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Helminth infection currently affect over 2 billion people worldwide, with those with the most
pathologies and morbidities, living in regions with unequal and disproportionate access to
effective healthcare solutions. Host genetics and environmental factors play critical roles in
modulating and regulating immune responses following exposure to various pathogens
and insults. However, the interplay of environment and genetic factors in influencing who
gets infected and the establishment, persistence, and clearance of helminth parasites
remains unclear. Inbred strains of mice have long been used to investigate the role of host
genetic factors on pathogenesis and resistance to helminth infection in a laboratory
setting. This review will discuss the use of ecological and environmental mouse models to
study helminth infections and how this could be used in combination with host genetic
variation to explore the relative contribution of these factors in influencing immune
response to helminth infections. Improved understanding of interactions between
genetics and the environment to helminth immune responses would be important for
efforts to identify and develop new prophylactic and therapeutic options for the
management of helminth infections and their pathogenesis.
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INTRODUCTION

Research into factors that influence host response during helminth infection are usually focused on
use of inbred mice raised in a specific pathogen free environment as found in most research
institutes and academic institutions across the world. However, in the real-world setting, helminth
infections are characterized by infections of individuals living in various communities with different
lifestyles as well as with wide genetic variations. Also, the intensity of helminth infection among
individuals varies markedly and can be influenced by various genetic and environmental factors
(1, 2). Therefore, in this review, we discuss the influence of genetic and environmental diversities in
the regulation of helminth induced immune response and their contribution to inter-individual
variation seen in responses during helminth infection (3, 4). Furthermore, we highlight ongoing
studies and future opportunities to examine the interaction between environment, genetics and
other variables that influences the interindividual variation seen during helminth infection.
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IMMUNE RESPONSE TO
HELMINTH INFECTION

Studies with genetically modified mice on the C57BL/6 background
has transformedourunderstandingofType2 responses tohelminths
in the last few decades. Immune responses during helminth infection
are characterized by recruitment and accumulation of innate
immune cells such as eosinophils, basophils, innate lymphoid cells
(ILC2), neutrophils, alternatively activated macrophages as well as
cell of the adaptive immune system such as B cells, Th2 and T
regulatory CD4 T cells (5–11). These cells produce Type 2 and
regulatory cytokines and other mediators which play important
protective and regulatory functions during helminth induced
inflammation (12–14). Recent advances demonstrate the critical
role other previously overlooked cells such as epithelial, neuronal,
and stromal cells play in contributing to and regulating Type 2
immune responses during helminth infection (5, 15, 16). These non-
immune cells can produce cytokines, alarmins and other bioactive
mediators that crosstalk with innate and adaptive immune cells to
regulate the response during helminth infection. Despite these
advances, inter-individual variation in these responses and the
influence of the environmental interaction with host genetics in
free-living mammals is not well understood.
GENETIC VARIATION IN RESISTANCE TO
HELMINTH INFECTION

Our ability to genetically manipulate mice has been fundamental
for increased understanding of mammalian physiology. As this
technology evolved over time, the C57BL/6 strain of mice has
emerged as the inbred strain of choice for most immunological
studies. As a result, our understanding of the basic mechanisms
that surround immune response during helminth infection has
also improved significantly with the use of genetically modified
mouse models for dissecting various mediators and immune cell
populations in the regulation of helminth induced immune
responses. Increasing complexity of mouse models include cell
specific knockouts, genetic inducible fate mapping models, in
addition to the global knock-out and/or transgenic mice models
have been critical in identifying new pathways that regulate Type
2 and immunoregulatory responses to helminths. To reduce
variation in these reductionist experiments to characterize
detailed mechanisms, genetically identical mice strains of
similar age groups and sometime sex are used to isolate and
study the role of specific cell types and immune mediators.

However, various other studies have used in-bred strains of
mice to study the role of genetic variations in resistance to
helminth infection (17). For example, previous studies have
shown that the BALB/c strain of mice are more susceptible to
Litomosoides sigmodontis, a filarial nematode, compared to the
C57BL/6 mice or the C57BL/10 mice (18–20). This contrasts
with other intestinal helminth parasites such as Trichuris muris
(21–23) and Heligosomoides polygrus (24–26) where the BALB/c
strain has been shown to be more resistant. Other studies have
Frontiers in Immunology | www.frontiersin.org 2
also examined inbred strains with various other helminth
parasites (Table 1). While genetic variation clearly influences
susceptibility and resistance to helminth infection in mouse
models, our understanding of the basic mechanisms elicited
during helminth immune response critical for mediating these
differences remain unclear. While mechanisms driving these
differences include the role of various effector immune cells,
cytokines, and immunoglobulins (Table 1), the role of genetic
variation in regulating primary and/or secondary sentinels of
Type 2 inflammation (55–57), such as epithelial, stromal, and
neuronal cells is currently less appreciated and has not been well
studied. For example, in the area of epithelial cell biology,
C57BL/6 and BALB/c mice show differences in tuft cell
response at steady state and in response to a protozoa parasite,
Trichomonas muris, but no significant difference was seen in tuft
cell response following chronic infection with H. polygyrus at
peak of parasite establishment (58). The dynamics of tuft cell
hyperplasia in the different inbred strain of mice could vary
wherein the BALB/c mice might have higher response than the
C57BL/6 mice (59). Hence, the role of these sentinels in the
pathogenesis and outcome to helminth infection should be
examined in different inbred strains of mice.

Studies in other free-living mammals such as the livestock
population and wild animals has also highlighted the importance
of genetic factors in susceptibility to helminth infection (60–64).
For example, farmers and livestock breeders will often use their
knowledge of breed specific resistance and susceptibility to
helminth infection to minimize cost and losses associated with
infection with helminths, by selecting helminth parasite resistant
strains for breeding. Some studies have linked these genetic
resistant and susceptibility patterns to the protective Type 2
mechanism (60, 64, 65).

There are fewer studies in the human population that provides a
mechanistic understanding to the influence of genetic variations on
susceptibility to helminth infection, despite substantial evidence for
the role of genetics in determining susceptibility to infections (1).
Logistical and ethical constraints often limit human population
studies to correlational observations rather than a study of cause-
and-effect relationships. Currently, host genetics is said to account
for about 20 to 40% of variation in intensity of worm burdens seen
during helminth infections (1). For example, a few studies have
demonstrated the role of genetic factors in susceptibility to human
Ascaris infection (66–68). Notably, they were able to associate this
genetic factor to a peak in chromosome 13 which is close to the
known locus of a major candidate gene, TNFSF13B, involved in
the regulation of B cell activation and immunoglobulin secretion
(68–71). A few other genetic factors such as during Trichuris
trichiura infections have also been identified (72) and associated
with localization of two significant quantitative trait loci on
chromosomes 9 and 18, which contains genes that can influence
immunoregulatory cytokines like IL-10 (73). Susceptibility to other
helminth parasites such as blood flukes like Schistosoma mansoni
and hookworms like Necator americanus and Ancylostoma
duodenale has also been linked to genetic factors (74–78). What is
unclear is when linkage of susceptibility to helminth infection
involves more than one genetic locus, whether this is dependent
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on one gene or if genetic variation in other genes could affects
resistance to helminth parasite. Perhaps mechanistic insights could
be gleaned from mouse models, if these regions are conserved, to
understand the relationship and function of those genes. Therefore,
such clinical and genetic epidemiology studies may guide the
conduct of fundamental and basic immunology experiments.

Host genetics could also indirectly influence other host
associated factors which then indirectly influence the immune
system. For example, difference in expression of major
histocompatibility complex molecules can influence the
composition of the gut microbiome (79–82) through differences
in antibody responses against commensal bacteria (80). Incidentally,
these MHC associated differences in gut microbiome may then
influence subsequent susceptibility to helminth infection (79).
Hence, genetic factors may alter the host microenvironment to
affect subsequent outcomes to helminth infections. However,
because these are observational studies in primates, it is
challenging to mechanistically isolate the effect of immune
mechanisms resulting from different MHC haplotype and effects
due to microbiome differences.
GENETIC VARIATION IN PATHOGENESIS
OF HELMINTH INFECTION

It is important to distinguish between the role of genetic
variation in resistance and pathogenesis to helminth infections.
Although resistance and pathogenesis are linked because disease
morbidity is often observed in heavily infected individuals,
mechanisms that drive disease pathogenesis may be unrelated
to mechanisms responsible for parasite resistance. Our
understanding of pathogenesis during helminth infections is
based primarily on studies with genetically modified mouse
Frontiers in Immunology | www.frontiersin.org 3
models, which provide insights into the pathways, cytokines
and other mediators that regulate the disease processes. Also,
differences in disease outcomes from infection of inbred strains
of mice have provided additional clues in the heterogeneity of
immune response and severe pathology.

The cytokine balance during infection is an important
determinant of pathogenesis, mediating both resistance and
tolerance to infection. Rapidly after infection, pathogen
associated molecular patterns are detected by pattern
recognition receptors (PRRs) together with release of alarmins
like IL-33, IL-25 and TSLP at epithelial barriers (83, 84). This leads
to activation of transcription factors, such as STAT6 and GATA3,
which subsequently induce the upregulation of sets of genes
including receptors, cytokines, chemokines, and genes regulating
the production of eicosanoids (85–87). Cytokines, chemokines,
and eicosanoids can induce recruitment, accumulation, and
differentiation of immune cells with release of additional sets of
effectors cytokines that then induce repair, differentiation, and
release of effector molecules from the epithelial barrier to help in
the clearance of the worms (87–90). Thus, cytokines, chemokines,
eicosanoids, and other mediators are key in the initiation as well as
in the pathogenesis of anti-helminth immune responses.

Alterations to the balance of the cytokine response because of
host genetic variation can affect the inflammatory mediator profile
which can determine the pathogenesis of helminth infection. For
example, C57BL/6 and CBA mice show different levels of
immunopathology during S. mansoni infection, when challenged
with a similar number of cercariae. Thismaybedue to differences in
the switch from a pro-inflammatory T helper 1 (Th1)/T helper 17
(Th17) response to a tissue protective Type 2 response. The CBA
mice show higher levels of proinflammatory Th1/Th17 cytokines
which does not diminish but instead persists alongside the rising T
helper 2 (Th2) responses, while C57BL/6 mice can regulate the
Th17 response during the expansionofTh2 cells resulting inmilder
TABLE 1 | Understanding the role of naturally occurring genetic variation in resistance and outcomes to helminth infections – mice models.

Genetic
Susceptible
strains

Helminth
infection

Type of
Helminth
Parasite

Protective/Susceptible mechanistic explanation References

BALB/c Litomosoides
sigmodontis

Filarial
Parasites

CD4 T lymphocytes; production of IL-4 (18–20, 27)

AKR; B10.BR Trichuris muris Whipworm Higher Th1 effector response characterized by increased IFN gamma production (21–23,
28–31)

CBA; C3H;
SLA/J;
C57BL/6;
C57BL/10

Heligmosomoides
polygyrus

Hookworm Decreased Th2 driven effector response characterized by lower IgE responses, lower intestinal mast
cell densities, alternatively activated macrophages and a concomitant increase in TNFa and IFN g
response; Increased proportion of CD103+FoxP3+ activated T Regulatory cells in susceptible strains;

(24–26,
32–37)

C57BL/6 Ascaris suum Round
worms

Hepatic factor, less intense inflammatory and repair response in the liver? Role of secretory IgA (38–40)

CBA;
BALB/c;
C57BL/6;

Nippostrongylus
brasiliensis

Round
worms

Developmental arrest in the lungs or migration deficiency of larva into the intestinal tissue in resistant
mice, FVB/N; Immunological mechanism is not clear, possibly a Type 2 dependent immune response
that limits tissue associated immune response

(41–43)

BALB/c,
DBA/2

Taenia crassiceps Tape
worms

T cell dependent mechanism. Role of Regulatory T cells (44–48)

C57BL/6 Trichinella spiralis Round
worms

Mucosal mast cells (49)

CBA;
C57BL/10

Schistosoma
mansoni

Blood flukes
(trematodes)

Increased IL-1b and IL-23 cytokines by DCs and T helper 17 polarization; Proinflammatory T helper 1/
T helper 17 responses persist along with T helper 2; Reduction of the alternative activation marker

(50–54)
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pathology (50–52). However, it is notable that a prolonged Th2
response may lead to other forms of pathology such as increased
fibrosis in the BALB/c mice (91). Similarly, S. mansoni infection in
humans can have different outcomes and pathophysiology, ranging
from the mild symptoms to severe symptoms such as the
development of severe hepatic fibrosis, hepatosplenic disease,
ascites, and encephalopathy, irrespective of the intensity of
infection (77, 78). In some cases, a genetic explanation has being
proposed in individuals with severe pathological outcomes with
some evidence ofpolymorphisms in cytokine and cytokine receptor
genes like IFN-gR1 gene, which encodes the receptor for the Type 1
cytokine, IFN-g (78, 92), those involving TGFBR2 which encodes
for receptor of regulatory cytokine, TGF-b (78) and IL-22RA2,
which encode the receptor for IL-22 (93). Other genes such as
polymorphisms in CNN2 gene, which encodes for the connective
tissue growth factor (CTGF), a stromal factor, has also been
implicated in the pathophysiology of these disease (94, 95).

Resistance to helminth infection in host of different genetic
backgrounds may also be associated with roles of different
cytokines in regulating the outcome to infection. For example,
differences in susceptibility to T. muris infection in C57BL/6 mice
compared to BALB/c mice might be due to the role of different
cytokines with IL-4 playing a predominant role in C57BL/6 mice
and IL-13 playing a more predominant role in BALB/c mice (96).
In addition, the protective immunity in C57BL/6 mice vaccinated
with radiation-attenuated (RA) larvae of S. mansoni is associated
with Th1 immune response, while on BALB/c background the
protection depends on Th2 responses. Here, injection of RA-
attenuated larvae produced lower levels of IgG1 antibodies in
serum IL-4Ra deficient mice (IL-4Ra-/-) on BALB/c background,
but the serum from vaccinated wild-type BALB/c mice confers
protection to IL-4Ra-/- mice, suggesting the Th2 antibodies is
crucial for parasite elimination and resistance in BALB/c mice
(97).Genetic differences due to a distinct pattern of cytokines
secreted and markers expressed by myeloid cells can also correlate
with different helminth infection outcomes. For example,
dendritic cells (DCs) from S. mansoni-infected high morbidity
CBA mice display increased expression of CD209a (C-type lectin
receptor – CLRs) which is necessary for the production of IL-1b
and IL-23 that drives pathogenic Th17 cells, as opposed to the low
morbidity C57BL/6 mice (51, 52, 98). Similarly, C57BL/10 mice
develop more severe schistosomiasis, as defined by significant
larger granulomas, increased proinflammatory cytokines
production by DCs and higher levels of IL-17 compared to
C57BL/6 mice. This phenotype is tightly connected to DCs
function, because DCs from C57BL/6 mice expressed high levels
of Ym1 and RELMa, marker of alternative activation that
regulates the tissue repair in responses to S. mansoni eggs (53).

Population genetics studies in humans have shown that the
number of pathogens in a specific geographic region can have
selective pressure on genes related to cytokine production and
responsiveness (99–101), regulation of cellular responses (102) as
well as transcription factors important for the induction of
protective Type 2 immune response during helminth infection
(103, 104). This suggest that evolutionary pressure in different
geographic location with different parasite profiles can influence
Frontiers in Immunology | www.frontiersin.org 4
polymorphism of genes and regulatory elements that can then
affects response to parasites endemic in those regions.

Parasite Factors as Source of Variation to
Host Responses During Helminth Infection
In addition to host genetic factors, variation in parasite species
and genetics can also be a major contributor to heterogeneity in
susceptibility and resistance patterns during helminth infection
(105–108). For instance, variation in reproductive output and
consequently egg production following helminth infection has
been attributed to parasite genetic factors (108). Parasite genetics
could also influence the properties of excretory and secretory
proteins released from the worms, which could in turn influence
host-parasite interactions as well as parasite chronicity patterns
(109, 110), the ability of the parasite to evade the host immune
system (110) or the pathogenesis of immune response in the host
(107, 108, 111–114). For example, differences in lifecycles and
egg properties between S. haematobium and S. japonicum results
in varied cellular and humoral immune responses despite
belonging to the same helminth parasite genus (108, 111, 112).

Moreover, different stages of the lifecycle are also an important
source of heterogeneity in host responses. As seen in S. mansoni,
there is a clear shift from a Th1 mediated immune response to a
Th2 immune response at the onset of egg production (115), while
the cercariae and larva induce Th1 dominated immune response
(116). The different lifecycle stages also produce different suites of
excretory/secretory products that modulate the host response in
diverse ways to promote invasion, infection, adhesion and the
immunoregulatory process (108, 117, 118). Hence, parasite factors
are a critical source of heterogeneity in immune responses during
helminth infection.

Furthermore, in mouse models of infection, strain specific
differences have also been described. Strains of T. muris isolated
andmaintained indifferent parts of theworld, including the S strain
(isolated in Sobreda, Portugal), the E strain (isolated in Edinburgh)
and the E-J strain (originally E strain, which has beenmaintained in
Japan since 1969) can induce different immune response following
infection ofmice. The E and E-J strains ofT.muris generally induce
a Th2 skewed response whereas the S-strain induces a Th1 skewed
response characterized by production of IFN-gamma and IL-12
(107, 113, 114). Therefore, heterogeneity in parasite genetics can be
a source of variation in immune response and perhaps helminth
parasites canadapt theirmetabolismandalter the immuneresponse
to fit into their environment (109, 119). Since most laboratory
strains have beenmaintained and passaged in different laboratories
for several years, it is possible that parasites used in most
laboratories diverge significantly from wild helminth parasites
that are present in their natural environment.
ROLE OF ENVIRONMENT DURING
HELMINTH INDUCED TYPE 2
IMMUNE RESPONSE

There are many environmental variables that can affect parasite
burden in an endemic population and dissecting the relative
April 2022 | Volume 13 | Article 869163
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contribution of each variable can be difficult. Most helminth
infections are soil transmitted parasites; thus, the host
environment is important in determining exposure to and
transmission of helminth parasites (2). In addition, the
environment also plays a crucial role in determining variation
in immune responses, pathogenesis of diseases as well as
susceptibility versus resistance patterns during helminth
infection. This can be the biotic environment of the individual
which can constitutes the commensal microbial communities
within the host or the other free living organismal life the host
interacts within the environment including vectors and
intermediate host for parasites. Other biotic factors including
previous microbial experience and infection history of the host
are important in influencing susceptibility and resistance to
helminth infection (120–122). For example, primary infection
activates memory CD4+ T cells and alternatively activated
macrophages that mediate resistance against secondary
helminth infection (43, 123–125). There are also examples
whereby previous helminth infection can make the host more
susceptible to secondary helminth infection (126). Indeed,
helminth co-infection may influence outcome of other
infections and many studies have investigated the influence of
previous helminth infections on the pathogenesis of other
infectious diseases – including bacterial, protozoan, and viral
diseases (120–122, 127–134). This experimental study design
stems from the idea that mammals have co-evolved with
helminth parasites and they could be part of the natural
macrobiota of the host (135, 136). However, pre-existing
disease and co-infections may also influence outcomes during
helminth infection. For example, prior infection and co-infection
of the protozoan parasite Toxoplasma gondii with the enteric
nematode H. polygyrus can limit the host protective Type 2
immune response directed against the helminths making the
host more susceptible to the worms (137). This results from the
immune landscape in the host being skewed towards a Type 1
response by the protozoan parasite (137). A similar phenomenon
has been reported wherein prior infection with protozoan
parasites like T. gondii and Plasmodium parasites and viral
pathogens like Human T-lymphotropic virus 1 (HTLV-1),
which all induce a Type 1 immune response, can limit the host
response during subsequent infection with helminth parasites
like Fasciola hepatica, Nippostrongylus brasiliensis and
Strongyloides stercoralis (122, 138–141). Hence, prior and co-
infections by other pathogens can influence pathogenesis and
susceptibility to helminths, thereby potentially contributing to
inter-individual variations in immune response during helminth
infection. In addition to biotic factors, these could also involve
abiotic factors which constitute climatic factors such as the
temperature, humidity, rainfall; physical factors such as the soil
and mineral composition of the environment; and chemical
factors such as the oxygen, nitrogen, and CO2 levels in the
environment. Factors such as this can influence the lifecycle of
the parasite outside the host and therefore transmissibility of the
helminth parasite. These biotic and abiotic factors can also have
major implications on the tone of immune response as well as
host susceptibility to helminth parasite infection thereby
Frontiers in Immunology | www.frontiersin.org 5
contributing to inter-individual variation during helminth
infection (142).

Several studies have shown that the environmental differences
can significantly influence the host immune phenotype and
profile (143–146) and consequently susceptibility to subsequent
helminth infections (147) (Figure 1). The importance of the role
of environmental influences on the immune system can be
appreciated from twin studies which show that variability in
immune responses can be dictated in large part by acquired and
not only genetic factors especially with increasing age
emphasizing the influence of environmental factors on
immune responses (148). Although, similar twin studies
experiment in the context of helminth infection have not really
been done in humans to understand the role of environment
versus genetics during helminth infection. The use of mice
models such as the rewilding mice model has helped us
appreciate the critical role the host environment can play in
outcomes during T. muris infection (147, 149). However, there is
still a need to understand how the tissue microenvironment (3)
and/or host macroenvironment (142, 150) can influence
susceptibility patterns and helminth infection outcomes during
exposure to various other helminth parasite types (hookworms,
roundworms, tapeworms). New environmental mouse models
such as “rewildings”, “wildlings”, “co-housing”, “sequential
infection models”, “co-infection models”, “chimeric wild
mouse” etc (142, 146, 151–153) provide new opportunities to
understand the role of environmental factors in influencing
susceptibility to infection and re-infection by helminth parasite.

Rewilding mice involves introducing laboratory mice into an
outdoor enclosure. This outdoor enclosure exposes mice to a
natural environment including soil, weather, vegetation,
microbial population, but protects against predation, and
serves as a bridge between laboratory controlled experiments
and what happens in a more natural environment (147). The
rewilding mice model has already provided critical insights into
the role of host macroenviroment on helminth infection
outcomes (147, 149). Rewilded mice were more susceptible to
the intestinal helminth parasite T. muris with higher worm
burdens as well as more worm biomass than the laboratory
controls (147). Rewilding experiments have also revealed how
the environment contributes to the microbial diversity in the gut
(149), provided insights into the role of fungal colonization to
neutrophil circulation (143) as well as uncovered the role of
environment and genetic factors in immune composition and
responsiveness (144).

Besides rewilding, other approaches focus on increasing the
microbial diversity in the gut environment, including fecal
transplants, co-housing, exposure to dirty bedding (formites)
and embryo transfer from wild and pet store mice (145, 146, 151,
153, 154). Thereby leading to various model including
“wildlings”, “chimeric lab-wild models”, which have a natural
and diverse metaorganisms at all body sites similar to wild and
petstore mice (145, 146). These mice may have better
translational value than specific pathogen free laboratory mice
found in most biomedical centers with immune systems that are
a better reflection of the human situation (142, 146, 152, 153).
April 2022 | Volume 13 | Article 869163
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These mice mount an immune response that limits exuberant
responses which promotes survival following intense
inflammatory conditions and are better able to control pathogen
exposure compared to their SPF counterparts (145, 151). However
in some cases, these mice generate stronger immune responses than
their controls, for example, during exposure to house dust mite
antigen (155). Other models have focused on sequentially infecting,
co-infecting, persistently infecting SPF mice with various known
microbial pathogens to expand their microbial experience,
immunological landscape and microenvironment so that they
better reflect the human experience (129, 156). This delivers a
controlled set of pathogens to the mice and eliminates the
requirement for special housing facility in order to use these mice
to test various hypotheses in biomedical research.

In conclusion, there is considerable interest in developing these
new tools (142, 152) to better model the human immune response
in mice and to assess the role of environment and its interaction
with genetic factors on susceptibility and resistance patterns during
helminth infection.
The Microbiome as a Major
Environmental Variable
The microbiome contributes immensely to an individual’s biotic
environment and could be an important environmental variable
influencing outcomes to helminth infection. Since these
microbial communities are found at epithelial barrier and
mucosal surfaces where they can directly interact with
helminth parasites, they can shape the tissue micro-
environment niches and influence helminth infection outcomes
(157–160). For example, the microbiome composition in mice
Frontiers in Immunology | www.frontiersin.org 6
prior to H. polygyrus infection or S. mansoni infection can
influence the worm burden following helminth infection (157,
158). Similarly, oral colonization of mice with commensals such
as Lactobacillus casei, Bifidobacterium animalis prior to helminth
infection can alter the outcome of T. muris and Strongyloides
venezuelensis infection in mice (161, 162). Furthermore,
treatment of mice with L. casei, significantly increase the cecal
worm burdens during T. muris infection while feeding mice with
B. animalis significantly reduced S. venezuelensis worm burden
and egg output (161, 162). There could be direct or indirect
effects of these interactions. The effects of the microbiome
composition on immune cell populations and epithelial cell
function could influence infection outcomes (157, 163, 164).
For example, the expression of Pla2g1b, an epithelial derived
phospholipase A2, that is also a host-derived anthelminthic
factor is dependent on the intestinal microbiota (163).
Similarly, the intestinal microbiome composition and
abundance is associated with IL-10 signaling in the host (164).
Sometimes, it is mechanistically unclear how microbiome
changes can influence susceptibility and pathogenesis of
disease during helminth infection, although studies have
shown that helminth infection can influence the microbiome
composition and diversity in the host recently reviewed here
(159). A recent study by Moyat et al., 2022 using germ-free,
antibiotic-treated, and specific pathogen-free mice clearly
demonstrated that the intestinal bacteria composition can have
an impact on host resistance to intestinal helminth H. polygyrus
(165). Depletion of a complex microbiota through long term-
treatment with antibiotics or in germ free mice resulted in more
susceptibility to worm infection via a mechanism that is
dependent on intestinal acetylcholine, a neurotransmitter,
FIGURE 1 | Genetic and environmental factors contribute and interact to influence susceptibility patterns and pathogenesis of immune response during helminth infections. The
Figure in this manuscript was created using images from the Servier Medical Art’s image collection (smart.servier.com) and licensed under a Creative Commons Attribution 3.0.
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necessary for intestinal motility (165). This suggests that the
microbiome as a biotic factor, can influence the production of
critical signaling molecules necessary for parasite clearance
through the “weep and sweep” response. In contrast, S.
mansoni infection requires a complex microbiome for greater
parasite fecundity and pathology during infection (166, 167).
Germ-free mice and antibiotic treated mice infected with S.
mansoni infection resulted in decreased fecal egg counts as well
as reduced intestinal pathology and inflammation (166, 167). In
summary, the microbiome is a major biotic environmental factor
that contributes to inter-individual variation during helminth
infection through its effects on the immune and epithelial cell
function of the host.

Other studies have suggested that the intestinal bacteria can
directly influence parasite establishment, hatchability, and
development (168–172). Various in vitro and in vivo methods
demonstrated that the presence of Escherichia coli, a common
intestinal commensal (173), is important for hatchability of T.
muris eggs. The role of E. coli in parasite establishment is driven
by the presence of Type 1 Fimbriae as well as release of microbial
byproducts (168, 169). Differences in egg hatching following
infection could affect the establishment of the parasite and
subsequently the parasite burden, hence the presence or absence
of specific commensal bacteria may directly influence parasite
burden independently of the host immune response. Experiments
with germ free mice or gnotobiotic animals in helminth infection
models also demonstrate that the success of parasite infection and
fitness is dependent on presence of commensal bacteria (174–178).
Therefore, differences in abundance and composition of intestinal
bacteria, which could be influenced by use of antibiotics, could
contribute to inter-individual variation in parasite burden observed
in population studies during helminth infection.

Additionally, the contribution and role of many other
components of the microbiome such as fungi, viruses, and
archaea (179) in host immune response and parasite development
remains poorly understood and whether these components also
influence susceptibility and disease pathogenesis during helminth
infection needs to be further explored.
INTERPLAY BETWEEN ENVIRONMENT
AND HOST GENETICS

While host genetics are important contributors towards response
to helminth infections (102). Twin studies suggest that there are
both heritable and non-heritable explanations for variation in
immune responses (148). However, these two critical factors
rarely exist in isolation (142, 180). There are limited studies that
assess the additive and interactive effect of environmental and
genetic effect on immune responses. As individuals with similar
genetic profiles would usually live within the same communities
and environment, it is challenging to dissociate one from the
other in human studies.

Therefore, mouse models could be helpful in dissociating the
complex interactions that exist between genetic and
environmental contributors to variation in helminth infection
(Figure 1). For example, there are indicators that genetic
Frontiers in Immunology | www.frontiersin.org 7
differences in parasite resistance in the laboratory setting may
be lost in a natural environment. While H. polygyrus infection of
BALB/c and C57BL/6 mice in a laboratory setting shows clear
differences in resistance to infection, natural infection results in
no observable significant differences between these two inbred
resistant and susceptible mice (181). Although mechanistically
unexplained, a subsequent study suggests that the chronicity of
the infection model could explain why the difference was lost
between these two different inbred strains of mice (182). In our
own studies, differences in susceptibility between wild-type mice
and susceptible STAT6-/- knockout mice to T. muris infection in
the lab setting are no longer observed when these mice are were
placed in the re-wilded environment and infected with T.
muris (147).

Such interactions between genetics and the environment
could be complex and mechanistically distinct. As described
above, genetic factors such as MHC haplotype may indirectly
influence microbial communities within the host (biotic
environmental factors) to alter susceptibility to helminth
infection (79). How the environmental pressures influences the
heritability of helminth resistance genes in the population is also
of interest, as shown in a study in sheep whereby significant
genotype by environment interactions persists following
infection with another helminth parasites (183).

Other host variables such as age, sex, nutritional status could
interact with genetics and environmental factors to influence
immunity and affect the outcome of helminth infection. A
combination of controlled re-wilding experiments (142–144, 147)
and perhaps twin studies in helminth endemic populations with
detailed questionnaires may provide further insights into the
dynamics of interactions of such complex factors.
DISCUSSIONS AND CONCLUSIONS

Environmental exposure and host genetic background are
important drivers of inter-individual variation in susceptibility
and outcome of helminth parasite infections. Both play a role in
driving heterogeneity of responses either as independent variables
or through specific interactions that remain poorly understood.
Since disease morbidity and parasite burden is observed primarily
in small subsets of infected individuals, it is important that
necessary resources and research efforts are allocated into studies
deciphering howgenetic and environmental interactions influences
susceptibility to the world’s most neglected disease in human and
veterinary medicine. This will require bringing together skillsets
and technologies fromdiverse fields including ecology, quantitative
genetics, genomics, immunology, biostatistics, and parasitology.
Together, such studies can improve our understanding of key
translational factors that regulate immune responses during
parasitic helminth infection. Findings from a diverse range of
inbred and outbred strains of mice in different environments
might provide a more accurate reflection of factors important in
diverse human and animal population under free living conditions.
There are also opportunities for the identification of new pathways
and alleles or regulatory elements that regulate responses in other
Type 2 immune mediated diseases such as allergic, metabolic and
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fibrotic diseases (3, 88). Additionally, there is a need to address the
rising incidence of drug resistance seen in the use of anti-
helminthics in human and veterinary medicine (184, 185). To
further complete this picture, exciting new studies are beginning
to show the importance of heterogeneity in helminth parasite
genetic factors in the susceptibility and resistance patterns during
helminth infection (105–107). The role of parasite genetic diversity
in the pathogenesis and outcome of helminth infection, remains a
relatively understudied and interesting area to investigate. Parasite
genetic heterogeneity could influence the excretory/secretory
products produced from these parasites and influence the
immunomodulatory properties of these factors. How this might
contribute to inter-individual variation to helminth infection is an
interesting area to explore.
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Microbiota Beyond Bacteria-Mycobiome, Virome, Archaeome, and Eukaryotic
Parasites in IBD. Int J Mol Sci (2020) 21(8):2668. doi: 10.3390/ijms21082668

180. Maizels RM, Nussey DH. Into the Wild: Digging at Immunology's
Evolutionary Roots. Nat Immunol (2013) 14(9):879–83. doi: 10.1038/ni.2643

181. Scott ME. Heligmosomoides Polygyrus (Nematoda): Susceptible and Resistant
Strains of Mice are Indistinguishable Following Natural Infection. Parasitology
(1991) 103(3):429–38. doi: 10.1017/S0031182000059953

182. Scott ME. High Transmission Rates Restore Expression of Genetically
Determined Susceptibility of Mice to Nematode Infections. Parasitology
(2006) 132(5):669–79. doi: 10.1017/S0031182005009583
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