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Summary. In this paper the implications of the classical heat conduction equation
for the problem of the propagation of plane waves caused by mechanical impulse and
sudden heating at the boundary of an elastic-plastic half-space are presented. It is shown
that the effect of dynamical thermal expansion is to reduce the jump in the stress at
waves of strong discontinuity. The stress and temperature fields dealt with here are
assumed to be thermodynamically uncoupled.

1. Introduction. The purpose of this paper is to give a theoretical basis for investi-
gating the effects of dynamical thermal expansion on the propagation of the plane wave
caused by simultaneous mechanical impulse and sudden heating at the boundary of an
elastic-plastic half-space (Fig. 1).

Investigations concerning the propagation of elastic-plastic waves have been devoted
either to the case of pure mechanical impulse [1]—[3] or to the case of pure thermal load.
In the latter cases the boundary temperature of the half-space [4]—[6] or rod [7]-[8] were
prescribed functions (step-function, linear function) of time. Fine and Kraus [9] have
analysed the stress field in an elastic-plastic half-space assuming constant heat flux.
It is difficult, however, to agree with the results obtained in their paper in which the
existence of a strong discontinuity plastic wave was postulated although the strain
at the boundary was continuous. Consequently a negative value was obtained for the
jump in plastic work at the front of this wave. This is clearly incorrect and shows that
the assumed wave of strong discontinuity is incorrect.

It is not the purpose of this paper to provide a final solution for any given temperature
field, but rather to consider generally the character of wave propagation for the class
of temperature fields and mechanical impulses shown in Fig. 2. We discuss here only
strong mechanical impulses: those which, though reduced by thermal stress at the
boundary of the half-space, considerably exceed the yield limit.

The final wave diagram in the t-x1 plane for the impact mechanical load is obtained
as a limiting case of the wave diagram for an applied pressure Pi(t) (dotted line in Fig. 2)
which is initially a linear function of time. We assume here that the material constants
are independent of the temperature. The temperature is taken into account only in the
relation between mean pressure and the relative volume change. The Prandtl-Reuss
relations with Mises yield condition are used [10, 11] to describe the material behaviour
in the plastic range. In the relatively simple case of one-dimensional strain considered
here the resulting equations can be integrated.

* Received July 24, 1969; revised version received April 23, 1970.
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2. The primary equations. Due to uniform temperature and pressure distribution
at the plane xl = 0 the motion is plane and irrotational (Fig. 1):

tik = 0 for i^l, k t6 1.

From this, and from the stress-strain relations, the following symmetry properties of
the stress state can be obtained:

o*22 = c33 and aik = 0 for i 9^ k.

The functions en , ffn , a22 , <t33 depend on x1 and t only.
The function F,

F = fu "f" 3Kad, (1)

and the following dimensionless quantities are now introduced:

JF = 2F/3KaT0 , ex = 2palelx/3KaTa , y = a0xl/k, r = alt/k,

T = 9/T0 , = e, = palY/3KaT0n, y = K/alp, (2)
Sx = 2a11/3KaT0 , S2 = 2u22/ZKaT 0 , U = '2palu/'SKkaT0 ,

dU/dy = ex , dU/dr = V = 2pa0(du/dt)/3KctT0 ,

pLU)> 6(0, t)

Fig. 2
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where a2 = K + 4ju/3, 6 is temperature, T„ is a constant which possesses the dimension
of temperature, Kn are bulk and shear modulus, k is thermal diffusivity, a is thermal
expansion, p is density, Y is yield stress in tension, u is displacement in the x1 direction
and a0 is velocity of propagation of the longitudinal elastic waves.

Assuming a zero initial state,

e, = V = T = 0 for r = 0, (3)

and integrating the Prandtl-Reuss equations (taking <ru/3K = eu — 3ad as the relation
between the mean pressure and relative volume change) written for the case considered,
we obtain the following relations between stress, strain and temperature:

Si = SF — 2T in all regions (4)

S2 + 2T = (3t2 — 1)572 in the elastic regions (|SF| < e.)
= J — |(1 — 72)(sgn 5)ea in the region of primary elastic-plastic state

(|SF| > e, , sgn SF > 0) (5)
= (372 - l)SF/2 + 3(1 - 72)JFo/2 - 3(1 - 72)(sgn SF„)e./2

in the unloading region (|SF| < |50|),

where is the value of the function SF when unloading begins (Fig. 3) and the partial
time derivative is denoted by a dot. The strain ex is the function of SF shown in Fig. 3.
The condition of a nonnegative power of plastic deformation in the zones of elastic-
plastic strain is equivalent to (sgn SF)SF > 0, and unloading begins when this condition
is violated. The equations of motion for the dimensionless quantities take the form

= dV _ 0 dT
dy 71 dr ' dr dy dy '

where

7j = 1 in the elastic and unloading regions,

= 7 in the elastic-plastic regions.

(6)

Fig. 3
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The following assumptions about temperature field are now accepted:
(a) T(y, t) satisfies the homogeneous heat conduction equation

d2T 9T
dy2 dr ' ^

(b) T|„_0 is positive, continuous and increasing from 0 to the value 1 in the time
period 0 < t < ;

(c) T|„_0 is everywhere bounded.
The set of hyperbolic equations (6) possesses the following particular integrals [12]:

5i(y, t, Ti) = — 2y\ [ exp [yi(t — v)]T(y, v) dy,
J 0

V&, T, 7l) = -2 £ exp [7*(r - „)] d'J.

(8)

The above statement may be examined by direct substitution of the functions (8) into
Eqs. (6) and making use of Eq. (7). Bearing in mind the form of Eqs. (8) and assump-
tions (a)-(c) on the temperature field, one can establish the following inequality describ-
ing the properties of the functions 3^ and Fj (see Appendix):

£FX <0, V1 > 0,

> 0, f" < 0, ^ < 0, ^ > 0,dy dr dy dr

-2 g > W(y, r, 7l) >0 and 0 < W{y, r, 7l) < 2T(y, r),

(9)

where

Also,

—5i(y, T, 7i) < 7i^i(2/, r, 7j) for r > 0, 7/ > 0, 0 < 7l < 1,

W(y, r, 70 = 2y1T(y, r) — 7^(?/, r, 7l) — ylV^y, r, 7O. (10)

lim TF[?/, $(j/), 7,] = 0,
V—<*>

— lim JFjfy, $(j/),7i] = 7i lim F,[j/, <%),7i], (11)
y-»CO y—*co

-lim (y - tj)/7! , 71) < 2 exp (-711),

where $(?/) is an arbitrary function (continuous and determined in A < y < «>) which
satisfies the condition 0 < $(y) < ym/4, 0 < m < 2, and 77, A are constants.

The above properties are the basis for the analysis performed in the next section.
3. Analysis of the formation of various regions in the plane r — y (Fig. 4). In order

to obtain the solution for impact loading, let us first assume that Pi(t) has the form
shown by the dotted line in Fig. 2. The time tE is regarded as a small quantity which
will later be allowed to go to zero.

From Eq. (4) the following boundary condition for the function 5 is obtained:

ffUo = —p(r) + 27X0, r) = — n(r), (12)
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B
REGION OF ELASTIC

STRAIN

J" CO, r) ~es

where
\ 2p1(fcr/o0)

P(t) = 3 KaTo

We shall consider the case in which the plastic deformation appears at the boundary
y = 0, i.e.:

sup [ —2T(0, t) + p(r)] > e, .

The left-hand side of the above inequality is assumed to considerably exceed the yield
limit e, (see Sec. 1). At the beginning of the process each point y > 0 is an elastic state.
In the region of elastic strain (Fig. 4, region I) the solution takes the form

5(y, t) = %i(y, r, 1), V(y, r) = V^y, t, 1). (13)

From Eqs. (9) and from Eqs. (5) and (13), it follows that the function SF and are, in
this region, monotonically decreasing, whereas the function V is monotonicallyincreasing.
Moreover, since

d _ ( y + const \ TTT( y + const ^■y-)--w(v.' T, ,y).

then the function (F, which is the measure of the effective stress, decreases monotonically
along the characteristic lines y = r + const.

If the density of heat flux transfered through the plane y = 0 is sufficiently large,
then it is possible that elastic-plastic deformations appear to the right of the line y = t.
From the properties of the function 5^ and from Eq. (14) it follows that this occurs if
the following condition is fulfilled:

lim 5,(2/, y, 1) < —e. . (15)
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On the other hand, from Eq. (11)3 it follows that this condition can be fulfilled only if

e, < 2. (16)

Thus for a given material, the plastic wave can occur to the right of the fine y — r only
for sufficiently large T0. Relation (16) is, of course, only a necessary condition; in addition
the heat flux density in the initial stage of heating must be sufficiently high.

Let us now assume that this condition is fulfilled, and let us consider the function
<p(y) = r determined by the formula

5i[y> <p(y), 1] = ~e, ■ (17)

The following expression for <p'(y) is obtained by calculation of the total derivative
with respect to y of Eq. (17):

1 W\2L II no\
* - dy-l~ e. + 2T(3,,vy (18)

Since 0 < W < 2T, then from Eq. (18) it follows that

0 < <p' < 1.
Thus, Eq. (17) describes the plastic wave r = <p(y) for y > yB (Fig. 4). Bearing Eq. (ll)a
in mind we get

lim f'(y) = 1;
j/—»oo

i.e., the line <p possesses the asymptote y = r + , where c*i may be calculated from
the expression

lim $(y, y - ax , 1) + e, = 0.
J/—»co

One can show (see Eq. (All)) that the parameter is bounded, i.e.,

< In (2/e,).

At the boundary y — 0 plastic deformation appears after a certain time rA , n(rA) = e, .
Therefore the area bounded by lines y = 0, y = r (y < yB) is the region of elastic strain
(^4. — B — 0 in Fig. 4). The solution in this region is given by the formula

5(y, r) = SFn(y, t) = 2T(0, t — y) — p(r — y) — ̂ (0, r - y, 1) + r, 1). (19)

The function ff11 decreases along characteristic lines y + const = r. Moreover, if the
derivative T(0, 0) exists, then we can always choose a slope (Fig. 2) of the curve pAf)
such that jri will be less than zero at each point in this region. This suggests that the
equation for the plastic wave r = <p(y) for y < yB can be obtained by substituting

= — e, into Eq. (19):
5u[y, <p(y)] = ~e, . (20)

In order to prove the above statement it is necessary and sufficient to satisfy the condition

-1 < <p'(y) <1 for 0 <y<yB. (21)

By calculation of the total derivative of Eq. (20) we get

v'(y\ _ i <p(y); 1] (09)
V W n (<p -y)+e,- p(<p - y) + 21\y, <p) ^>
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Now, taking into account that W > 0, Eq. (21) can be transformed into the equivalent
form

n'(<p - y) > W(.y, <P, 1) ~ 2T(y, <p) - e. + p(<P - y). (23)
Hence, taking Eq. (9) into account, one can evaluate the slope o>i as follows:

«»k/(3KaT0a20) = a/2 > T{0, r) + T(0, r). (24)
Since the function T(0, r) is bounded then the above inequality can be satisfied through-
out the time period 0 < r < rE for sufficiently large o>. Thus, Eq. (20) describes the
plastic wave in the segment 0 < y < yB ■

Let us now assume that
lim JFa(j/, y, 1) > —e, . (25)
y—*co

The above condition is satisfied if es > 2. In this case the region y > t is purely elastic.
Since the function T(0, r) is bounded, then (24) is satisfied by a sufficiently large co.
The solution in region II (Fig. 5) is determined by Eq. (19) whereas the plastic
wave <p(y) is determined by Eq. (20). Taking into account Eqs. (11)! and (22), (23), it
is easily seen that lim„_„ <p'(y) = 1; i.e., the plastic wave again possesses the asymptote
y = t — a2. In this case the value of the coefficient a2 can be calculated from the following
expression:

p(a2) — 2T(0, a2) + 3^(0, a2 , 1) = e, + lim %i(y, a2 + y, 1). (26)
j/—»co

At time tb (Fig. 4) the unloading wave begins propagating from point E since the
function n changes sign at this point. The shape of this wave can be determined by
making use of numerical or approximate methods similar to that used for the isothermal
process [1], [2].

The region AFE in Fig. 4 is the region of intensive elastic-plastic deformation.
When (15) is satisfied (e, < 2), secondary plastic strain appears at the boundary y = 0
after time th (point H in Fig. 4); i.e., after time th the wave of secondary plastic strain
will propagate. Indeed, after the time r = r* we can assume p(r) ~ 0 and

SF|„-o ~ 2T(0, t) for r > r*;

Fig. 5
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but lim^co T(0. r) = 1; hence

lim J |„.0 = 2 > e, .
T—»CO

The wave of secondary plastic strain can also, of course, appear if (15) is not satisfied.
It may also be noted that if the function T{0, t) is discontinuous at any point, then

the function <p'(y) is also discontinuous at the corresponding point (see Eq. (22)).
In order to establish completely the wave picture shown in Fig. 4, one should show

that j is negative in the elastic-plastic regions III and IV. We shall prove this for the
case of impact loading (see Sec. 4).

It may be observed that if T(0, x) continuously approaches zero then (1) the point B
moves along the line y = r to infinity, (2) the line <p(y) approaches the characteristic
y = t — ta and (3) the unloading wave E-F becomes the unloading wave for the pure
mechanical case (T = 0). Thus, the wave picture for a pure mechanical load can be
obtained as a limit.

4. The limiting case te —» 0: impact loading. Taking into account the results of
the previous analysis, it is easy to predict the wave picture for the case in which the
function p(r) is discontinuous at point r = 0. If point E approaches point 0, then the
plastic waves A-B in Fig. 4 and <p(y) in Fig. 5 approach the characteristic line y = r.
These waves are transformed into a strong discontinuity wave y = r with the value
JF = —e, at its front (Figs. 6 and 7). The stress jump disappears at point B (Fig. 6) if
(15) is satisfied. The region AEF is transformed into the second strong discontinuity
plastic wave y = yr (Figs. 6 and 7). This wave becomes simultaneosuly the unloading
wave. At point F the stress jump disappears at the front of this wave.

We shall now show that the solution in the plane r — y is unique. In the region GBC
(Fig. 6) the Cauchy problem for the set of Eqs. 6 (taking 71 = 7) is determined. It

5(0,r)

Fig. 6
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Fig. 7

follows from this that V and "5 are prescribed along the noncharacteristic line B-C. At
the front of the strong discontinuity wave y = r the function JF is equal to — e, and the
function V can be calculated from the dynamical and kinematical compatibility condi-
tions. These are identical in the case considered. The line 0-.B is noncharacteristic for
the Eqs. 6 (when 7i = 7). Thus, the Cauchy problem is again determined in the region
OBE1 . From the solution in the regions OBE1 and GBC the values 3f and V compatible
with the relations along the characteristics on B-E, and B-G are known. The charac-
teristic problem is determined in the region EtBGF. From the dynamical and kinemat-
ical compatibility conditions which are again identical the relation between SF and V at
the front of the wave O-Ei-F (y = yr — 0) can be found. Hence, in the region t-OE^FI
the mixed boundary problem for the set of Eqs. 6 (taking y1 = 1) is determined. The
solution in the region IFG and the shape of the weak discontinuity unloading wave F-G
must be determined simultaneously by using the condition of the continuity of SF and V
along F-G. This leads to the well-known problem for the unloading wave [1].

Let us consider the function

2SF(y, r) = 2jF1(y, r, 7) - 2e, + ^ W(yN , yN , 7) - 2(1 - 7)T(yN , yN)

- ~ W(yM ,yM, 7) + 2(1 - 7)T{yM , yM) (28)
7

- 2JF1Q/at ,yM, 7) + 7~W(yM ,yM,l)~ 7W(yN , yN , 1),
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which describes the solution in the region yr < y < r for the case when (25) is satisfied
(Fig. 7). In Eq. (28) yN and yM are the functions of r, y determined by the formulae

Vn = (y + yr)/(l + 7), yM = (y — 7t)/(1 - y).

After certain transformations (see Eq. (A2)) the time derivative of the above function 3?
can be expressed in the following form:

9 r)<¥
-fT= \W{yN,yN, y) - W{y, r,y)}

— [W(y, t, y) + 2y2V1(y, r, 7) — W(yM ,yM, y) — 2y2V1{yM , yM , 7)] (29)

- t^tz w(y* > y» >!) - T~r w(y>"», i)-X "t" 7 1—7

We shall now show that the above function is negative throughout the region considered.
It may easily be shown by using Eq. (A2) that the following relations hold:

| [4' V • ■<)+ 1 = 2?! "■ -  
(30)

where /3, rj are arbitrary constants. Taking the above into account, Eq. (29) can be
rewritten in terms of the curvilinear integrals of T along the characteristic lines M-A
and A-N (Fig. 7); i.e.:

~zf=cf fdy+(f ^dy + T^rW(yK,y!rtl) + T:!L-W(3/lt,yM,l). (31)y or J MA J AN 1+7 1—7

Since all members on the right-hand side of the above equation are greater then zero,
j is negative in the region 7t < y < t. This proves that this region is one of active
elastic-plastic strain. Eq. (28) can also be rewritten in terms of the curvilinear integrals:

+ e. = T dy - ^ <£ T dy + | [W(yM ,yM , 1) - W{yN , yN , 1)]
y ■> ma y J an * \p£)

- (1 - 7)T(yN , yN) - (1 + 7)T(yM , yM) + 2T(y, r).

By use of the known solution for the isothermal case [1], the following expression deter-
mining J at the front of the wave y = yr can be found:

SF lr—if/y+0 = $o(y) = -TTrr 2 r'pf1 ^ 7 r'y)J- -r 7 i-o \ y /

+ FTr S ''*) •*'»> m
+ y ' l) -

where
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r = < 1, *(z) = 2T(0, z) - 3^(0, z, 1)
1+7

+ 2(1

By analysing Eqs. (31)—(33), as well as by taking into account the properties of the
functions W and ffi , the shape of the wave at a given time can be predicted. In Fig. 7
the shape of the wave when T = 0 is shown by a dotted line. Beyond the narrow surface
layer (curve r = Cy2 in Fig. 7) the waves y - t and y = yr propagate in an essentially
cold medium. For the region of large temperature gradients 0 < y < C_1/V/2 the
addition of the effects of dynamical thermal expansion to those of dynamical mechanical
load leads to a decrease in the jump of the function at the front of the strong discon-
tinuity waves y = r and y = yr. In the region 0 < y < yr the function ff decreases
from — p(r) + 27X0, x) to some value greater (for small r) than the value obtained in
the case T = 0 (as may be seen by calculation of d 30/dy at y = 0). At the point y = yr
it suddenly increases to a value less than — e, . In the narrow region yr < y < e2 (e2 is
of the order C~1/2) the solution continuously increases to a value close to — e, , whereas
in the region yr + e2 < y < r it is almost equal to —e, . At the point y = r it again
increases suddenly to some value greater than zero. In the region t < y < t + ex («i is
also of the order C_1/2) it changes continuously to a value close to zero. In the region
y > t + «i the solution is almost equal to zero.

The difference between the solution above and that for the case T = 0 at the bound-
ary y = 0 (Fig. 7) may also be obtained from an approximate analysis by assuming
that the wave caused by the mechanical impact propagates in the quasistatic field of
the thermal stresses.

Remark. The case for which the function T\v-0 is infinite at point r = 0 should
be considered separately. The approximate analysis performed by the author suggests
that the final wave picture shown in Fig. 7 is also valid for this case.
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holm, Sweden. He wishes to express his appreciation to Prof. Folke K. G. Odqvist and
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Appendix. The proofs of properties (9) and (11) and some other statements about
and Vl are given here.
We must first recall the following properties of the solution of the heat conduction

equation which arise directly from the principle of upper and lower bounds on the
temperature d.

If the bounded function 8(y, r) in the region 0 < y < =o,0<r< =» satisfies the
homogeneous heat conduction equation and reaches the prescribed initial values 0|T_O = 0
and boundary values 0|„_o = q(j) continuously, where q(j) is a positive and nondecreasing
function, then
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d9/dy 5: 0, dd/dr >0 .

0 < 6 < [sup g(r)] erfc (y/2t1/2) for y > 0, r > 0,

where

erfc (z) = 2x_1/2 exp (— f) dt.

Since in our case T{0, r) < 1, the inequality (9)j arises directly from Eqs. (8), taking
into account the assumption about T{0, r) and Eq. (Al).

By calculation of the derivatives of Vx and 3^ with respect to y and r we get

^ = y^-2y\T, ^ = 7^-2for dr at/

— = -y27 = SF — 2T
dy 71K" ay 2i-

(A2)

The inequalities (9)2 arise from Eqs. (A2) and (9)i . The function

W(y, r, t0 = 2y1T(y, t) — yftiiy, t, t,) — ylV^y, r, 7i) (A3)
reaches the following boundary values:

W(3/, 0, 71) = 0, lim TP = 0
1/—»co

and satisfies the following equation:

dW 521
f = + 2* g- (A4)

The above statement may be checked by using Eqs. (A2). Thus, W may be expressed
in the form

W = -27! f exp [y^y — x)] dT^' dx
Jv dX (A5)

= 2ylT(y, r) - 2y\ f exp [y^y - x)]T(x, t) dx.
"V

Bearing in mind that T{y, r) satisfies the homogeneous heat conduction equation, we
can transform Eq. (Ao) into:

c)T f20
W + 2— = -2 J exp [7l(y - x)]T(x, r) dx. (A6)

Since T > 0 and (dT/dy) < 0, then from Eqs. (A5), (A6) we get

0 <W < —2 —■ and 0 < W < 2yxT(y, r). (A7)

Taking into account the form of the function W from (A7)2 , we also get

—Si(y, t, 7O < 7iFi(y, t, 7l). (A8)

This is the proof of (9)3 and (9)4 .
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Since the following equality holds:

lim erfc  7= = 0,
L2V$(2/)J

where $(?/) is the continuous and defined function in A < y < 00 which satisfies the
condition

0 < $(z/) < ym/4, 0 < m < 2,

then from Eqs. (A7) and (Al) it follows that

lim W[y, <%), 7j] = lim T[y, <%)] = 0,
y—*co j/—»co

-lim <5Ay, <%), 71] = Ti lim V^y, $(y), 7l].
(A9)

The above proves Eqs. (ll)i and (11)2 .
From (Al) it follows that

t, 71) < 27' [ exp [71(7 - t)] erfc (y/2tu2) dt = -2 erfc (y/2r1/2)
Jo

+ exp [71(71 t - 2/)] erfc

+ exp [7l(y + 7lr)] erfc = £(j/, 7l)

lim ziy, ^5 , 7l) = 2 exp (-7^).
V-co \ 7l /

Hence, we get the proof of Eq. (11)3 ,

< 2 exp (-711?). (A10)
y — v

y, ——, ti
y-*«° L_ /I

— lim

If a is the root of

- lim <fiy, , 71) = N,
y-*a> \ yi J

then from Eq. (A10) we get

a < — hi (2/N). (All)
7i

It is worth emphasizing that JFi, Vx and W also satisfy the homogeneous heat conduction
equation. Moreover, they can be expressed in terms of the exponential function and a
sutiably defined mean temperature or mean density of the heat flux.

Since all mathematical operations carried out in the Appendix apply to any point
in the interior of the plane r > 0, y > 0 where the function T is analytical, then all the
above remarks are also valid for the case of discontinuous T{0, r).
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