8340
http://orcid.org/0000-0001-5555-5757
http://orcid.org/0000-0001-5555-5757
http://orcid.org/0000-0001-5555-5757
http://orcid.org/0000-0001-5555-5757
http://orcid.org/0000-0001-5555-5757
http://orcid.org/0000-0002-1676-5572
http://orcid.org/0000-0002-1676-5572
http://orcid.org/0000-0002-1676-5572
http://orcid.org/0000-0002-1676-5572
http://orcid.org/0000-0002-1676-5572
http://orcid.org/0000-0003-0816-1303
http://orcid.org/0000-0003-0816-1303
http://orcid.org/0000-0003-0816-1303
http://orcid.org/0000-0003-0816-1303
http://orcid.org/0000-0003-0816-1303
http://orcid.org/0000-0002-0945-4944
http://orcid.org/0000-0002-0945-4944
http://orcid.org/0000-0002-0945-4944
http://orcid.org/0000-0002-0945-4944
http://orcid.org/0000-0002-0945-4944
http://orcid.org/0000-0001-6825-3870
http://orcid.org/0000-0001-6825-3870
http://orcid.org/0000-0001-6825-3870
http://orcid.org/0000-0001-6825-3870
http://orcid.org/0000-0001-6825-3870
www.nature.com/naturecommunications
www.nature.com/naturecommunications


A
bsolutely dated tree-ring width (TRW) measurements
from long-lived trees and relict wood (e.g., archaeological,
remnant, historical and subfossil) are frequently used for

the reconstruction of past climate variability1–4. The study of
TRW variation in samples from cold high-elevation/-latitude sites
can reveal changes in growing season temperature1, while TRW
chronologies from lower elevation, temperate and semiarid sites,
where plant growth predominantly depends on soil moisture
availability, more often represent hydroclimatic changes4. Yet,
despite the broad geographic coverage and precise dating of extra-
tropical tree-ring chronologies5,6, there are only nine temperature-
sensitive TRW chronologies in the Northern Hemisphere (NH) that
span the past two millennia3; and far fewer in the Southern
Hemisphere2. In addition to the paucity of multi-millennial TRW
datasets from upper or northern treeline ecotones, subjectivity in
site and series selection, correction for biological age trends in raw
TRW measurements (hereafter referred to as detrending), and the
climate calibration procedure, can have substantial consequences
for the reconstruction of regional-scale to large-scale climate
variability. The degree of biological memory in TRW chronologies
may also affect the reconstruction’s accuracy on interannual time
scales7,8. This year-to-year bias is less pronounced in maximum
latewood density (MXD) chronologies9, but only one MXD-based
summer temperature reconstruction—from northern Scandinavia
—has so far been developed for the entire Common Era10. More-
over, the tree-ring literature would benefit greatly from more
explicit, systematic and quantitative consideration of methodologi-
cal and conceptual biases due to proxy properties and experimental
techniques. This exercise is also considered only rarely in multi-
proxy temperature reconstructions11–15, whereas climate modellers
have a long tradition of addressing uncertainties and stochastic
processes in their simulations through ensemble approaches14.

Here, we present a community-driven ensemble experiment to
assess the influence of decision-making on the interannual varia-
bility and multi-centennial trajectory of climate reconstructions.
Based on a double-blind approach that ensures conceptual
and methodological independence between the participating

laboratories, we show how different techniques of extracting
climatic information from TRW data influence the final
reconstructions.

Results
Decision making in temperature reconstructions. Challenged
with the same task to develop the most reliable NH summer
temperature reconstruction for the Common Era from nine high-
elevation/high-latitude TRW datasets3 (Fig. 1), each of the 15
groups who contributed independently to this experiment
(referred to here as R1–R15) have experience in developing tree
ring-based climate reconstructions. However, each group
employed a distinct reconstruction approach (Fig. 2; Supple-
mentary Table 1), manifested in different series and site selec-
tions, detrending methods, temperature targets, and calibration
techniques (see the “Methods” section).

There are many reasonable choices that investigators can make
in developing climate reconstructions. Nine groups used all of the
raw TRW measurements, whereas three groups removed
particularly short series; one group identified and removed
several duplicates, and another group reduced each dataset to 200
TRW series spanning the past 2000 years with equal annual
sample replication. This last group also applied individual series
detrending rather than any form of age-related composite
detrending16–18 (see the “Methods” section for detail).

After chronology development and signal detection at the site
level, nine groups decided to combine the TRW chronologies
from all nine sites in their final large-scale reconstructions, while
five groups selected data from just seven sites, and one group
from only five sites. The TRW data from NSC, ALP, YAM and
ALT were used in all 15 reconstructions. QUL was used in 14
reconstructions, GTB in 13, TAI in 12, and data from SCO and
NYA in only 11 reconstructions. Eleven groups identified mean
June–August (JJA) temperatures as the optimal meteorological
target season, whereas three groups selected 4-month averages as
seasonal windows (i.e., May–September and June–October). One
group chose the June–July temperature mean as optimal for
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Fig. 1 Dendro network . a Spatial distribution of the 15 tree-ring width (TRW) sites with three of them in North America (GTB, SCO and QUL), two in
Europe (NSC and ALP), three in northern Siberia (YAM, TAI and NYA), and one in inner Eurasia (ALT). Dot size represents TRW sample replication,
ranging from 224 series in SCO to 2725 series in QUL. b Longitude and latitude, species, the total number of series, and last ring of the nine regional TRW
datasets. c Consideration of the nine TRW datasets in the 15 ensemble reconstructions, ranging from 11 times (SCO and NYA) to 15 times (NSC, ALP,
YAM, ALT).
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calibration. No two temperature target datasets are the same.
Each group identified different regions within the NH, and
extracted different seasons between May and October within the
years 1750 and 2016 from different gridded temperature
products. All of these target data selection choices, however,
reveal a statistically similar picture of large-scale summer
temperature variability over the entire 20th and early 21st
centuries (Fig. 3a). Different techniques of either scaling the TRW
chronologies to the mean and variance of instrumental measure-
ments or regressing the TRW chronologies against the instru-
mental measurements were applied (see Fig. 2 and Supplementary
Table 1 for further details of the individual reconstruction
methods).

Differences between temperature reconstructions. Despite
substantial amplitude differences between the individual

ensemble reconstructions during two cold spells in the 1810s and
1830s (Fig. 3b), and during the recent warming since the 1980s,
their mean and median track the instrumental measurements well
between the end of the 19th century and circa 1990 CE (Fig. 3c).
Proxy-target correlations are 0.76 and 0.79 for the reconstruction
mean and median, respectively. Although the first-order auto-
correlation (AC1) of the mean record of the 15 individual tem-
perature targets is lower than that of the reconstruction mean
(0.76 versus 0.88 from 1794–2016 CE), all split-period calibra-
tion/verification statistics of the reconstruction mean are strongly
positive and temporally robust (Supplementary Table 2). Pear-
son’s correlation coefficients for the early and late calibration/
verification periods (1794–1905 and 1906–2015 CE) range from
0.67 to 0.75, while reduction of error (RE) and coefficient of
efficiency (CE) statistics of the same split periods range from
0.44–0.74 and from 0.23–0.45, respectively. When using first-
differences of the time-series, correlation coefficients decline to
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Fig. 2 Ensemble approach. Flow chart of the 15 large-scale Northern Hemisphere (NH) summer temperature reconstructions for the Common Era. SF RCS
signal-free regional curve standardisation, ARGC adaptive regional growth curve, ABD age band decomposition for detrending, PCR principal component
regressions, CPS composite plus scaling, AFR analogue frequency regression, and GPR gaussian process regression (see the “Methods” section and
Supplementary Table 1 for details and further abbreviations).
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0.46–0.54 and RE/CE values drop to 0.20–0.29. In summary, the
reconstruction mean reveals significantly positive calibration/
verification statistics with a reasonably robust predictive skill for
different frequency domains from interannual to centennial.

Relatively warmer measured temperatures prior to circa 1850
CE are possibly biased by the low quality and quantity of early
instrumental observations19, whereas relatively cooler recon-
structed temperatures after circa 1990 CE are symptomatic for the
‘Divergence Problem’ in dendroclimatology20: the apparent
decoupling between TRW chronologies and rising temperature
measurements since around the 1970s21. Recent investigations
suggest that methodology-induced challenges of proxy-target
calibration, proxy network size, end-effects in time-series
composition22, as well as industrial pollution23, or a combination
thereof20, can explain the ‘Divergence Problem’. Three

reconstructions track the measured warming after 1990 very well
(R8–R10), and another three ensemble members reveal just
slightly lower temperatures compared to those measured between
1990 and 2000 (R7, R11, R14). Evidence for the ‘Divergence
Problem’ is clearest in R1, R5 and R13, which are ~0.4 °C colder
than the measured summer temperatures from 1990 to 2000 CE.
It should be noted that the end dates of the 15 ensemble
reconstructions vary between 2000 and 2016 CE depending on
choices made by the 15 groups, which, in addition to the different
site compilations, can influence the apparent magnitude of the
observed recent proxy-target offset.

Further evidence of the coherence between reconstructed and
measured summer temperatures is the degree to which their
spatial correlation fields correspond with an equivalent instru-
mental target-to-target correlation (Fig. 3d). The overall higher
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Fig. 3 Measured and reconstructed temperatures. a Gridded temperature measurements (grey lines), together with their mean and median time-series
(see the “Methods” section for details). The pie chart shows the seasonal averages used, and the lower grey solid line refers to the number of records. b
Ensemble reconstructions (grey lines), together with their mean and median (orange and red). The mean and median of both, the proxy and target data are
statistically similar (r= 0.99). c Measured and reconstructed temperature means and medians. d Spatial field correlations between the mean of all 15
temperature targets and gridded Berkeley data (Target versus Target), and the ensemble reconstruction mean and gridded Berkeley data (Proxy versus
Target), calculated over 1794–2016 CE.
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spatial field correlations of the May–October (MJJASO) tem-
perature mean compared with the shorter JJA window may result
from spatially more heterogeneous summer climate, as well as
slightly stronger trends in the longer season. Moreover, the spatial
correlation fields are likely dominated by those regions that have
similar warming trends and therefore contribute most to the
large-scale mean. Since the mid-latitude TRW chronologies
are generally located in areas of less intensive recent warming,
the use of the entire instrumental network for calibration may be
an important factor for the observed recent divergence between
warmer measured and colder reconstructed large-scale tempera-
tures (Fig. 3c).

Despite the ‘Divergence Problem’ in the most recent decades,
the current warming trend captured by the reconstruction mean
and median since the mid-20th century is unusual in the context of
the past two millennia (Fig. 4a). The long-term averages of the
ensemble mean and median are −0.33 and −0.34 °C below the
1961–90 CE reference climatology. Three ensemble reconstruc-
tions exhibit noticeably lower long-term averages (R4, R7 and R14)
(Fig. 4b). The warmest and coldest summer temperature anomalies
of the ensemble reconstructions, between 1 and 2016 CE, are in
2012 (mean/median= 0.84/0.75 °C and min/max= 0.22/1.67 °C)
and 536 CE (mean/median=−1.54/−1.34 °C and min/max=
−3.36/−0.38 °C), respectively (Supplementary Table 3). In nine
ensemble reconstructions, six years between 1994 and 2016 CE
contain the warmest summers of the Common Era, whereas eight
and three reconstructions find 536 and 545 CE as the coldest
summers, respectively. Pre-industrial summer warmth is most
evident in the late-3rd and early-4th centuries, whereas interannual
to decadal cooling mostly follows volcanic eruptions3. The overall
coldest summer in the R4 reconstruction is 627 CE (−3.61 °C),

which was likely caused by a large volcanic eruption of yet
unknown source in 626 CE24.

In addition to the methodologically induced variance ampli-
fication or suppression on different frequency domains, temporal
changes in the offset between individual reconstructions are
biased by the scaling period used (Supplementary Fig. 1). If scaled
over 1961–90 CE, the largest variance offset between the
ensemble reconstructions coincides with the onset of the Late
Antique Little Ice Age (LALIA) in the mid-6th century25, whereas
the strongest agreement is found during the recent warming from
the mid-19th century to 2000 CE. This picture, however, changes
when using the coldest 30-year interval from 536–565 CE for
scaling (i.e., offset during the LALIA decreases but increases
during the 20th century). This scaling experiment not only
underscores the influence of different calibration periods but also
shows how vulnerable our reconstructions are to the choice and
quality of their meteorological target data.

Discussion
Despite some indication of late Roman warming (in the latter half
of the 3rd century) and Medieval warmth (roughly between the
10th and 12th century)3, all reconstructions lack obvious signs of
long-term orbital forcing10. The absence of a pre-industrial
cooling trend in our data could be related to a combination of
proxy-specific behaviour and methodologically induced
constraints26. The three coldest periods of the Common Era
follow clusters of large volcanic eruptions in the middle of the 6th
and 15th centuries, as well as in the early-19th century (Supple-
mentary Fig. 2). Despite considerable mean level offsets, all
reconstructions show a clear response to the 24 strongest volcanic
eruptions of the past two millennia27 (Supplementary Fig. 3a).
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Fig. 4 Temperature reconstructions. a Ensemble of 15 reconstructions (grey lines), together with their mean and median (orange and red). Numbers on
the right refer to the long-term mean of the maximum, and minimum, as well as mean and median values between 1 and 2016 CE. The mean and median
correlate significantly at 0.98 (p < 0.0001) and exhibit similar first-order autocorrelation coefficients of 0.71 and 0.70, respectively. b The 15 ensemble
reconstructions and their mean and median after applying 50-year cubic smoothing spline functions.
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Post-volcanic cooling relative to the previous 10 years is most
pronounced in the first two years (Supplementary Fig. 3b).

Comparison of our ensemble reconstructions against the only
reconstruction of extra-tropical NH summer temperature varia-
bility over the past 1400 years that exclusively uses MXD
measurements28, reveals a high level of coherency (Supplemen-
tary Fig. 4a). The independent reconstructions correlate at 0.44
over their common period (600–2002 CE), and high- to low-
frequency variability is most similar during the recent five cen-
turies (r= 0.63, 0.60 and 0.55 when calculated back to 1600, 1500
and 1400, respectively). Furthermore, the TRW-based and MXD-
based reconstructions show similar mid-frequency variance
changes over time (Supplementary Fig. 4b). Steadily increasing
differences between the reconstructions back in time are likely
caused by a substantial variance reduction in the MXD record
(Supplementary Fig. 4c, d), which almost certainly results from
the decrease in the number of MXD site chronologies from 15 to
only three prior to 1363 CE. This issue has been investigated at
different spatiotemporal scales29. Moreover, AC1 of the MXD
data is 0.42, compared with 0.73 in the TRW data (600–2002 CE),
underlining the extent that biological memory influences our
ensemble reconstructions. If not adequately removed, the TRW-
specific mid-frequency amplification due to biological
memory7–9, can affect the interannual behaviour of climate
reconstructions. One demonstrable example of this possible bias
is the faster recovery of the MXD-based summer temperatures
following the negative forcing of volcanic eruptions (Supple-
mentary Fig. 5). In line with the TRW data, the MXD data show
their strongest cooling response to volcanic forcing in the first
year after eruptions, but reveal substantially higher temperatures
in the second year.

Our double-blind experiment created 15 different ensemble
reconstructions (R1–R15) with different spectral and statistical
properties (Figs. 2 and 5). R4 exhibits the lowest mean, the
highest standard deviation, the largest industrial warming, and
the strongest post-volcanic cooling. R8 contains by far the lowest
AC1, and the smallest difference between temperature means
before and after 1850 CE. By including instrumental temperature
measurements in the reconstruction, R10 obviously reveals the
strongest agreement with the mean of the 15 slightly different
gridded instrumental target time-series (r= 0.81 from 1794 to
2000 CE). This approach also produces the lowest 5-year post-
volcanic cooling (−0.48° with respect to the 10-year pre-eruption
period). R14 displays the highest degree of long-term persistence,
which was calculated in addition to the reconstructions’ simple
autocorrelation structures and power spectra (Supplementary
Figs. 6–9). Local monthly temperature measurements typically
exhibit Hurst exponents (H) of 0.55–0.75 during the 20th
century30 (H > 0.5 shows the presence of long-term memory in a
system), whereas the NH summer mean contains more persis-
tence (H= 0.76). With the exception of R5 and R8, most
ensemble reconstructions exhibit more long-term persistence
than the observational data (see Supplementary Fig. 9 for details
of the reconstructions’ individual power laws).

Our community-driven ensemble experiment demonstrates
how an investigator’s decision-making process influences the
behaviour and characteristics of climate reconstructions. Although
an objective ranking of reconstructions is not possible since the
true temperature history of the Common Era is unknown, we can
make the following observations: Those reconstructions that
correlate strongly with an independent instrumental target and
contain relatively low AC1, such as the reconstruction mean and
median, likely reflect better methodological choices in terms of
signal preservation (Supplementary Fig. 10). Since R10 integrates
instrumental temperature measurements during the calibration
period, this reconstruction is not entirely independent of the

target data. Note, too, that R9 and R10 likely both underestimate
low-frequency variability due to the individual series detrending
applied16, emphasising that the selection of detrending methods
should not be based on calibration period statistics alone. In using
five sites only, R7 evidently captures temperature variability across
the smallest area of the NH extra-tropics. Those reconstructions
that selected 2-month or 5-month seasonal windows are possibly
under-representing or over-representing the JJA period that seems
optimal for TRW formation at most of the nine sites. Last but not
least, we believe that AC1 values well above 0.7 are indicative of
too much retained biological memory, e.g., R2, R6 and R7, R11
and R12, and R14 and R15 (Supplementary Fig. 10).

Our ensemble approach not only confirms existing evidence of
summer temperature variability during the past millennium28,31,32

but also provides insights into the range of reconstruction varia-
bility before medieval times. Comparison with the PAGES19
multi-proxy product15, which reflects global annual mean tem-
peratures between 1 and 2000 CE (Supplementary Fig. 11), reveals
reduced large-scale cooling between the mid-13th century and
around 1900 CE in the TRW-only reconstructions. Although this
finding is consistent with previous observations of differing pre-
industrial cooling trends between tree rings and lower-resolution
temperature proxies26, it is not clear whether this offset arises
from methodological choices, the composition of the proxy net-
work, or both. Despite a different temperature amplitude on
decadal to centennial time scales in the TRW reconstructions
compared with the re-scaled PAGES19 product (Supplementary
Fig. 11c), the strong positive correlation coefficients indicate
agreement in the trajectory of Common Era temperature changes.
PAGES19 correlates with our reconstruction mean and median at
0.60 and 0.62 from 1 to 2000 CE, respectively. The relationship
remains stable when using the first half of the Common Era (r=
0.62 and 0.58), but increases to 0.73 and 0.74 from 1001–2000 CE.
Higher correlation coefficients are obtained after 50-year low-pass
filtering the time-series (Supplementary Fig. 11c). The PAGES19
reconstruction is characterised by an overall higher AC1 of 0.88
compared to 0.70 in the TRW-based reconstructions (1–2000 CE),
which is likely due to the predominance of lower-resolution
proxies in the first millennium of the Common Era and the global
coverage of the PAGES19 reconstruction.

In conclusion, we advocate for the routine use of ensemble
techniques to develop more consensual climate reconstructions
and better quantify their uncertainties. Though it likely under-
estimates variance, we consider the reconstruction mean the most
robust NH temperature estimate and suggest using the upper and
lower ranges of the 15 individual reconstructions as uncertainty
ranges caused by the methodological choices of the investigators.
Whenever possible, collaborative endeavours should focus on the
development of multi-millennia-long tree-ring chronologies
(especially from MXD) in those regions of both hemispheres that
are presently under-sampled. Last but not least, we call for the
improvement of wood anatomical and isotopic records, and the
combined assessment of different tree-ring parameters in
advanced multivariate fusion approaches.

Methods
Tree-ring proxy and instrumental target data. We compiled and analysed
updated versions of all the existing summer temperature-sensitive TRW chron-
ologies from the NH that span the entire Common Era3. These include regional site
chronologies of living trees and relict materials from the Great Basin (GTB) in the
western United States33, the southern Colorado Plateau (SCO) in the western
United States34, Quebec and Labrador (QUL) in Canada35, Northern Scandinavia
(NSC) in Sweden and Finland36,37, the Austrian Alps (ALP) in Austria25,38, the
Yamal Peninsula (YAM) in northern Russia39, the Taimyr Peninsula (TAI) in
northern Russia40, the Altai Mountains (ALT) in southern Russia25, and Northern
Yakutia (NYA) in northeastern Russia41. The mid-latitude TRW collections from
the western United States (GTB and SCO), Austrian Alps (ALP), and Russian Altai
(ALT) are from upper treeline pine and larch ecosystems. The collections from
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Quebec and Labrador (QUL; spruce), northern Scandinavia (NSC; pine), and
northern Siberia (YAM, TAI and NYA; larch) are from the northern boreal
forest. The number of TRW samples from each collection, either in the form of
increment cores or stem discs, ranges from 224 (SCO) to 2725 (QUL). Each
regional TRW dataset has been updated into the 21st century (Fig. 1). The
majority of TRW measurements was derived from remnant snags and subfossil
wood remains (i.e., there is a much larger proportion of samples from relict
materials versus living trees). The annual cross-dating precision of all TRW
measurements within each collection has been independently confirmed by the
detection of cosmogenic radiocarbon events in 774 and 993 CE, i.e., abrupt
changes in the Earth’s atmospheric radiocarbon (14C) abundance6. For each of
the nine regional TRW datasets, neither the number of TRW series nor the mean
segment length and the mean series age is stable over time3. The 15 independent
participating groups all based their reconstruction on a combination of these
nine regional TRW datasets, but each used a slightly different gridded instru-
mental temperature dataset as a reconstruction target. These targets include four
seasonal windows of 2, 3 and 5 months between May and October (Fig. 2). The
start and end dates of the 15 target datasets vary between 1750 and 1901 CE and
2000 and 2016 CE, respectively. Restricted to the NH, nine latitudinal bands
between the equator and the pole, as well as four regional means were selected as
spatial target domains. The 15 groups extracted data from various versions of the
gridded Berkeley42, CRU43–47 and HadCRU48 products (see Fig. 2 and Supple-
mentary Table 1 for an overview).

Ensemble reconstructions. In the first step of data screening, nine groups did not
remove any of the raw TRW measurement series (R1–R3, R6 and R7, R9 and
R12–R14). R4 removed all TRW series that correlate at r < 0.2 with the site master
chronology, R5 removed all TRW series <40 years, R8 removed all TRW series
<100 years, R10 used only 200 TRW series per site based on an optimal number of
data points and evenness of coverage, R11 removed <10 duplicate TRW series
amongst all datasets, and R15 removed all TRW series <50 years. Secondly, seven
groups used recent versions of the Signal-Free Regional Curve Standardisation (SF
RCS)49 for TRW detrending (R2–R6, R11 and R14). R7 and R13 used traditional
RCS detrending18, R1 developed an ensemble of 16 different RCS chronologies per
site3, R8 applied the adaptive regional growth curve method for detrending
(ARGC)50, R9 used negative exponential curves for individual TRW series
detrending16, R10 used cubic smoothing splines with 50% frequency cut-off at 2/3
of the individual TRW series length, R12 used age band decomposition for
detrending (ABD)17, and R15 detrended all TRW series with non-significant
negative slopes by subtracting their mean and applied SF RCS on the remaining
data. Based on site-specific temperature signals, nine groups included all nine TRW
chronologies in their final large-scale reconstruction (R2 and R3, R5 and R8–R13).
R1 and R6 excluded data from the western United States and used seven chron-
ologies (QUL, NSC, ALP, YAM, TAI, ALT, NAY), R4 and R15 excluded two sites
from central and eastern Siberia used another combination of seven chronologies
(GTB, SCO, QUL, NSC, ALP, YAM, ALT), and R7 only considered information
from five TRW chronologies in their final reconstruction (GTB, NSC, ALP, YAM,
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ALT). Eleven groups selected June–August mean temperatures as the optimal season
for reconstruction (R1 and R2, R4, R6, R8–R14), whereas two groups selected the
window from May to September (R3, R7), and R5 and R15 used the mean June–July
and June–October temperature as a target, respectively. None of the groups used the
same large-scale temperature target data, which varied been gridded products, spatial
domains and time periods. For calibration, three groups used simple scaling (R1 and
R2, R11) or regression (R4, R6, R12) technique51, another three groups used a nested
principal component regressions (PCR)52,53 approach (R3, R7, R9), R13 and R15 used
nested composite plus scaling (CPS)32,54, R5 used PCR, R8 used analogue frequency
regression (AFR)55, R10 used scaling and splicing with the target, and R14 used a
gaussian process regression (GPR)56 for reconstruction (see the online Supplementary
Information for more details on the network compilation, the reconstruction procedure,
the calibration/verification trials, and the associated error bars). Please note that an
archive of underlying code is not available for this ensemble experiment, because the 15
different groups used a wide range of techniques and applied different software pro-
grammes for the various methodological steps involved.

Persistence measure. To avoid the effects of linear deterministic trends in the time-
series when estimating their degree of long-term persistence57, we applied both
detrended fluctuation analysis (DFA2)58 and wavelet analysis (WT2)30,59,60. For long-
term persistent records the DFA2 fluctuation function F(s) and the WT2 fluctuation
function G(s) show the same power-law behaviour, but on different time scales: WT2
on short time scales and DFA2 on longer time scales. The deviation of the Hurst
exponent (H) from 0.5 (white noise) quantifies the strength of the long-term persistence
of the record. In both DFA2 and WT2 one measures the variability of a record by
studying the fluctuations in segments of the record as a function of the segment length
s. In the first step, the record {yi}, i= 1, 2 ,…,N, is divided into ν nonoverlapping
windows of length s. In DFA2 in each segment, one considers the cumulated sum Yi of
the data and calculates its variance Fν2(s) around the best polynomial fit of order 2.
Then one averages the variances Fν2(s) of all segments and takes the square root to
arrive at the desired fluctuation function F(s). For long-term persistent records, it can be
shown, that F(s)∼ sh for about 8 < s <N/4, with the Hurst exponent H= (2−γ)/2
(gamma is the power-law exponent that describes the decay of the autocorrelation
function for long-term persistent data). At very short timescales the power-law scaling
behaviour of F(s) does not hold, because of the crossover inherent to the method. WT2
offers itself as a complement to DFA2 on short time scales. In WT2 one calculates, in
each segment ν the mean value �yν of the data and considers the linear combination

Δ
ð2Þ
v ¼ �yvðsÞ � 2�yvþ1ðsÞ þ �yvþ2 . Then one average ðΔð2Þ

v Þ
2
over all segments ν, takes

the square root and multiplies by s to arrive at the desired fluctuation function G(s). For
long-term persistent records G(s)∼ sh from s= 1 to about s=N/40. Accordingly, for
long-term persistent records F(s) and G(s) show the same power-law behaviour,
although on complementing time scales: WT2 on short time scales and DFA2 on longer
time scales. Hurst exponents well above 1/2 signify a strong long-term persistence in the
record. For behaviour that is in reality a simple autoregressive process of first order
(AR1), lag-1 autocorrelation (AC1) can describe the persistence properties of a record if
no external trends are present. However, the analyses of instrumental data show, as
mentioned above, that temperatures are long-term persistent. This means that a tem-
perature data point yi depends directly not only on its predecessor yi−1, as it would be
the case for AR1, but on all preceding data points yi−1…y1. The further back in time a
preceding data point is, the lower its influence on yi, but in the mathematical model it
never vanishes. If a record is long-term persistent, it often implies, depending on the
specific parameters, that long-lasting deviations from the long-term mean are more
probable than they would be if one only assumes an AR1 persistence in the record.
Furthermore, an AC1 or full autocorrelation analysis can also be incorrect if external
trends are present in the data. In contrast, DFA2 and WT2 are not influenced by
external linear trends, since linear trends are eliminated by construction.

Data availability
All tree-ring width data used in this study are freely available at the NOAA National
Centers for Environmental Information (NCEI): https://www.ncdc.noaa.gov/paleo-
search/study/33215

Received: 23 November 2020; Accepted: 3 May 2021;

References
1. Esper, J. et al. Ranking of tree-ring based temperature reconstructions of the

past millennium. Quat. Sci. Rev. 145, 134–151 (2016).
2. PAGES2k Consortium. A global multiproxy database for temperature

reconstructions of the Common Era. Sci. Data 4, 170088 (2017).
3. Büntgen, U. et al. Prominent role of volcanism in Common Era climate

variability and human history. Dendrochronologia 64, 125757 (2020).
4. Ljungqvist, F. C. et al. Ranking of tree-ring based hydroclimate

reconstructions of the past millennium. Quat. Sci. Rev. 230, 106074 (2020).

5. St. George, S. An overview of tree-ring width records across the Northern
Hemisphere. Quat. Sci. Rev. 95, 132–150 (2014).

6. Büntgen, U. et al. Tree rings reveal globally coherent signature of cosmogenic
radiocarbon events in 774 and 993 CE. Nat. Commun. 9, 3605 (2018).

7. Lücke, L. J., Hegerl, G. C., Schurer, A. P. & Wilson, R. Effects of memory
biases on variability of temperature reconstructions. J. Clim. 32, 8713–8731
(2019).

8. Ludescher, J., Bunde, A., Büntgen, U. & Schellnhuber, H. J. Setting the tree-
ring record straight. Clim. Dyn. 3, 3017–3024 (2020).

9. Esper, J., Schneider, L., Smerdon, J., Schöne, B. & Büntgen, U. Signals and
memory in tree-ring width and density data. Dendrochronologia 35, 62–70
(2015).

10. Esper, J. et al. Orbital forcing of tree-ring data. Nat. Clim. Change 2, 862–866
(2012).

11. Frank, D. C. et al. Ensemble reconstruction constraints of the global carbon
cycle sensitivity to climate. Nature 463, 527–530 (2010).

12. Luterbacher, J. et al. European summer temperatures since Roman times.
Environ. Res. Lett. 11, 02400 (2016).

13. Werner, J. P., Divine, D. V., Ljungqvist, F. C., Nilsen, T. & Francus, P. Spatio-
temporal variability of Arctic summer temperatures over the past 2 millennia.
Clim 14, 527–557 (2018).

14. Otto-Bliesner, B. L. et al. Climate variability and change since 850 CE: an
ensemble approach with the Community Earth System Model (CESM). Bull.
Am. Meteorol. Soc. 97, 735–754 (2016).

15. PAGES2k Consortium. Consistent multidecadal variability in global
temperature reconstructions and simulations over the Common Era. Nat.
Geosci. 12, 643–649 (2019).

16. Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. S. & Funkhouser, G. The
‘segment length curse’ in long tree-ring chronology development for
paleoclimatic studies. Holocene 5, 229–237 (1995).

17. Briffa, K. R. et al. Low-frequency temperature variations from a northern tree
ring density network. J. Geophys. Res. 106, 2929–2941 (2001).

18. Esper, J., Cook, E. R., Krusic, P. J., Peters, K. & Schweingruber, F. H. Tests of
the RCS method for preserving low-frequency variability in long tree-ring
chronologies. Tree-Ring Res. 59, 81–98 (2003).

19. Frank, D. C., Büntgen, U., Böhm, R., Maugeri, M. & Esper, J. Warmer early
instrumental measurements versus colder reconstructed temperatures:
shooting at a moving target. Quat. Sci. Rev. 26, 3298–3310 (2007).

20. D’Arrigo, R., Wilson, R., Liepert, B. & Cherubini, P. On the ‘Divergence
Problem’ in northern forests: a review of the tree-ring evidence and possible
causes. Glob. Planet. Change 60, 289–305 (2008).

21. Briffa, K. R. et al. Reduced sensitivity of recent tree-growth to temperature at
high northern latitudes. Nature 391, 678–682 (1998).

22. Esper, J. & Frank, D. Divergence pitfalls in tree-ring research. Clim. Change
94, 261–266 (2009).

23. Kirdyanov, A. V. et al. Ecological and conceptual consequences of Arctic
pollution. Ecol. Lett. 23, 1827–1837 (2020).

24. Di Cosmo, N., Oppenheimer, C. & Büntgen, U. Interplay of environmental
and socio-political factors in the downfall of the Eastern Türk Empire in 630
CE. Clim. Change 145, 383–395 (2017).

25. Büntgen, U. et al. Cooling and societal change during the Late Antique Little
Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–236 (2016).

26. Klippel, L., St. George, S., Büntgen, U., Krusic, P. J. & Esper, J. Differing pre-
industrial cooling trends between tree rings and lower-resolution temperature
proxies. Clim 16, 729–742 (2020).

27. Toohey, M. & Sigl, M. Volcanic stratospheric sulfur injections and aerosol
optical depth from 500 BCE to 1900 CE. Earth Syst. Sci. Data 9, 809–831
(2017).

28. Schneider, L. et al. Revising midlatitude summer temperatures back to A.D.
600 based on a wood density network. Geophys. Res. Lett. 42, 4556–4562
(2015).

29. Frank, D., Esper, J. & Cook, E. R. Adjustment for proxy number and
coherence in a large-scale temperature reconstruction. Geophys. Res. Lett. 34,
L16709 (2007).

30. Eichner, J., Koscielny-Bunde, E., Bunde, A., Havlin, S. & Schellnhuber, H. J.
Power-law persistence and trends in the atmosphere: a detailed study of long
temperature record. Phys. Rev. 68, 046133 (2003).

31. Stoffel, M. et al. Estimates of volcanic-induced cooling in the Northern
Hemisphere over the past 1,500 years. Nat. Geosci. 8, 784–788 (2015).

32. Wilson, R. J. S. et al. Last millennium Northern Hemisphere summer
temperatures from tree rings: Part I: the long-term context. Quat. Sci. Rev.
134, 1–18 (2016).

33. Salzer, M. W., Bunn, A. G., Graham, N. E. & Hughes, M. K. Five millennia of
paleotemperature from tree-rings in the Great Basin, USA. Clim. Dyn. 42,
1517–1526 (2014).

34. Salzer, M. W. & Kipfmueller, K. F. Reconstructed temperature and
precipitation on a millennial timescale from tree-rings in the Southern
Colorado Plateau, USA. Clim. Change 70, 465–487 (2005).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23627-6

8 NATURE COMMUNICATIONS |         (2021) 12:3411 | https://doi.org/10.1038/s41467-021-23627-6 | www.nature.com/naturecommunications

https://www.ncdc.noaa.gov/paleo-search/study/33215
https://www.ncdc.noaa.gov/paleo-search/study/33215
www.nature.com/naturecommunications


35. Gennaretti, F., Arseneault, D., Nicault, A., Perreault, L. & Bégin, Y. Volcano-
induced regime shifts in millennial tree-ring chronologies from northeastern
North America. Proc. Natl Acad. Sci. USA 111, 10077–10082 (2014).

36. Esper, J., Düthorn, E., Krusic, P. J., Timonen, M. & Büntgen, U. Northern
European summer temperature variations over the Common Era from
integrated tree‐ring density records. J. Quat. Sci. 29, 487–494 (2014).

37. Melvin, T. M., Grudd, H. & Briffa, K. R. Potential bias in ‘updating’ tree-ring
chronologies using regional curve standardisation: Re-processing 1500 years
of Torneträsk density and ring-width data. Holocene 23, 364–373 (2012).

38. Büntgen, U. et al. 2500 years of European climate variability and human
susceptibility. Science 331, 578–582 (2011).

39. Hantemirov, R. M. & Shiyatov, S. G. A continuous multimillennial ring-width
chronology in Yamal, northwestern Siberia. Holocene 12, 717–726 (2002).

40. Naurzbaev, M. M., Vaganov, E. A., Sidorova, O. V. & Schweingruber, F. H.
Summer temperatures in eastern Taimyr inferred from a 2427-year late-
Holocene tree-ring chronology and earlier floating series. Holocene 12,
727–736 (2002).

41. Churakova (Sidorova), O. V. et al. Siberian tree-ring and stable isotope proxies
as indicators of temperature and moisture changes after major stratospheric
volcanic eruptions. Clim. Past 15, 685–700 (2019).

42. Rhode, R. et al. Berkeley Earth temperature averaging process. Geoinformat.
Geostat. Overv. 1, 1 (2013).

43. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty
estimates in regional and global observed temperature changes: a new dataset
from 1850. J. Geophys. Res. 111, D12106 (2006).

44. Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature
variations: an extensive revision and update to 2010. J. Geophys. Res. 117,
D05127 (2012).

45. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: the HadCRUT4 data set. J. Geophys. Res. 117, D08101
(2012).

46. Osborn, T. J. & Jones, P. D. The CRUTEM4 land-surface air temperature data
set: construction, previous versions and dissemination via Google Earth. Earth
Syst. Sci. Data 6, 61–68 (2014).

47. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS
monthly high-resolution gridded multivariate climate dataset. Nat. Sci. Data 7,
109 (2020).

48. Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series
and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140,
1935e1944 (2014).

49. Melvin, T. M. & Briffa, K. R. CRUST: software for the implementation of
regional chronology standardisation: part 1. Signal-free RCS.
Dendrochronologia 32, 7–20 (2014).

50. Nicault, A., Guiot, J., Edouard, J.-L. & Brewer, S. Preserving long-term
fluctuations in standardisation of tree-ring series by the adaptive regional
growth curve (ARGC) and its validation with southern alps pdsi
reconstruction. Dendrochronologia 28, 1–12 (2010).

51. Esper, J., Frank, D. C., Wilson, R. J. S. & Briffa, K. R. Effect of scaling and
regression on reconstructed temperature amplitude for the past millennium.
Geophys. Res. Lett. 32, L07711 (2005).

52. Cook, E. R., D’Arrigo, R. D. & Mann, M. E. A well-verified, multiproxy
reconstruction of the winter North Atlantic Oscillation index since A.D. 1400.
J. Clim. 15, 1754–1764 (2002).

53. Wilson, R. et al. Reconstructing ENSO: the influence of method, proxy data,
climate forcing and teleconnections. J. Quat. Sci. 25, 62–78 (2010).

54. Tierney, J. E. et al. Tropical sea surface temperatures for the past four centuries
reconstructed from coral archives. Paleoceanography 30, 226e252 (2015).

55. Guiot, J. & Corona, C., ESCARSEL members. Growing season temperatures in
Europe and climate forcings over the past 1400 years. PLoS ONE 5, e9972 (2010).

56. Barber, D. Bayesian Reasoning and Machine Learning (Cambridge University
Press, 2012).

57. Lennartz, S. & Bunde, A. Eliminating finite-size effects and detecting the

amount of white noise in short records with long-term memory. Phys. Rev. 79,
066101 (2009).

58. Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H. A., Havlin, S. & Bunde,
A. Detecting long-range correlations with detrended fluctuation analysis.
Physica A 295, 441–454 (2001).

59. Koscielny-Bunde, E. et al. Indication of a universal persistence law governing
atmospheric variability. Phys. Rev. Lett. 81, 729–732 (1998).

60. Pelletier, J. D. & Turcotte, D. L. Long-range persistence in climatological and
hydrological time series: analysis, modelling and application to drought
hazard assessment. J. Hydrol. 203, 198–208 (1997).

Acknowledgements
R. Neukom kindly provided the re-scaled PAGES 2k data. U.B. and J.E. received funding
from SustES: Adaptation strategies for sustainable ecosystem services and food security
under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797), and the
ERC project MONOSTAR (AdG 882727). C.C., S.G. and M.S. received funding from the
SNF Sinergia project CALDERA (project no. 183571). S.C. acknowledges support from
US National Science Foundation grants 1737918, 1939916 and 1939956.

Author contributions
U.B. designed the study with input from P.J.K. and J.E. The regional tree-ring width
datasets were developed by D.A., É.B., O.V.C.(S.), F.G., M.K.H., A.V.K., V.S.M., K.N.,
F.R. and M.W.S., whereas U.B., K.Al., K.An., A.B., S.C., C.C., J.G., S.G., J.G., B.G., S.H.,
P.Ho., P.Hu., P.J.K., J.L., W.J.-H.M., C.O., K.S., A.R.S., M.S., S.S.G., E.T., A.T., V.T., J.W.,
R.W., B.Y., G.X. and J.E. contributed to the ensemble reconstructions and their inter-
pretation. U.B. wrote the paper together with C.O., P.J.K., P.C. and J.E.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23627-6.

Correspondence and requests for materials should be addressed to U.Bün.

Peer review information Nature Communications thanks Julien Emile-Geay and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

1Department of Geography, University of Cambridge, Cambridge, UK. 2Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland. 3Global
Change Research Centre (CzechGlobe), Brno, Czech Republic. 4Department of Geography, Faculty of Science, Masaryk University, Brno, Czech
Republic. 5School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, Australia. 6ARC Centre of Excellence for Australian
Biodiversity and Heritage, University of NSW, Sydney, Australia. 7School of Geography, Development, and Environment and Laboratory of Tree-
Ring Research, University of Arizona, Tucson, AZ, USA. 8Department of Biology, Chemistry and Geography, University of Quebec in Rimouski,
Rimouski, QC, Canada. 9Department of Geography, Université du Québec à Montréal, Montréal, QC, Canada. 10GEOTOP, Université du Québec à
Montréal, Montréal, QC, Canada. 11Centre d’Études Nordiques, Université Laval, Québec, QC, Canada. 12Institute of Geography, Friedrich-

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23627-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3411 | https://doi.org/10.1038/s41467-021-23627-6 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-021-23627-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. 13School of Statistics, University of Minnesota, Minneapolis, MN, USA. 14Institute
of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russia. 15Université Clermont-Auvergne, Geolab UMR 6042 CNRS,
Clermont-Ferrand, France. 16Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland. 17GREMA and Forest Research
Institute, Université du Québec en Abitibi‐Témiscamingue, Amos, Canada. 18Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE,
Aix-en-Provence, France. 19Department of Physical Geography, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
20Natural Resources Institute Finland, Rovaniemi, Finland. 21Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USA.
22Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA. 23Sukachev Institute of Forest SB RAS, Krasnoyarsk,
Russia. 24Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany. 25Institute of Humanities, Siberian Federal University,
Krasnoyarsk, Russia. 26Department of Geography, University of Innsbruck, Innsbruck, Austria. 27McDonald Institute for Archaeological Research,
Cambridge, UK. 28Department of Geography, Johannes Gutenberg University, Mainz, Germany. 29Department of Earth Sciences, Goteborg
University, Goteborg, Sweden. 30Department of Earth & Climate Sciences, San Francisco State University, San Francisco, CA, USA. 31Department
of Earth Sciences, University of Geneva, Geneva, Switzerland. 32Department F.-A. Forel for Environmental and Aquatic Sciences, University of
Geneva, Geneva, Switzerland. 33Department of Geography, Environment and Society, University of Minnesota, Minneapolis, MN, USA.
34Department of Atmospheric and Environmental Sciences, University at Albany (SUNY), Albany, NY, USA. 35Key Laboratory of Desert and
Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China. 36CAS Centre for
Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China. 37Qinghai Research Centre of Qilian Mountain
National Park, Academy of Plateau Science and Sustainability and Qinghai Normal University, Xining, China. 38School of Earth and Environmental
Sciences, University of St Andrews, Scotland, UK. 39Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA. 40State Key
Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
✉email: ulf.buentgen@geog.cam.ac.uk

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23627-6

10 NATURE COMMUNICATIONS |         (2021) 12:3411 | https://doi.org/10.1038/s41467-021-23627-6 | www.nature.com/naturecommunications

mailto:ulf.buentgen@geog.cam.ac.uk
www.nature.com/naturecommunications

	The influence of decision-making in tree ring-based climate reconstructions
	Results
	Decision making in temperature reconstructions
	Differences between temperature reconstructions

	Discussion
	Methods
	Tree-ring proxy and instrumental target data
	Ensemble reconstructions
	Persistence measure

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


