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Abstract The ability of bacteriophages to survive under
unfavorable conditions is highly diversified. We summarize
the influence of different external physical and chemical
factors, such as temperature, acidity, and ions, on phage
persistence. The relationships between a phage’s morphology
and its survival abilities suggested by some authors are also
discussed. A better understanding of the complex problem of
phage sensitivity to external factors may be useful not only for
those interested in pharmaceutical and agricultural applica-
tions of bacteriophages, but also for others working with
phages.

Introduction

Bacteriophages are the most numerous form of life on
Earth; ten times more numerous than bacteria (Hendrix
2002; Hanlon 2007). They can be found in all environments
where bacteria grow: in the Sahara, hot springs, the North
Sea, and polar inland waters (Prigent et al. 2005; Lin et al.
2010; Breitbart et al. 2004; Wichels et al. 1998; Säwström
et al. 2008). Phages are detected in ground and surface
water, soil, food (e.g., sauerkraut, wine), sewage, and

sludge (Lucena et al. 2006; Yoon et al. 2002; Davis et al.
1985; Kumari et al. 2010; Tartera and Jofre 1987). They
have also been isolated from humans and animals, for
example from feces, urine, saliva, spit, rumen, and serum
(Gantzer et al. 2002; Caroli et al. 1980; Bachrach et al.
2003; Nigutová et al. 2008; Keller and Traub 1974). Phages
are able to penetrate different organs and tissues, including
the central nervous system, and are a part of intestinal flora
together with their bacterial hosts (Frenkel and Solomon
2002; Kameyama et al. 2001). They are responsible for 10–
80% of total bacterial mortality in aquatic ecosystems and
are an important factor limiting bacterial populations
(Weinbauer 2004).

Bacteriophages are classified into families with regard to
their morphology and size as shown in Table 1. About 96%
of them are tailed, but there are filamentous and pleomor-
phic ones as well (Ackermann 2007; Hendrix 2002).
Generally, the phage virion consists of two basic compo-
nents: nucleic acid (double- or single-stranded RNA or
DNA) and a protein envelope. Some have lipids as
components of the envelope or of a particular lipid wall
(Ackermann 2003).

Various external physical and chemical factors, such as
temperature, acidity, salinity, and ions, determine the
occurrence, viability, and storage of bacteriophages and
can inactivate a phage through damage of its structural
elements (head, tail, envelope), lipid loss, and/or DNA
structural changes (Ackermann et al. 2004).

Phage morphology and their persistence in extreme
environments

Ackermann et al. (2004) showed that tailed phages were the
most stable in adverse conditions, but it was not any
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Table 1 Classification of bacteriophages and characteristics of their sensitivity to some external factors such as temperature, acidity, and salinity
(phages described in the text are marked in bold)

Familya Membersa Nucleic acid and structurea Characteristics of phage sensitivity to some external factors

Myoviridae T2 Linear dsDNA Phages from this family may be extremely resistant to a dry environment (desert
sands) and may survive large temperature fluctuations (Prigent et al. 2005)T4 Non-enveloped, contractile

tail, consisting of a Sheath
and a central tube

Some of them (e.g., T4, C16) proved to be very resistant to long-term (for years)
storage (Ackermann et al. 2004)

ΦgspC

Freeze-drying may be harmful for this family (Clark 1962)
PFpW-3

T2—stable in pH range 5–9, with maximum at pH 5–6 (Sharp et al. 1946)
CP-51

T4—at 37°C, stable at pH 6–7.4, unstable at pH<5 and 9.2 (Kłak et al. 2010);
stable when stored 4 weeks in urine at 6–20°C (Jończyk, unpublished data);
its survival after freezing at −196°C was over 65% (Tsutsaeva et al. 1981)

C16

ΦgspC—can survive in a very salty environment (Wilson et al. 2004)

MB08

CP-51—sensitive to low temp. (<0°C); optimum stability at 15°C; for its storage
at 0°C, optimal pH is 5.6 (Thorne and Holt 1974)

Siphoviridae l Linear dsDNA In the opinion of some authors, the members of this family are generally the
most resistant to adverse conditions (Lasobras et al. 1997)T1 Non-enveloped, long

non-contractile tailT5 Phages from this family may be extremely resistant to a dry environment (desert
sands) and may survive large temperature fluctuations (Prigent et al. 2005)PFpW-8

Some of them (e.g., T5) proved to be very resistant to long-term (for years)
storage (Ackermann et al. 2004)

TSP4

Very stable when stored (for years) in freeze-dried form (Ackermann et al. 2004)
P001

l—good stability at 4°C for over 6 months, stable in a wide range of pH (3–11)
for 24 h at 19°C, more stable in distilled water than tap water
(Jepson and March 2004)

P008

T1—resistant to drying (Faquet et al. 2005); at 37°C, sensitive to pH≤3
(Międzybrodzki et al., unpublished data)

MB07

TSP4—may survive at high temperatures, optimum is 65°C (Lin et al. 2010)

Podoviridae T3 Linear dsDNA Phages from this family may be extremely resistant to a dry environment (desert
sands) and may survive large temperature fluctuations (Prigent et al. 2005)T7 Non-enveloped, short

non-contractile tail T3—at 37°C, stable at pH 5–9.2 (Międzybrodzki et al., unpublished data); its
survival after freezing at −196°C was 98% (Tsutsaeva et al. 1981)

PFpW-6

T7—at 37°C, prefers alkaline conditions; more sensitive to lower pH than T3
(Międzybrodzki et al., unpublished data); at 0.5–2.0°C, optimal long-storage
stability at pH 6–8 (Kerby et al. 1949)

28B

28B—very stable (for 6 months) in urine even at pH 9 (Höglund et al. 2002)

Kpn5
N22

Microviridae ΦX174 Circular sDNA ΦX174—its survival after freezing at −196°C was over 80% (Tsutsaeva et al. 1981)

Non-enveloped, isometric

Corticoviridae PM2 Superhelical, circular dsDNA PM2—stable at pH 6–8, virion, stability strongly dependent on NaCl (10 mmol/L
minimum) and CaCl2 (5 mmol/L minimum) (Faquet et al. 2005); completely
loses activity after 1 h at pH 5.0 at 37°C (Międzybrodzki et al., unpublished
data); freezing and thawing completely removes the protein shell (Kivelä 2004)

Non-enveloped, isometric,
lipid layer in capsid

Tectiviridae PRD1 Linear dsDNA PRD1—usually stable at pH 5–8 (Faquet et al. 2005); very stable when stored (for
years) in broth at 4°C, may also survive at −80°C (Ackermann et al. 2004)AP50 Non-enveloped, isometric,

inner lipoprotein vesicle AP50—for long storage, should be freeze-dried, because it may lose activity
at −80°C or in broth at 4°C (Ackermann et al. 2004)

Leviviridae MS2 Linear ssRNA MS2 and Qβ—the lowest inactivation was observed at pH 6–8 and temperature of
5–35°C (Feng et al. 2003)PP7 Non-enveloped, isometric

Qβ—better survival in an alkaline than acidic environment (Feng et al. 2003)

MS2—unstable when suspended in ultrapure water (Governal and Gerba 1997);
for long term, should be stored at -80°C rather than at 4°C (Olson et al. 2004);
better survival in an acidic than an alkaline environment (Feng et al. 2003)

Qβ

PP7—highly thermostable (Caldeira and Peabody 2007)

f2

Cystoviridae Phi6 Linear segmented RNA Phi6—stable at pH 6 (ICTVdB Management 2006)
Lipoprotein envelope,
spherical
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substantial difference in sensitivity between phages with
contractile, non-contractile, or short tails, although phages
with a large capsid (100 nm in diameter) survive better than
phages with a head 60 nm in diameter. The membership in
the same family and even close structural similarity may
not determine a phage’s features and resistance to external
factors. The authors observed that the cubic phages PRD1
and AP50, belonging to the Tectiviridae, showed different
sensitivities to storage conditions. PRD1 survived better
when it was stored at −80°C, but AP50 lost its activity
after 6 months at the same temperature, surviving better
after freeze-drying. PRD1 was detected even after
22 years when it was stored in broth at 4°C, whereas
AP50 was not detected after 1 year under the same
conditions. Electron microscopic observations showed
different changes in phage morphology. For example, in
the case of AP50, empty virions were observed, when for
PRD1 stored in broth, no phage capsids, but only traces
of lipid vesicles, were detected. Lin et al. (2010) isolated
from hot springs in China Thermus TSP4 phage charac-
terized by high thermostability (the optimum temperature
for this phage was 65°C). A relationship between its
thermal stability and the presence of an extremely long
and flexible tail (785 nm in length and 10 nm in width)
was suggested.

Bacteriophages residing in similar environments may
have a large variety of morphological forms. For example,

phages occurring in hot springs were classified by
Ackermann (2007) into five types of archea viruses: SH1,
STIV, Ampullaviridae, Bicaudaviridae, and Globuloviridae.
SH1 have the same structure as Tectiviruses. They are
polyhedral and contain a lipid nucleocapsid (a combination
of phage nucleic acids and capsid proteins). Phages of this
group were found only in a hypersaline lake in Australia.
STIV are polyhedral phages infecting hyperthermophilic
bacteria and were found in a hot spring in Yellowstone
National Park. Ampullaviridae have a unique structure in
the viral world because they consist of a bottle-shaped
mantle, a cone-shaped inner body, a helical nucleocapsid,
and polar fibers at the large end. Bicaudaviridae, oval or
arrow-shaped particles which contain a helical nucleocapsid
and grow tail-like appendages at both ends, were found in
Italian volcanic springs, as well as in acidic hot springs in
China. The virions of Globuloviridae consist of helical
nucleocapsid lipid containing a spherical envelope, and they
are found in Italian hot springs. Members of three families
which are dsDNA viruses of the archeon Sulfolobus are
predisposed to inhibit solfataric fields: Lipothrixviridae (e.g.,
phages TTV1 and SIFV), Rudiviridae (e.g., phages SIRV1
and AVF-1), and Fuselloviridae (e.g., phages SSSV1,
SSSV2, and SSSV3) (Prangishvili et al. 2001; Bettstetter et
al. 2003). The existence of bacteriophages in the Sahara was
confirmed by Prigent et al. (2005). Twelve morphological
phage-like types were detected in sand samples. Six types

Familya Membersa Nucleic acid and structurea Characteristics of phage sensitivity to some external factors

Inoviridae M13 Circular ssDNA M13—its optimal pH is 6 and 9 and temperature 37°C (Tey et al. 2009); it can
survive at least for 1 h at pH 2 (Międzybrodzki et al., unpublished data)fd Non-enveloped, filamentous

Pf1

Vf33

Lipothrixviridae TTV1 Linear dsDNA Members of this family can be found in acidic hot-spring environments
(Prangishvili et al. 2001)SIFV Enveloped, rod-shaped

TTV1—it can survive even temperatures >85°C and pH<3 (Goulet et al. 2010)

Rudiviridae SIRV1 Linear dsDNA Members of this family can be found in acidic hot-spring environments
(Prangishvili et al. 2001)AFV-1 Non-enveloped, rod-shaped

Plasmaviridae L2 Circular superhelical dsDNA L2—extremely sensitive to heat, relatively cold stable (Faquet et al. 2005)
Enveloped, pleomorphic

Fuselloviridae SSV1 Circular superhelical dsDNA Members of this family can be found in acidic hot-spring environments
(Prangishvili et al. 2001)SSV2 Non-enveloped, lemon

shaped, short spikes
at one end

SSV1—stable at high temperature (up to 97°C), insensitive to pH 2 but pH<5
reduces its viability, and virions are sensitive to pH>11 (Faquet et al. 2005)

SSV3
His1

His1—sensitive to exposure to low salt concentrations; to maintain stability, it
should be stored in a high salt solution (18%); stable for a long time at 37°C
(Faquet et al. 2005)

a Based on Ackermann 2003; Ackermann et al. 2004; Ackermann 2007; Ackermann and Abedon 2000; Ackermann and DuBow 1987; Bettstetter
et al. 2003; Buiser et al. 2009; Faquet et al. 2005; Governal and Gerba 1997; Goulet et al. 2010; ICTVdB Management 2006; McAuliffe et al.
2007; Kivelä 2004; Kumari et al. 2010; Kim et al. 2010; Lin et al. 2010; Prangishvili et al. 2001; Pringsulaka et al. 2010; Tey et al. 2009;
Wachman and Brown 2010; Wilson et al. 2004

Table 1 (continued)
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had icosahedral capsids (without envelope), a large genome,
a tail with a contractile sheath, and a base plate with terminal
fibers; therefore, they were classified as Myoviridae. Two
groups with long hexagonal capsids were classified to the
Podoviridae, and the other four types with long non-
contractile tails that were classified to the Siphoviridae had
the simplest structure and possessed tails, and their genomes
were smaller (on average, approximately 100 kb). It was
shown that under harsh conditions, such as strong ultraviolet
light, desiccation, and large temperature fluctuations, phages
belonging to the Myoviridae can protect themselves from the
extremely dry environment through intercellular location in
pseudolysogens or confinement in the biofilm created by
bacterial hosts.

Lasobras et al. (1997) suggested there may be some
relationship between phage structure and their survivability
under adverse environmental conditions. Based on their
analysis of phages from sewage and persistently polluted
water, which mostly belonged to the Siphoviridae family,
they suggested that phages with Siphoviridae morphology
are the most resistant to adverse conditions. However, it
seems that there is no fundamental confirmation of this
assumption, because it lacks systemic comparative
study.

External factors influencing bacteriophages

Temperature

Temperature is a crucial factor for bacteriophage survivability
(Olson et al. 2004; Nasser and Oman 1999; Yates et al. 1985;
Hurst et al. 1980). It plays a fundamental role in attachment,
penetration, multiplication, and the length of the latent
period (in the case of lysogenic phages). At lower than
optimal temperatures, fewer phage genetic material penetrate
into bacterial host cells; therefore, fewer of them can be
involved in the multiplication phase. Higher temperatures
can prolong the length of the latent stage (Tey et al. 2009).
Moreover, temperature determines the occurrence, viability,
and storage of bacteriophages.

Atypical environments in which bacteriophages can
survive are hot springs (achieving temperatures of 40–90°C).
Bacteriophages isolated from such springs in California were
tested at low and high temperatures (Breitbart et al. 2004). It
was observed that more than 75% of the phage particles
remained intact even when incubated on ice (around 0°C).
They were more sensitive when boiled at 105°C, as only 18–
30% of the phage particles remained intact. The inactivation
of phages occurring in dewatered sludge and raw sewage
thermal treatment was studied by Mocé-Llivina et al. (2003).
They tested thermal resistance of somatic coliphages, phages
infecting Bacteroides fragilis, and F-specific RNA phages. In

both cases, they observed that phages were more resistant to
thermal treatment than bacteria. Moreover, F-specific phages
were less thermally resistant than other tested phages,
incubated both in sludge and sewage. The level of the
reduction in titer of somatic coliphages naturally occurring in
sludge after thermal treatment at 60°C was 1.0 log after
60 min, and at 80°C it was 2.5 log. Caldeira and Peabody
(2007) investigated the role of disulfide cross-links in the
protection of phages against thermal denaturation. They
tested the highly thermostable Pseudomonas RNA phage
PP7 and observed that its particles, which only start to
denature after heating for 2 min at 90°C, lost their stability
after addition of 1,4-dithiothreitol, a reducing agent which
destroys disulfide bonds between coat protein dimers by
cross-linking a phage icosahedral capsid.

High thermal resistance is characteristic both for environ-
mental and lactococcal bacteriophages. Buzrul et al. (2007)
exposed ten bacteriophages of Lactococcus spp. suspended
in broth at 72°C (15 min) and 90°C (5 min). At lower
temperature, only two phages were inactivated, but exposure
to 90°C inactivated one half of the investigated phages.
Atamer et al. (2008) showed that ≈40% of the Lactococcus
lactis phages isolated from different German dairies survived
heating at 80°C for 5 min when suspended in milk. But
almost all phages were completely inactivated when the
temperature was raised to 95°C. Two phages, P680 and
P1532, proved to be exceptionally resistant to high
temperature; P680 phage survived after 5 min of thermal
inactivation at 95°C. P1532 phage was detectable even
after incubation at 97°C for the same period of time.
Milk protected lactococcal phages from thermal inactiva-
tion better than other media, such as broth. Therefore, it
was suggested to use milk for suspending phages in
experiments investigating the influence of different
inactivating factors on phage survival. The stability of
phages preferring low temperatures that infect Pseudomonas
fragi, isolated from refrigerated food, was determined at
60°C (Whitman and Marshall 1971). After a 30-min
inactivation of the Pseudomonas phages ps1 and wy, the
average reductions in phage survival were over 99% and
39%, respectively. There were 15% and 72% decreases in
plaque numbers after maintaining the phages in soft agar
at 45°C for 2 and 10 min, respectively. It should be
recommended that for proper determination of the phage
titer (without loss of phage activity), this step should be
done as quickly as possible.

The temperature of bacteriophage storage is the most
important factor which determines phage activity. Thorne
and Holt (1974) observed phages such as the Bacillus
cereus CP-51 which were sensitive to low temperatures and
survived better at room temperature, but the long-term
storage of phages at ambient temperature is not generally
recommended (Mullan 2001). According to them, an
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optimum temperature for CP-51 phage stability was 15°C;
they showed that fresh propagating lysate retained 14% of
the initial plaque-forming unit (PFU) at 0°C after 7 h, and
only 4% after 24 h. Interestingly, the nutrient broth–yeast
extract medium (NBY) stabilized the phage under cold
conditions. After addition of NBY, tenfold diluted phage
retained 36% activity after 7 h and 19% after 24 h at 0°C.
When samples were stored at 15°C, no loss in activity was
observed when they were diluted tenfold in NBY. Lysates
retained full activity for 2 weeks. According to electron
microscopic examination, CP-51 has a hexagonal head and
contractile tail. When phage lysates were stored at 0°C,
many of its tails were contracted. When they were stored at
15°C, extended tails rather than contracted were observed,
but contracted tails increased during several weeks of
storage. As shown by Ackermann et al. (2004), tailed
phages were the most resistant to storage and showed the
longest survivability; some of them retained viability even
after 10–12 years at 4°C. Extremely resistant were T4, T5,
and T7. The T4-like Shigella phage C16 retained a titer of
103 after 32 years of storage under the same conditions.
Some phages, such as lipid-containing ones, were not stable
after storage at 4°C temperature but could be stored at −80°C
or in liquid nitrogen. Jepson and March (2004) tested the
influence of storage time at different temperatures on l
phage. They observed that there were no viable phages in
liquid (SM buffer) phage stocks at 42°C after 84 days,
whereas at 37°C, no phages were detected after 120 days.
Good phage stability was observed when they were stored at
4°C for over 6 months. In Mullan’s study, Lactococcus sp.
phage lysates stored at 2–5°C showed insignificant reduc-
tions in phage titer by 5–10% after 6 months (Mullan 2001).
However, this method was recommended for storage of no
longer than 2 months. Although the phages were resistant to
freezing and thawing, repeating these procedures too often in
short intervals had an adverse influence on the phages’
stability. Similarly, Olson et al. (2004) recommend 4°C as
the optimum temperature for short (no longer than 40 days)
phage storage in wastewater. To protect phages from
inactivation during longer periods, they should be main-
tained at −80°C. They observed that 20% of MS2 phages
were inactivated after 8 days of storage at 4°C in
comparison to 57% at -80°C. Interestingly, after 290 days,
fewer phages were lost at −80°C than at 4°C (75% and
93%, respectively). Bacteriophage storage at −20°C is not
recommended because the crystal structure of ice may
cause their destruction, as was previously demonstrated by
Warren and Hatch (1969). An addition of 5–10% glycerol
to the phage suspension may guarantee safe viability and
infectivity for 30 days at −20°C or −70°C (Olson et al.
2004).

Previous data indicated that lyophilization is not an
efficient method to preserve phage stability because it was

the most damaging (Clark 1962). However, the efficiency
of lyophilization may depend on its course, and it should be
regularly controlled. Puapermpoonsiri et al. (2009) stated
that the secondary drying cycle following lyophilization is
most important for maintaining phage stability. Freezing in
liquid nitrogen is recommended when bacteriophage samples
have a low titer (Mullan 2001). According to the observations
of Ackermann et al. (2004), different phages lyophilized
with the addition of 50% glycerol could survive many years
when a vacuum was retained in the ampoules. For example,
there was no loss of freeze-dried phages of the Siphoviridae
family after 21 years. None of the described methods
guarantee maintaining the stability for all phages. Neverthe-
less, recently, Golec et al. (2011) showed that there may be a
universal and effective method for storage of tailed phages.
They infected cells with phages and froze them. After a few
months, they did not observe a significant loss in titers when
phages were recovered from melted cells in comparison to
freshly infected cells.

Acidity of the environment

Another important factor influencing phage stability is the
acidity of the environment. Davis et al. (1985) described the
occurrence of phages specific to the lactic acid bacterium
Leuconostoc oenos in wine. The limiting factor for their
activity was pH below 3.5 and SO2 at a total concentration
of 50 mg/L. Phages may persist in an acidic environment,
such as sauerkraut, which was described by Lu et al.
(2003). They found 24 phage isolates in fermentation tanks
with sauerkraut (pH<3.5) after 60 and even 100 days.

Kerby et al. (1949) investigated the stability of T7 phage
in buffers (citrate, citrate–phosphate, phosphate, phos-
phate–borate, and borate buffers) of different pH (3–11)
for incubation times of 1–2 weeks at 0.5–2°C. Their
observations showed that the optimum for physical stability
of this phage was pH from 6 to 8 for long storage. The T7
phage was most stable in phosphate buffer at pH 7, and it
lost only 20% of its activity after 2 weeks. It was unstable
at pH<4 (after 96 h in citrate or citrate–phosphate buffer, it
lost almost all its infectivity), and at pH 3, it completely lost
its activity already after 1 h. On the alkaline side, even at
pH 9, it retained at least 30% of its infectivity after 2 weeks.
In borate buffer of pH>10, almost complete loss of T7
activity was observed after 24 h. Sharp et al. (1946)
investigated pH stability of the T2 phage in the pH range of
2 to 11 for 1 h, 1 day, and 1–4 weeks. Generally, the phage
was stable in a broad pH range of 5–9, with its maximum at
about 5–6. Immediate phage coagulation at pH 2 was
observed. At pH 3 and 4, the phages precipitated, but at the
higher value, it was reversible, and the phages could be
redispersed by shaking. The authors suggested that irre-
versible coagulation and precipitation might be the factors
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limiting phage activity. An insignificant small loss of
infectivity near pH 7 was observed. After a 1-h incubation
at pH 9, the T2 phage retained full activity. After 24 h at
pH 3, about 15% of the virions were infective. After
2 weeks in pH 5–9, 50% of the phages were still active.
The l phage activity was tested by Jepson and March
(2004) in the range of pH 2–14. After 24 h of incubation at
room temperature (19°C), the phage was highly stable in a
wide range of pH; the authors did not observe any significant
decrease in its titer at pH 3–11, but at pH 11.8–14 or pH 2, no
viable phage particles were observed. Our own studies on
the stability of T4 bacteriophage (phages were incubated
in buffers of different pH ranging from 1.1 to 9.2 for 1 h at
37°C) showed that the optimum pH was 6.0–7.4 (Kłak et al.
2010). The titer decreased by half at pH 9.2, and no active
phages were detected at pH 4.0. Phages T3 and T7 could be
detected in the same pH range, although the latter one was
more sensitive to lower pH, and it preferred alkaline
conditions (unpublished data). The PM2 phage was also
sensitive to low pH (it completely lost activity at pH 5.0).
T1 phage particles were lost at pH 3.0, and M13 phage
survived even at pH 2.

Thorne and Holt (1974) observed that a change in pH of
the suspending medium for B. cereus CP-51 phage
influenced its stability at 0°C. The optimal pH was 5.6;
after 30 min of incubation, the phage titer decreased by
only 11%, whereas at pH 7.0, it retained only 1% of the
initial PFU (107). These observations indicate that the
change in environmental pH may protect phage activity at a
low temperature.

Feng et al. (2003) investigated the survivability of
coliphages (MS2 and Qβ) in water and wastewater with
regard to the effects of different temperatures and pH on the
phages. Both phages presented the lowest inactivation rate
in the pH range of 6–8 and temperature range of 5–35°C.
MS2 survived better in an acidic than in an alkaline
environment, but the opposite was true for Qβ. Wick et al.
(2006) showed that MS2 could survive for 66 h in a 0.1-
mol/L HNO3 without any decrease in the number of phage
particles.

Höglund et al. (2002) studied the survival of bacterial
viruses in source-separated urine (pH 9). They observed
only an insignificant inactivation rate of 28B phage at 5°C
during 6 months; however, at 20°C, it was 20 times greater.
In PBS (pH 7.4), which was used as a control, the
inactivation was only approximately twice as much at 20°C
than at 5°C. The decrease in the phage titer at 20°C might
have resulted from the conversion of urea to ammonia,
which is a factor inactivating viruses. These results were
confirmed by Vinnerås et al. (2008), who showed that the
stability of phage 28B, MS2, and phiX174 increased with
urine dilution and lowering incubation temperature. Our own
unpublished data on T4 phage stability in human urine

showed no substantial change in phage titer even after
4 weeks of incubation in urine both at 6°C and at room
temperature, presenting good phage stability. Chandran et al.
(2009) observed that the survival of MS2 is better in diluted
or fresh urine in comparison with stored urine. Moreover, the
influence of temperature and pH on the phage inactivation
was higher at 30°C than 15°C.

It was shown that hydrogen ion concentration influences
phage aggregation. For example, MS2 phages showed
significant ability to aggregate when the pH was less than
or equal to the phage isoelectric point (pI=3.9) (Langlet et
al. 2007). Their aggregates could be up to 6 μm in
diameter. This may cause a decline in phage count and an
easier elimination of aggregates through their adsorption on
membranes than single virions.

Salinity and ions

Osmotic shock has been shown to inactivate bacterioph-
ages. Whitman and Marshall (1971) observed that psychro-
philic Pseudomonas phages (wy and ps1) had reduced
persistence in highly concentrated solutions of NaCl or
sucrose. The phage ps1 diluted in 4 mol/L NaCl showed a
99% decrease in viability, while the viability of the phage
wy was reduced by only 26%. However, a 2-mol/L sucrose
solution caused a decrease in viability of ps1 by 50% and of
wy by 48%. The same investigators observed that in 0.1%
citrate in soft agar medium, the viability of both phages was
reduced by 30%.

Several bacteriophages were isolated from marine water
of different salinities. Wichels et al. (1998) studied 22
phages which they found in water near Helgoland in the
North Sea. All of them had tails and icosahedral heads of
50.2 to 99.3 nm, and they were classified into three
different families: 11 phages to Myoviridae, 7 to Siphovir-
idae, and 4 to Podoviridae. No similarity in DNA structure
was shown among phages belonging to different families
present in this area. Also, Hidaka (1971) tested the stability
of five marine bacteriophages in media with the addition of
different inorganic salts (distilled water, 0. 5% NaCl
solution, 3% NaCl solution, artificial seawater diluted
sixfold, artificial seawater, and seawater broth). They
observed that all phages were most inactivated in a medium
containing 0.5% NaCl than in the other media. It suggests
that the phages had the highest activity in salt concen-
trations roughly equivalent to seawater. Seaman and Day
(2007) successfully isolated bacteriophages from a soil
sample of salt plains in OK (USA). The salinity of the
groundwater in this area varies between 4% and 37%, and
soil salinity, between 0.3% and 27% (Wilson et al. 2004).
One of those phages, ΦgspC, a member of the Myoviridae
family, has an unusually large genome (340 kb). The
authors suggested that this large genome may encode
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environmentally relevant genes that probably increase the
phage adaptation to some environments. Interesting obser-
vations made by Leibo and Mazur (1969) revealed that
when the T4B phage was rapidly transferred from a
concentrated to a dilute solution, the phage activity
depended on the initial salt concentration of the solution
in which the phage was suspended. The phage inactivation
occurred by rapid dilution, but it did not decrease when the
phage was slowly diluted. A rapid change in osmotic
pressure may cause phage DNA to extrude from the tail or
their heads to break. This occurred when phages were
diluted from high salt concentration to low concentration
solutions (Lark and Adams 1953). Yamamoto et al. (1968)
who investigated the inactivation of the T5 phage similarly
observed streaking decrease in phage activity achieved
immediately after rapid dilution. Furthermore, the sensitiv-
ity of the T5 phage to chelating agent shock (sodium citrate
or ethylenediaminetetraacetic acid) increased when the
concentration of the chelating agent increased. Interestingly,
higher inactivation was observed with low concentrations
of chelating agents. The same authors observed that the
inactivation of the phage by chelating agents was reduced
by ionic solution (such as 0.85% NaCl).

Adams (1949) checked the stability of bacteriophage T5
incubated at 37°C in salt solutions (phosphate buffer, buffer
plus citrate, and buffer plus calcium). He observed that the
phage was stable in the calcium ion solution but lost its
activity in phosphate buffer, whereas it was rapidly
inactivated in citrate solution. No phage particles were
detected after 2 h of incubation in 10 mmol/L phosphate
buffer with 2 mmol/L citrate (pH 7). He also showed that
divalent metals at millimolar concentrations might prevent
phage inactivation. He supposed that the increase in T5
stability in the presence of different anionic solutions
resulted from complex formation between the phage
particle and ion. Mylon et al. (2009) studied MS2 phage
stability in different solutions of LiCl, NaCl, KCl, and
CaCl2 in a range of 0.01–1.0 mol/L. Their observations
revealed that monovalent salts did not influence phage
aggregation. In contrast, the growth rate of the phage
aggregates increased with an increasing calcium salt
concentration. It was suggested that this resulted from
neutralization of the negatively charged moieties on the
phage surface by cation binding. The chemical composition
of water may also influence phage stability. The stability of
five Flavobacterium phages (PFpW-3, PFpC-Y, PFpW-6,
PFpW-7, PFpW-8) isolated from pond water collected from
Japanese ayu farms was tested for 21 days at 18°C (Kim et
al. 2010). There were no significant changes in the phage
titer in pond water, autoclaved filtered water, or broth
during the first 3 days of incubation, but their stability
decreased below the detection limit in pond water after
10 days. The persistence of MS2 and PRD1 phages was

compared in tap water and ultrapure water system samples
at room temperature and pH increasing from 7.6 to 8.9 and
at stable pH 7 (Governal and Gerba 1997). There was no
significant decrease in concentration of PRD1 during the
experiments, but MS2 showed a different decrease in
survivability in different types of water. The highest
inactivation was in post reverse osmosis water. These
observations were explained as resulting from phage
structure. The genetic material of PRD1 is DNA, which is
generally a more stable acid than RNA of MS2. After
removing contaminants, water becomes a “more powerful
solvent,” and the possibility to degrade the phage genetic
material increases. Moreover, phage PRD1 has internal
lipids which increase its resistance to degradation in
ultrapure water. It was suggested that ultrapure water, being
an aggressive solvent, attacks the virus surface through a
mechanism of direct oxidation. It causes head degradation,
dispersion of capsids, tail fragmentation, and release of
viral genetic material into the water environment. Jepson
and March (2004) observed that phage was more stable at
ambient temperature when stored in distilled water than in
tap water in which its titer decreased by 2–3.5 log after
2 weeks. It was suggested that halogenating agents in tap
water may inactivate phages. According to Thorne and Holt
(1974), the addition of 10 mmol/L Mg2+ to the NBY may
protect CP-51 phage against inactivation under unprofitable
temperature. A 1-h incubation of phage lysates at 0°C at
pH 6.8 with magnesium ions caused no detectable loss in
phage activity. In comparison, 60% decrease in initial
phage titer was observed when there was no Mg2+.
Similarly, other authors suggest that some metal ions may
protect phages against inactivation. Interestingly, Ca2+ (1 or
5 mmol/L) could protect Xp12 phage particles suspended in
10 mmol/L Tris buffer solution at pH 8.0 against inactiva-
tion by heating at 60°C (Chow et al. 1971). On the other
hand, Mg2+ in a concentration of 5 mmol/L increased
thermal inactivation of the phage. Therefore, it was
suggested that addition of 5 mmol/L CaCl2 to solutions
may prevent a loss of phage titer during the purification
process. Kuo et al. (1971) observed phage Xp12 dissocia-
tion by sodium citrate in Tris buffer at pH 7.5 at room
temperature. Phage particles exposed to 3 mmol/L sodium
citrate presented decomposition in DNA and empty heads
and tails. Gupta and Yin (1995) showed that bacteriophage
T7 lost its activity with half life after 30 s when was
exposed to 6 mol/L urea used as denaturing component.
Whang et al. (1996) presented that 1 mmol/L metal ions
may slow or accelerate T7 phage inactivation by urea. As
they observed, divalent metal ions (Mg2+, Ca2+, Co2+, Ni2+)
stabilized activity in the presence of urea, in contrast to
trivalents (Al3+ and Au3+) which destabilizated phages. The
presence of either of the ions caused loss of phage titer
more than 50-fold even at concentrations of 0.25 mmol/L.
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Conclusions

Bacteriophages can be resistant to unfavorable physical and
chemical factors, such as low and high temperatures, pH,
salinity, and ions. Thus, they can settle in extreme
environments. Based on the literature, it seems that phage
features in that field are highly diversified and may differ
not only among families, but also within them. So far,
anyone who is going to preserve phages should “know his
phage,” as suggested by Ackermann et al. (2004). High
bacteriophage resistance for external factors is important for
stability of phage preparations. However, this feature is
disadvantageous for industry when maintenance of the
activity of bacterial strains is important. Inactivation of
phages in different environments is multifactorial. It is
known that the variation of one factor that influences
phages may change phage sensitivity to the others (Thorne
and Holt 1974; Müller-Merbach et al. 2004). One can
expect that the growing interest of the pharmaceutical and
agricultural industries in phages will result in new data on
phage survivability and methods of their preservation.
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