ELECTRONIC SUPPLEMENTARY INFORMATION

The influence of dye structure on charge recombination in dye-sensitized solar cells

James R Jennings^a, Yeru Liu^a, Qing Wang^a, Shaik M Zakeeruddin^b and Michael Grätzel^b

^a Department of Materials Science and Engineering, NUSNNI-Nanocore, National University of Singapore, Singapore 117576

^b Laboratory of Photonics and Interfaces, Institute of Chemical Science and Engineering, Faculty of Basic Science, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Estimation of the HOMO energy levels of Z-907 and Z-960 by cyclic voltammetry. Figure S1 shows cyclic voltammograms for Z-960 or Z-907 adsorbed on FTO in a 0.1 M solution of tetrabutylammonium perchlorate (TBAP) in acetonitrile, measured at a scan rate of 2 V s⁻¹. The S⁺/S formal potentials of the sensitizers, associated with the HOMO levels, have been estimated as the average of the forward and reverse peak potentials, yielding 0.23 V and 0.35 V vs. ferrocene internal standard for Z-960 and Z-907 respectively.

Figure S1. Cyclic voltammograms for Z-960 (a) or Z-907 (b) adsorbed on FTO in a 0.1 M solution of TBAP in acetonitrile, measured at a scan rate of 2 V s⁻¹.

Parameters obtained from fitting EIS spectra for DSCs with 16 \mum thick TiO₂ layers. Figure S2 shows the parameters obtained by fitting EIS spectra for DSCs employing the Z-907 and Z-960 sensitizers in conjunction with 16 μ m thick TiO₂ layers. The errors in the fitted parameter values are expected to be large at low voltages for the Z-960 cell because the effective electron diffusion length is substantially shorter than the TiO₂ layer thickness. Nevertheless, the conclusion that charge recombination is many times faster in the Z-960 cell compared with the Z-907 cell can still be drawn.

Figure S2. Dependence of charge transport resistance (R_t , a), charge transfer resistance (R_{ct} , b), chemical capacitance ($C_{\mu\nu}$, c) and electron diffusion length (L_n , d) on open-circuit photovoltage for DSCs employing Z-960 (black points) or Z-907 (red points) as sensitizer.