Linköping University Post Print

The influence of graft choice on isokinetic muscle strength 4-24 months after anterior cruciate ligament reconstruction

Sofia A Xergia, Jodie A McClelland, Joanna Kvist, Haris S Vasiliadis and Anastasios D Georgoulis

N.B.: When citing this work, cite the original article.

The original publication is available at www.springerlink.com:

Sofia A Xergia, Jodie A McClelland, Joanna Kvist, Haris S Vasiliadis and Anastasios D Georgoulis, The influence of graft choice on isokinetic muscle strength 4-24 months after anterior cruciate ligament reconstruction, 2011, KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, (19), 5, 768-780. http://dx.doi.org/10.1007/s00167-010-1357-0 Copyright: Springer Science Business Media http://www.springerlink.com/

Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-67964

1	1	The influence of graft choice on isokinetic muscle strength 4-24 months after
1 2 3	2	anterior cruciate ligament reconstruction.
4 5	3	
6 7 0	4	Sofia A Xergia RPT ¹ , Jodie A McClelland RPT ^{2,3} , Joanna Kvist RPT ⁴ , Haris S
9 10	5	Vasiliadis MD ^{1,5} , Anastasios D Georgoulis MD ¹
11 12	6	
13 14 15	7	¹ Orthopaedic Sports Medicine Center of Ioannina, Department of Orthopaedic
16 17	8	Surgery, University of Ioannina, Greece
18 19 20	9	² Musculoskeletal Research Centre, La Trobe University, Melbourne, Australia
21 22	10	³ Department of Physical Therapy, University of Delaware, Newark, Delaware, USA
23 24 25	11	⁴ Division of Physiotherapy, Department of Medical and Health Sciences, Linköping
26 27	12	University, Linköping, Sweden
28 29 20	13	⁵ Molecular Cell Biology and Regenerative Medicine, Sahlgrenska Academy,
30 31 32	14	University of Gothenburg, Sweden
33 34	15	
35 36 37	16	
38 39	17	Correspondence to:
40 41 42	18	Anastasios D. Georgoulis, MD,
43 44	19	Orthopaedic Sports Medicine Center
45 46 47	20	Ioannina, 45110, Greece
48 49	21	PO BOX 1042
50 51 52	22	Email: georgoulis@osmci.gr
52 53 54	23	TEL/FAX: (+30) 26510-64980
55 56 57	24	
57 58 59		
60 61		
ь∠ 63 64		1
65		

25 Abstract

Purpose: Regaining adequate strength of the quadriceps and hamstrings after anterior cruciate ligament (ACL) reconstruction is important for maximizing functional performance. However, the outcome of muscle strength after either BPTB or hamstrings autograft is unclear given the plethora of published studies that report post-operative muscle strength. The purpose of this study was to systematically compare the muscle strength of patients who have undergone ACL reconstruction using either Bone Patellar Tendon Bone (BPTB) or Hamstrings (HST) autograft.

33 Methods: The databases of MEDLINE, Cinahal and EMBASE were systematically
34 searched for articles that report muscle strength outcome following ACL
35 reconstruction. The quality of the studies was evaluated and a meta-analysis of the
36 muscle strength outcomes was conducted on reported data.

37 Results: Fourteen studies were included in this systematic review; eight Randomized 38 Control Studies (RCT) and six non-Randomized Control Studies (non-RCT). A meta-39 analysis was performed involving eight of the included studies (4 RCTs & 3 non-40 RCTs). At 60⁰/sec and 180⁰/sec, patients with BPTB graft showed a greater deficit in 41 extensor muscle strength and lower deficit in flexor muscle strength compared with 42 patients with HST.

43 Conclusion: This systematic review of Level III evidence showed that isokinetic
44 muscle strength deficits following ACL reconstruction are associated with the
45 location of the donor site. These deficits appear to be unresolved up to two years after
46 ACL reconstruction.

48 Keywords: ACL reconstruction, isokinetic muscle strength, systematic review, meta-49 analysis.

50 Level of evidence; III

52 Introduction

Rupture of the Anterior Cruciate Ligament (ACL) is one of the most common athletic injuries of the knee [17, 60, 14]. Lyman et al recently estimated that the frequency of ACL reconstruction is increasing in the United States and that younger patients are at a higher risk for re-rupture of the ACL graft [4]]. The consequences of an ACL rupture to the function of the involved limb are multifaceted and possibly include a decrease in joint stability, muscle weakness, meniscal damage, pain and, in the long term, development of osteoarthritis [61, 30, 72, 66, 54, 29, 46, 51, 58, 47, 50]. In an attempt to prevent these deficits in joint function, reconstruction of ACL has become one of the most common orthopaedic interventions. Although many different surgical techniques and an increasing number of graft types have been described in the literature, autograft reconstruction using Bone Patellar Tendon Bone (BPTB) or Hamstrings Tendon (HST) appear to be the most popular grafts choices [4, 12, 23, 24, 26, 53, 45].

Despite, a plethora of recently published comparative studies, the relative effectiveness of the different grafts used for the reconstruction of ACL remains unclear [4, 6, 7, 11, 12, 15, 23, 24, 27, 33]. Maximizing knee stability after ACL reconstruction is one of the most important criteria for the choice of graft. Postoperative stability allows the performance of rehabilitation protocols that aimed to restore normal function and thus safe and fast return to pre-injury activity level [48]. The superior post-operative stability afforded by BPTB autograft is likely to be related to enhanced healing from bone-to-bone attachments [3, 59, 71]. However, increased donor- site morbidity has been reported after harvesting BPTB autograft. Specifically, anterior knee pain, quadriceps weakness and worse results in functional

 tests along with an increased rate of patellar fractures have been observed [43, 44, 40, 27, 49]. Harvesting of the HST autograft may avoid some of these post-operative problems, but is associated with hamstring muscle weakness and slower healing of the graft attachment site that may predispose patients to higher risk of re-rupture [69, 2, 65]. Thus, both of these graft choices are limited in the their ability to restore knee function for people with ACL rupture, and there is consequently an ongoing debate concerning the superiority of one graft over the other. An imporant aspect of this debate is the outcome of lower limb muscle strength following either of these graft types.

Evaluation of muscle stength can be accomplished by using functional tools (incorporating hop or twisting) or single joint evaluation tools [52, 9, 2]. One of the most commonly used tools that is reliable in assessing single-joint muscle strength is isokinetic dynamometry [56, 19]. In comparison to other measures of strength, isokinetic dynamometry allows quantification of muscle strength deficit through the assessment of specific parameters like work per unit, torque at spefici joint angles and the widely used peak torque value [56, 19, 66, 22]. In the majority of studies, that investigate muscle strength following ACL recontruction, the strength of the operated limb is recorded as a deficit or gain in comparison to the contralateral healthy limb. Restoration of similar muscle strength between reconstructed and healthy knee, is considered to be a critical factor for a safely return back to dynamic activities Thus, the restoration of muscle strength ratio between the operated and [48]. contralateral limbs for both the quadriceps and the hamstrings is crucial after an ACL reconstruction for a fast an uneventful return to pre-injury activities [48]. There is evidence that muscular recovery is closely related to pre-operative muscle strength the time between injury and reconstruction and the pre and post surgery rehabilitation [22,

 101 55, 8]. In addition, changes in the sensory system with ACL reconstruction, such as
102 alterations in the somatosensory evoked potentials or the development of inconsistent
103 postural synergies, may also influence muscle [18].

104 Although many authors have compared lower limb muscle strength in patients 105 with ACL reconstruction after either BPTB or HST grafts, the plethora of information 106 is difficult to interpret. Therefore, a systematic review of the literature is warranted to 107 synthesize reported findings of the isokinetic muscle strength in studies comparing 108 ACL reconstruction using either BPTB or HST autografts. Clarification of muscle 109 strength recovery after ACL reconstruction using either graft type will enhance 110 decision-making with regards to graft choice and rehabilitation.

Material and methods б A thorough search of the databases MEDLINE, Cinahal and EMBASE for articles that compared muscle strength using isokinetic dynamometry between patients that had undergone ACL reconstruction with either BPTB or HST autograft was completed in September 2009. Full text articles published in English were searched using variations and combinations of the following terms: anterior cruciate ligament reconstruction, knee reconstruction, dynamometry, strength, weakness, and torque. To be included in this review, articles must have: compared two groups of patients that had undergone ACL reconstruction - one of the groups must have received BPTB autograft and one HST autograft evaluated knee flexor and extensor isokinetic muscle strength between 4 and 24 months after ACL reconstruction surgery been published in English language. The following criteria were used to exclude articles from the systematic review Studies were not included if: studies did not include original data. any participants had undergone revision of ACL participants had undergone multiple-ligament reconstruction. Studies of different methodological design were included in this systematic review and are subject to different biases. Therefore, multiple tools were used to

137 assess the quality of included studies. Randomized Control Trials (RCT) were 138 assessed for quality using the PEDRO scale [20] which assesses the quality of studies 139 based on 11 criteria. All other study designs were assessed using the tool described 140 by Downs and Black [21]. The assessment of methodological quality was completed 141 by 2 reviewers independently. Disagreement was resolved by discussion with a 3rd 142 reviewer.

144 Extraction of Data

Two independent reviewers read all of the articles in the final yield and systematically extracted pre-defined relevant data. Demographic details of participants were extracted from all articles in addition to the descriptive variables of isokinetic strength assessment at all speeds.

A meta-analysis was conducted on the findings of isokinetic evaluations at testing speeds of 60° /sec and 180° /sec an average of 12 months after ACL reconstruction surgery. To be included in the meta-analysis, the mean and measures of variability must have been reported. Wherever the outcomes were not presented in a form suitable for direct inclusion in the meta-analysis, the corresponding authors were contacted by email in an attempt to obtain the data required for meta-analysis (numbers of participants, mean scores and SDs).

158 Statistical Analysis

Muscle strength of the operated limb was extracted when reported either as a percentage of the uninvolved limb (i.e Limb Symetry Index), or as a percentage deficit of the uninvolved limb (100 X deficit of injured leg/deficit of uninjured leg).

Mean differences and 95% confidence intervals were calculated from the extracted
data. Random-effects models was used to pool data. Review Manager 5 (Version:
5.0.24) software was used for the calculation of effect sizes.

Results

A total of 1532 published studies were identified in the original search of databases. Following the application of inclusion and exclusion criteria a final yield of 14 studies were included in this systematic review as presented in the flow chart (Appendix 1). Of the 14 included studies eight were RCT, and six non Randomized Control Trials – (non-RCT).

172 The study design and the characteristics of each study included in this review173 are presented in Table 1.

Quality assessment of the RCTs and the non- RCTs are presented in table 2 and 3. Inadequate randomization may allow the introduction of bias, however only 3 of the 8 RCTs reported the process of patient randomization. Although blinding of the patient and surgeon is not always possible in this field of research, only 2 studies reported that assessors were blinded to the group allocation of patients.

180 Muscle strength outcomes

181 The muscle strength outcomes that were reported from all studies are182 presented in Tables 4 (for RCTs) and 5 (for non-RCTs).

183 Six studies [5, 11, 12, 7, 16, 68] found no significant difference between 184 BPTB and HST for isokinetic muscle strength for knee extensors or knee flexors at 185 follow up times between 4 and 24 months after reconstruction.

 Four studies [26, 10, 42, 35] found significant extensor muscle strength deficit in the operated limb in the BPTB group compared to the HST group at different follow up times between 4 and 24 months. In addition six studies [10, 26, 42, 31, 70, 13] found significant deficits of the flexor muscles in the operated limb in HST group compared to the BPTB group at different follow-up times between 4 and 24 months.

191 Sufficient data were provided in only four of the RCTs [11, 16, 26, 42] and 192 three of the non-RCTs [13, 68, 70] to conduct a meta-analysis on findings 12 months 193 after ACLR.

Figures 1 and 2 show forest plots that summarize quadriceps and hamstring strength for patients at a speed of 60°/sec. There were 3 articles where muscle strength of the operated limb was reported as a percentage of the uninvolved limb. For patients with HST graft, quadriceps strength was an average of 9% stronger and hamstrings strength was 8% weaker than patients with BPTB graft. Two articles reported muscle strength of the operated limb as percentage deficit of the uninvolved limb. Similarly, patients with HST graft showed a 3% lower deficit in quadriceps strength and 9% greater deficit in hamstrings strength than patients with BPTB.

Figures 3 and 4 show forest plots that summarize quadriceps and hamstring strength for patients at a speed of 180°/sec. There were 2 articles where muscle strength of the operated limb was reported as a percentage of the uninvolved limb. For patients with HST graft, quadriceps strength was an average of 7% stronger and hamstrings strength was 9% weaker than patients with BPTB graft. Two articles reported muscle strength of the operated limb as percentage deficit of the uninvolved limb. Similarly, patients with HST graft showed a 1% lower deficit in quadriceps strength and 20% greater deficit in hamstrings strength than patients with BPTB.

Discussion

The most important finding of the present study was the apparent trend for muscle weakness that is specific to the graft donor site following ACL reconstruction. The meta-analysis performed showed that extensor muscle strength deficit exists in ACL reconstructed knees using BPTB autograft and that flexor muscle strength deficit exists in ACL reconstructed knees using HST autografts, 12 months post operatively.

Not all studies reported muscle weakness in one group of patients or the other. Six studies [5, 11, 12, 7, 16, 68] did not find significant differences in extensor or flexor muscle strength between BPTB or HST group, at any testing speed (60°/sec, 120°/sec, 180°/sec, 240°/sec, 300°/sec). In contrast, eight studies found differences between groups. Significant quadriceps muscle strength deficit in BPTB group was observed in four studies [10, 42, 26, 35] and six studies found significant hamstrings muscle deficits in HST group [10, 42, 26, 13, 31, 70]. All of the studies evaluated patients between 4 and 24 months after surgery and muscle weakness was found to persist throughout this period. These findings are in agreement with other reviews [57, 19], that have concluded that the graft site affects muscle strength.

There is an obvious trend for quadriceps deficit at BPTB group compared to HST group and a trend for hamstrings deficit in HST group compared to BPTB group at 12 months post-operative. The results of the meta-analysis showed that difference between BPTB and HST group for extensor muscle strength was nearly 10% at the speed of 60° /sec and 180° /sec and that for flexor muscle strength was 20% at 180° /sec. It is clinically accepted that anything less than a 10% difference between limbs is considered inconsequential [39]. Although the difference in quadriceps strength between sides was not greater than 10%, the difference in hamstring strength exceeded this clinical limt. It is difficult to know what the implications for this

asymmetry between limbs are, given that most research has focused on investigating
asymmetrical quadriceps weakness. Further research is therefore needed to establish
whether such a large hamstring weakness in the operated limb of patients with HST
graft has any clinical relevance.

The apparent trend for muscle strength weakness related to the donor site may be explained by previous research. It seems that harvesting the patellar tendon autograft during the ACL reconstruction may alter the length-tension relationship of the extensor mechanism [32] and consequently contribute to extensor muscle strength deficit. It is also described that muscle function might be altered due to the attenuation of the gamma loop function caused by the initial ACL injury and that is not restored after the ACL reconstruction. The mechanoreceptors located within the ACL play an important role in enhancing the activity of gamma motor neurons (contributing, to a normal muscle function) [36, 62, 38], however this mechanism is not restored with ACL reconstruction, and may therefore also play a role in the extensor muscle weakness seen after harvesting the BPTB graft. Furthermore, knee pain and effusion have been documented up to 12 months following ACL reconstruction and could alter the neural control of the quadriceps [64, 37, 67].

Strength deficits in the knee flexor muscles may be more easily explained. There is evidence that tendon fibers can regenerate following harvesting of the hamstring tendon to become similar to healthy and non harvested fibers [25, 28]. However, Hioki et al [34] found an atrophy of hamstrings' muscle fibers as well as hypertrophy of the semimembranosus and biceps muscles, after harvesting the hamstrings tendon. Moreover, they demonstrated that after harvesting the hamstrings tendon the semitendinosus muscle assumes different shapes and movements and that 260 each pattern was related to different knee flexor strength. It is not clear how these261 changes in morphology affects muscle and knee function.

Regardless of the physiological explanations for muscle weakness, it is clear that restoration of muscle strength must focus on increasing muscle strength following ACL reconstruction to maximize functional outcomes. In particular, it appears that patients with different graft types may be susceptible to muscle strength that is specific to graft type. These findings suggest that rehabilitation that addresses muscle weakness specific to graft type may enhance strength outcomes after ACL reconstruction.

The findings of muscle weakness related to graft donor site were not consistent throughout all of the studies included in this review. There were some methodological differences between these studies that may explain this inconsistency. The method of randomization was not reported or was insufficient for the most of the RCTs. Only three [11, 26, 42] used a specific random allocation, which verifies that allocation was concealed. This allows for a bias that potentially could alter the findings of these studies. Although almost all RCTs assessed patients with the same activity level, three did not report the sex of the patients despite the plethora of information that gender influences outcome after ACL reconstruction. Therefore, the generalizability of the findings reported in these studies may be limited [1, 63]. Although blinding is one of the most important factors to limit bias in a RCT, no patients or therapist and only 2 studies reported that assessors were blinded to patient group allocation. Only in the trials of Aglietti et al [5] and Maletis et al [42] the assessors were blinded. Again, the potential for bias in the findings of those studies that did not blind assessors needs to be considered. The studies that were not RCTs were subjected to different biases. Because patients in these studies were not

randomized to receive either a BPTB or HST graft, it is important that both groups be similar at baseline on factors that may confound muscle strength findings. However, 3 studies did not adequately describe that groups were similar on important demographic characteristics such as height and weight. These limitations need to be considered when interpreting the findings of this review. Future work that compares the muscle strength outcomes between patients with either BPTB and HST ACL reconstruction need to consider these factors when designing future research.

There are some limitations that need to be considered when interreting the findings of this review. The meta-analysis was limited to only half of the studies included in the review because of disparity in the parameters of isokientic testing (for example, the speed of testing, and the time since surgery). Nevertheless, studies that did not evaluate muscle strength according to the strict criteria were still included in the systematic review and contribute significantly to the information that details recovery of muscle strength following ACL reconstruction.

300 Conclusions

301 Although not all studies reported muscle strength differences between patients 302 with either BPTB or HST graft ACL reconstruction, there was an obvious trend 303 towards greater muscle weakness that was dependent on the graft donor site. 304 Rehabilitation that is specific to this difference in muscle strength between graft types 305 is needed.

Furthermore, more high quality studies need to be conducted assessing the muscle strength recovery after the reconstruction of the torn ACL, in order to reveal a potential superiority of a graft type over the other graft options.

Table 1. Characteristics of the included studies. (RCT-> Randomized Control StudyNon RCT -> non, Randomized Control Study, BPTB-> Bone Patella Tendon Bone, HST-> Hamstring (when is not specified if the graft was semitendinosus or somitndinosus/gracilis), ST -> Semitendinosus, ST/G-> semitendinosus/Gracilis, PT-> Patella tendon, IKDC \rightarrow International Knee Documentation Committee, KOOS \rightarrow Knee injury and Osteoarthritis Outcome Score, VAS scale→ Visual Analog Scale, $FL \rightarrow$ Flexion, $EX \rightarrow$ Extension, $ATT \rightarrow$ Anterior Tibial Translation, $ROM \rightarrow$ Range Of Motion, $* \rightarrow$ We communicated with the author about the sex)

AUTHOR YEAR NATION	STUDY DESIGN	PATIENTS SEX	REHAB PROTOCOL	OUTCOMES	ISOKINETIC MUSCLE STRENGTH OUTCOMES	POST- OPERATIVE FOLLOW UP
Aglietti 2004	RCT	120p 60BPTB (46M/14F) 60 HAST (46M/14F)	Description of the program	KT-1000 IKDC KOOS VAS scale for analyzing subjective knee complaints ROM Functional knee score for anterior knee pain. Radiography	FL/EX Isokinetic at 60 °/sec. 120°/sec. 180°/sec	4, 12 and 24 months
Andersson 2002	Non RCT	45p 22BPTB 23HST No sex mentioned	Shelbourn and Nitz (1990)	-	FL/EX Isokinetic 60°/sec concentric /eccentric	6 and 12 months
Aune 2001	RCT	72P 35BPTB (19M/16F) 37HST (21M/16F)	Shelbourn and Nitz (1990)	KT-1000 VAS scale for patient satisfaction VAS scale for kneeling problems Cincinnati knee score system Stairs Hopple test Single-legged hop test	FL/EX Isokinetic at 60 °/sec, 240°/sec	6, 12, and 24 months
Beard 2001	RCT	45p 22BPTB (18M/4F) 23HST (15M/8F) *	Shelbourn and Nitz (1990)	KT1000 IKDC ATT Lysholm score, Tegner activity score,	FL/EX Isokinetic at 60°/sec	6 and 12 months
Bizzini 2006	Non RCT	153p 87BPTB (54M/ 33F) 66HST (45M/21F)	Description of the program	KT 1000	FL/EX Isokinetic at180°/sec, 300°/sec	11 months

Beynnon 2002	RCT	52p 26BPTB (18M/10M) 26HST (13M/15F)	Description of the program	KT 1000, Pivot Shift, IKDC ROM Tegner, One-leg-hop, duckwalking, squat.	FL/EX Isokinetic at 60°/sec 180°/sec, 240°/sec	2,4,6,12 and 36 months
Carter 1999	RCT	106p 38 PT, 33 ST 35 ST/G No sex mentioned	Description of the program	-	FL/EX Isokinetic at 180°/sec, 300°/sec	6 months
Feller 2003	RCT	65p 34BPTB (8F/23M) 31HST (10F/24M)	Shelbourn and Nitz (1990)	KT-1000, Lachmann IKDC Cincinnati Scores Anterior knee pain	FL/EX Isokinetic at 60°/sec, 240°/sec	4, 8, and 12 months
Gobbi 2003	Non RCT	80p 40BPTB 40HST No sex mentioned	Description of the program	CA 4000 IKDC Tegner scale Noyes scale Lysholm VAS scale for pain ROM	FL/EX Isokinetic at 60°/sec, 180°/sec, 300°/sec	3, 6, 12 and 36 months
Jansson 2003	RCT	99p BPTB 51 HST 48 No sex mentioned	Description of the program	CA 4000 IKDC Lachman and pivot shift Lysholm knee score Tegner activity level Kujala patellofemoral score MRI	FL/EX Isokinetic at 60°/sec, 180°/sec	12 and 24 months
Maletis 2007	RCT	99p 46BPTB (31M/15F) 53 HAST (45M/8F)	Description of the program	Kt1000 IKDC Lysholm Tegner Physical examination ROM Single hop test Short form SF 36	FL/EX Isokinetic at 60°/sec 180°/sec ,300°/sec ABD/ADD 60°/sec 180°/sec 300°/sec INT/EXT rot 60°/sec 180°/sec 300°/sec	6,12 and 24 months
Two 2005	Non RCT	68p 34HST 34BPTB No sex specified	Description of the program	KT 1000 IKDC	FL/EX Isokinetic at 60°/sec 240°/sec	3, 6, and 24 months
Webster 2005	Non RCT	34p 17BPTB (16M/1F) 17HST (16M/1F) 17 CONTROL	Description of the program	IKDC KT 1000 Kinematic walking up/down Kinetic walking up/down	FL/EX Isokinetic at 60°/sec	BPTB-11 months HST-9.3 months
Witvrouw 2001	Non RCT	34p17BPTB (10M/7F) 32HST (17M/15F)	Description of the program	ROM KT 1000 Lysholm, Tegner, Kujala scales	FL/EX Isokinetic at 60°/sec 240°/sec	6weeks 3,6 and 12 months

20	Table 2. Results from the methodol	ogical assessment of t	the eight RCTs using	the Pedro scale. (Y: Yes
----	------------------------------------	------------------------	----------------------	--------------------------

Pedro Criteria	ltem no.1	ltem no.2	ltem no.3	ltem no.4	ltem no.5	ltem no.6	ltem no.7	ltem no.8	ltem no.9	ltem no.10	lten no.1
	Eligibility criteria specified	Subjects randomly allocated to groups	Concealed allocation	Baseline data	Blinding of subjects	Blinding of therapists	Blinding of assessors	Key outcome obtained from > 85% of the subjects	n Intention to treat	Appropriat statistics	e Mea vari
First author (year)											
Agglieti et al 2004	Y	Ν	Ν	Y	Ν	Ν	Y	Y	Y	Y	
Aune et al 2001	Y	Ν	Ν	Y	Ν	Ν	Ν	Y	Y	Y	
Beard et al 2001	Y	Y	Y	Y	Ν	Ν	Ν	Y	Y	Y	
Beynnon et al 2002	Y	Ν	Ν	Y	Ν	Ν	Ν	Y	Y	Y	
Carter et al 1999	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	Y	
Feller et al 2003	Y	Y	Υ	Y	Ν	Ν	Ν	Y	Y	Y	
Jansson et al 2003	Y	Ν	Ν	Y	Ν	Ν	Ν	Y	Y	Y	

2												
3												
4												
5												
б												
7		V	V	V	V	NI	NI	V	V	V	V	N
8	Maletis et al 2007	Ĭ	ř	ř	ř	IN	IN	ř	ř	ř	Ĭ	IN
⁹ 322												
10 522												
11 323												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
32												
33												
34												
35												
36												
37												
38												
39												
40												
41												
42												
43												
44												
45												
46												
47					17	7						
48					1	/						
49												

9 325 N: No) $\begin{array}{c}
 10 \\
 11
 \end{array}
 326$

13

15

Downs & Black criteria	Item no. 1	ltem no. 2	ltem no. 3	ltem no. 5	ltem no. 6	ltem no. 7	ltem no. 12	ltem no. 16	ltem no. 18	ltem no. 25	ltem no. 27
	Clear aim	Outcomes described	Patients described	Confounders described	Findings clearly described	Measures of random variability	Patients represent population	Planned analysis	Appropriate statistics	Modification for confounders	Power calculation
First author (year)											
Anderson 2002	Y	Y	Y	Y	Y	Y	Y	Х	Y	Х	Ν
Bizzini 2006	Y	Y	Y	Y	Y	Y	Y	х	Y	х	Ν
Gobbi 2003	Y	Y	Ν	Ν	Y	Ν	Y	х	Y	х	Ν
Tow 2005	Y	Y	Ν	Ν	Y	Ν	Y	х	Ν	х	Ν
Webster 2005	Y	Y	Y	Y	Y	Y	Y	х	Y	х	Ν
Witvrow 2001	Y	Y	Y	Y	Y	Y	Ν	х	Y	Y	Ν

- 36 37 41 43 44

Table 4. Muscle strength outcomes of the included RCT, at the time between 4-24 months. (ND: no

328 difference between groups (BPTB vs HST) for flexion/extension strength, - : No evaluated)

RCT	Isokinetic-Flex	on/Extension				
AUTHO R YEAR	4 months	6 months	8 months	11 months	12 months	24 months
Aglietti 2004	ND between groups at 60°/sec, 120°/sec, 180°/sec	_		_	ND between groups at 60°/sec, 120°/sec, 180°/sec	ND between groups at 60°/sec, 120°/sec, 180°/sec
Aune 2001	_	Extension deficit in BPTB group at 60°/sec, 240°/sec <u>Flexion deficit</u> in HST group at 240°/sec	_		Flexion deficit in HST group at 60°/sec 240°/sec	<u>Flexion</u> <u>deficit</u> in HST group at 60°/sec 240°/sec
Beard 2001	_	ND between groups at 60°/sec	—	—	ND between groups at 60°/sec	—
Beynnon 2002	_	—	_	_	ND between groups at 60°/sec, 180°/sec, 240°/sec	—
Carter 1999	—	ND between groups at 180°/sec, 300°/sec	_	_	—	
Feller 2003	Extension deficit in BPTB group at 240°/sec	_	Extension deficit in BPTB group at 60°/sec, 240°/sec	_	<u>Flexion deficit</u> in HST group at 60°/sec	_
Jansson 2003	_	_	_	_	Extension deficit in BPTB group at 60°/sec	ND between groups at 60°/sec, 180°/sec
Maletis 2007	_	Extension deficit in BPTB group at 60°/sec, 180°/se, 300°/sec Flexion deficit in HST group at 180°/sec		_	Extension deficit in BPTB group at 60°/sec, 180°/se, 300°/sec Flexion deficit in HST group at 180°/sec, 300°/sec	Extension deficit in BPTB group at 60°/sec, 300°/sec Flexion deficit in HST group at 180°/sec

Table 5. Muscle strength outcomes of the included non-RCT, at the time between 4-24 months. (ND:

333 no difference between groups (BPTB vs HST) for flexion/extension strength, - : No evaluated)

0	0	4
	-	71
2	J	-

NRCT	Isokinetic-Flex	ion/Extension				
AUTHOR YEAR	4 months	6 months	8 months	11 months	12 months	24 months
Andersson 2002	_	ND between groups at 60°/sec	_	_	ND between groups at 60°/sec	_
Bizzini 2006	_	_	_	Flexion deficit in HST group at 180°/sec, 300°/sec	_	_
Gobbi 2007	_	_	_	_	Flexion deficit in HST group at_60°/sec, 180°/sec, 300°/sec	_
Two 2009	_	Trend towards HST flexion muscle weakness	_	_	_	Trend towards HST flexion muscle weakness
Webster 2005	_	_	9.3-1 ND between	1 Months groups at 60°/sec, 40°/sec	_	
Witvrow 2001	_	Flexion deficit in HST group at_60°/sec,	_	_	Flexion deficit in HST group at_60°/sec, 240°/sec	_

1	337	Figure Legents
⊥ 2 3	338	Figure 1
4 5	339	Forest plots for isokinetic extensor muscle strength at 60°/sec at 12 months.
6 7	340	BPTB: Bone Patellar Tendon Bone, HST: Hamstring, SD: standard deviation, CI: confidence interval
8	341	Figure 2
10 11	342	Forest plots for isokinetic flexor muscle strength at 60°/sec at 12 months.
12 13	343	BPTB: Bone Patellar Tendon Bone, HST: Hamstring, SD: standard deviation, CI: confidence interval
14 15	344	Figure 3
16 17	345	Forest plots for isokinetic extensor muscle strength at 180°/sec at 12 months
18 19	346	BPTB: Bone Patellar Tendon Bone, HST: Hamstring, SD: standard deviation, CI: confidence interval
20 21	347	Figure 4
22 23	348	Forest plots for isokinetic flexor muscle strength at 180°/sec at 12 months
24 25	349	BPTB: Bone Patellar Tendon Bone, HST: Hamstring, SD: standard deviation, CI: confidence interval
26 27	350	
28 29	351	
30 31	252	
32	352	
33	353	
34 35	354 255	
36	333 257	
37	330 257	
38	357	
39	358	
40	359	
4⊥ 4⊃	360	
42 43	361	
44	362	
45	363	
46	364	
47	365	
48	366	
49	367	
50 51	269	
52	260	
53	309	
54	370	
55	371	
56	372	
57	373	
58	374	
59 60		
61		
62		
63		01
64		21
65		

375	Appendix 1. Flow chart of the search and included and excluded studies.
2 3 4 5	1532 articles without duplicates from dtabases (MEDLINE, Cinahal and EMBASE)
6 7 8 9 379 0 380	1532 titles reviewed
381 12 13 14 15 16 17 18	645 excluded from title (291 not ACL studies, 125 not in English, 201 cadaver/not human studies, 9 revision of ACL, 2 total knee arthroplasty, 17 case report studies)
20 21 383 22 384	887 abstract reviewed
24 25 385 26 27 28 29 30 31	691 excluded from abstract (147 studies used only BPTB graft, 132 studies used only HST graft, 210 studies did not compare muscles strength outcome between BPTB or HST graft, 45 ACL studies without reconstruction, 26 studies tested allografts 97 review studies 27 studies tested subject
32 33 34 35 36 37 200	after 24 months, 7 studies tested subject before 4 months)
38 388 39 39 40 389 41 389	182 excluded (138 studies did not compare muscles strength outcome between BPTB or HST graft between the time of 4-24
43 390 44 391 45 391 46 202	months, 12 studies used only BPTB graft, 17 studies used only HST graft, 12 studies did not use isokinetic evaluation, 1 study used cadaver model, 1 did not used isokinetic peak torque value, 1
47 392 48 49 50 51 52	
53 54 55 56 57 58	14 included in the review
59 60 61 62 63	22
64	

ACKNOWLEDGEMENTS

The authors acknowledge the support from the Greek General Secretariat for Research and Technology and the European Union (Operative Program Competitiveness; AKMON) to the Orthopaedic Sports Medicine Center, and the Hellenic Association of Orthopaedic Surgery & Traumatology.

399 References

400

1

2

3

4

5

6 7

25

- 401
 402
 402
 403
 403
 404
 1. Ageberg E, Forssblad M, Herbertsson P, Roos E M (2010) Sex Differences in Patient-Reported Outcomes After Anterior Cruciate Ligament Reconstruction: Data From the Swedish Knee Ligament Register. Am J Sports Med 38:1334-1342
- 8 2. Ageberg E, Roos H P, Silbernagel K G, Thomee R, Roos E M (2009) Knee 405 9 extension and flexion muscle power after anterior cruciate ligament 406 10 reconstruction with patellar tendon graft or hamstring tendons graft: a cross-407 11 408 sectional comparison 3 years post surgery. Knee Surg Sports Traumatol 12 13 409 Arthrosc 17: 162-169 14
- 15
16
17410
4113. Aglietti P, Buzzi R, Giron F, Simeone A J, Zaccherotti G (1997) Arthroscopic-
assisted anterior cruciate ligament reconstruction with the central third patellar
tendon. A 5-8-year follow-up. Knee Surg Sports Traumatol Arthrosc 5: 138-
144
- 414
 414
 415
 416
 414
 4. Aglietti P, Buzzi R, Zaccherotti G, De B P (1994) Patellar tendon versus doubled semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction. Am J Sports Med 22: 211-217
- 417
 418
 418
 419
 30
 420
 5. Aglietti P, Giron F, Buzzi R, Biddau F, Sasso F (2004) Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am 86-A: 2143-2155
- 421
 421
 422
 423
 423
 423
 424
 425
 425
 425
 426
 427
 427
 428
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
 429
- 424
 425
 425
 426
 427
 427
 7. Anderson J L, Lamb S E, Barker K L, Davies S, Dodd C A, Beard D J (2002) Changes in muscle torque following anterior cruciate ligament reconstruction: a comparison between hamstrings and patella tendon graft procedures on 45 patients. Acta Orthop Scand 73: 546-552
- 42 43
 428
 428
 429
 430
 45
 430
 46
 431
 47
 8. Andersson D, Samuelsson K, Karlsson J (2009) Treatment of anterior cruciate ligament injuries with special reference to surgical technique and rehabilitation: an assessment of randomized controlled trials. Arthroscopy 25: 653-685
- 48
 432
 432
 50
 433
 51
 434
 52
 9. Augustsson J, Thomeé R, Karlsson J (2004) Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:350-356.
- 436
 56
 56
 56
 56
 56
 56
 57
 57
 58
 58
 59
 60
 439
 10. Aune A K, Holm I, Risberg M A, Jensen H K, Steen H (2001) Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction. A randomized study with two-year follow-up. Am J Sports Med 29: 722-728

24

53

54

- 11. Beard D J, Anderson J L, Davies S, Price A J, Dodd C A (2001) Hamstrings vs. patella tendon for anterior cruciate ligament reconstruction: a randomised controlled trial. Knee 8: 45-50 12. Beynnon B D, Johnson R J, Fleming B C, Kannus P, Kaplan M, Samani J, Renstrom P (2002) Anterior cruciate ligament replacement: comparison of б bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study. J Bone Joint Surg Am 84-A: 1503-1513 13. Bizzini M, Gorelick M, Munzinger U, Drobny T (2006) Joint laxity and isokinetic thigh muscle strength characteristics after anterior cruciate ligament reconstruction: bone patellar tendon bone versus quadrupled hamstring autografts. Clin J Sport Med 16: 4-9 14. Bollen S R, Scott B W (1996) Rupture of the anterior cruciate ligament--a quiet epidemic? Injury 27: 407-409 15. Brand J, Jr., Weiler A, Caborn D N, Brown C H, Jr., Johnson D L (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28: 761-774 16. Carter T R, Edinger S (1999) Isokinetic evaluation of anterior cruciate ligament reconstruction: hamstring versus patellar tendon. Arthroscopy 15: 169-172 17. Childs S G (2002) Pathogenesis of anterior cruciate ligament injury. Orthop Nurs 21: 35-40 18. Courtney C, Rine R M, Kroll P (2005) Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture 22: 69-74 19. Dauty M, Tortellier L, Rochcongar P (2005) Isokinetic and anterior cruciate ligament reconstruction with hamstrings or patella tendon graft: analysis of literature. Int J Sports Med 26: 599-606 20. de Morton N A (2009) The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 55: 129-133 21. Downs S H, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 52: 377-384 22. Eitzen I, Holm I, Risberg M A (2009) Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med 43: 371-376 23. Ejerhed L, Kartus J, Sernert N, Kohler K, Karlsson J (2003) Patellar tendon or anterior semitendinosus tendon autografts for cruciate ligament reconstruction? A prospective randomized study with a two-year follow-up. Am J Sports Med 31: 19-25

- 24. Eriksson K, Anderberg P, Hamberg P, Olerud P, Wredmark T (2001) There are differences in early morbidity after ACL reconstruction when comparing patellar tendon and semitendinosus tendon graft. A prospective randomized study of 107 patients. Scand J Med Sci Sports 11: 170-177 25. Eriksson K, Kindblom L G, Hamberg P, Larsson H, Wredmark T (2001) The б semitendinosus tendon regenerates after resection: a morphologic and MRI analysis in 6 patients after resection for anterior cruciate ligament reconstruction. Acta Orthop Scand 72: 379-384 26. Feller J A, Webster K E (2003) A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med 31: 564-573 27. Feller J A, Webster K E, Gavin B (2001) Early post-operative morbidity following anterior cruciate ligament reconstruction: patellar tendon versus hamstring graft. Knee Surg Sports Traumatol Arthrosc 9: 260-266 28. Ferretti A, Conteduca F, Morelli F, Masi V (2002) Regeneration of the semitendinosus tendon after its use in anterior cruciate ligament reconstruction: a histologic study of three cases. Am J Sports Med 30: 204-29. Finsterbush A, Frankl U, Matan Y, Mann G (1990) Secondary damage to the knee after isolated injury of the anterior cruciate ligament. Am J Sports Med 18:475-479 30. Fischer-Rasmussen T, Jensen P E (2000) Proprioceptive sensitivity and performance in anterior cruciate ligament-deficient knee joints. Scand J Med Sci Sports 10: 85-89 31. Gobbi A, Mahajan S, Zanazzo M, Tuy B (2003) Patellar tendon versus quadrupled bone-semitendinosus anterior cruciate ligament reconstruction: a prospective clinical investigation in athletes. Arthroscopy 19: 592-601 32. Herzog W, Longino D, Clark A (2003) The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg 388: 305-315 33. Hiemstra L A, Webber S, MacDonald P B, Kriellaars D J (2000) Knee strength deficits after hamstring tendon and patellar tendon anterior cruciate ligament reconstruction. Med Sci Sports Exerc 32: 1472-1479 34. Hioki S, Fukubayashi T, Ikeda K, Niitsu M, Ochiai N (2003) Effect of harvesting the hamstrings tendon for anterior cruciate ligament reconstruction on the morphology and movement of the hamstrings muscle: a novel MRI technique. Knee Surg Sports Traumatol Arthrosc 11: 223-227 35. Jansson K A, Linko E, Sandelin J, Harilainen A (2003) A prospective randomized study of patellar versus hamstring tendon autografts for anterior cruciate ligament reconstruction. Am J Sports Med 31: 12-18

- 36. Johansson H, Sjolander P, Sojka P (1991) Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Crit Rev Biomed Eng 18: 341-368 37. Kartus J, Movin T, Karlsson J (2001) Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy 17: 971-980 38. Konishi Y, Fukubayashi T, Takeshita D (2002) Mechanism of quadriceps femoris muscle weakness in patients with anterior cruciate ligament reconstruction. Scand J Med Sci Sports 12: 371-375 39. Kvist J (2004) Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med 34: 269-280 40. Lautamies R, Harilainen A, Kettunen J, Sandelin J, Kujala U M (2008) Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 16: 1009-1016 41. Lyman S, Koulouvaris P, Sherman S, Do H, Mandl L A, Marx R G (2009) Epidemiology of anterior cruciate ligament reconstruction: trends, readmissions, and subsequent knee surgery. J Bone Joint Surg Am 91: 2321-42. Maletis G B, Cameron S L, Tengan J J, Burchette R J (2007) A prospective randomized study of anterior cruciate ligament reconstruction: a comparison of patellar tendon and quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med 35: 384-394 43. Marumoto J M, Mitsunaga M M, Richardson A B, Medoff R J, Mayfield G W (1996) Late patellar tendon ruptures after removal of the central third for anterior cruciate ligament reconstruction. A report of two cases. Am J Sports Med 24: 698-701 44. Mastrokalos D S, Springer J, Siebold R, Paessler H H (2005) Donor site morbidity and return to the preinjury activity level after anterior cruciate ligament reconstruction using ipsilateral and contralateral patellar tendon autograft: a retrospective, nonrandomized study. Am J Sports Med 33: 85-93 45. Matsumoto A, Yoshiya S, Muratsu H, Yagi M, Iwasaki Y, Kurosaka M, Kuroda R (2006) A comparison of bone-patellar tendon-bone and bone-ligament hamstring tendon-bone autografts for anterior cruciate reconstruction. Am J Sports Med 34: 213-219 46. McDaniel W J, Jr., Dameron T B, Jr (1983) The untreated anterior cruciate ligament rupture. Clin Orthop Relat Res 172: 158-163 47. Meunier A, Odensten M, Good L (2007) Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: a

1	559 560	randomized study with a 15-year follow-up. Scand J Med Sci Sports 17: 230-237
2 3	561	48 Myer G D Paterno M V Ford K R Quatman C F Hewett T F (2006)
4	562	Pababilitation after enterior eruciate ligement reconstruction: criteria based
5	502	Renabilitation after afternot cruciate figament reconstruction. Cherta-based
6	505	progression through the return-to-sport phase. J Orthop Sports Phys Ther 36:
·/ 8	564	385-402
9	565	49. Natri A, Jarvinen M, Latvala K, Kannus P (1996) Isokinetic muscle
10	566	performance after anterior cruciate ligament surgery. Long-term results and
⊥⊥ 1 2	567	outcome predicting factors after primary surgery and late-phase
13	568	reconstruction. Int J Sports Med 17: 223-228
14	000	
15	569	50. Nelson F, Billinghurst R C, Pidoux I, Reiner A, Langworthy M, McDermott
10 17	570	M, Malogne T, Sitler D F, Kilambi N R, Lenczner E, Poole A R (2006) Early
18	571	post-traumatic osteoarthritis-like changes in human articular cartilage
19	572	following rupture of the anterior cruciate ligament. Osteoarthritis Cartilage 14:
20	573	114-119
21	010	
22	574	51. Noves F R. Matthews D S. Mooar P A. Grood E S (1983) The symptomatic
23	575	anterior cruciate-deficient knee Part II: the results of rehabilitation activity
24	576	modification and counseling on functional disability. I Bone Joint Surg Am
25 26	570	65. 163 174
27	511	05.105-174
28	578	52. Noves FR. Barber SD. Mangine RE (1991) Abnormal lower limb symmetry
29	579	determined by function hop tests after anterior cruciate ligament runture. Am
30	580	I Sports Med 19:513-8
3⊥ 32	500	5 Sports Med. 17.515 0
33	581	
34	561	
35	507	52 Otors Λ I Hutsheson I (1002) Λ comparison of the doubled
36	502 502	55. Otelo A L, Hutchesoli L (1995) A comparison of the doubled
3/ 20	J0J 501	semilendinosus/gracins and central tind of the patenal tendon autogratis in arthrosponic enterior empirical ligement reconstruction. Arthrospony, 0: 142–149
39	384	artifioscopic anterior cruciate figament reconstruction. Artifioscopy 9: 143-148
40	585	54. Papadonikolakis A. Cooper L. Stergiou N. Georgoulis A D. Soucacos P N
41	586	(2003) Compensatory mechanisms in anterior cruciate ligament deficiency.
42 43	587	Knee Surg Sports Traumatol Arthrosc 11: 235-243
44	507	Ruce Surg Spons Traumator Multose 11, 255 215
45	588	55. Petersen W. Laprell H (1999) Combined injuries of the medial collateral
46	589	ligament and the anterior cruciate ligament. Early ACL reconstruction versus
47	590	late ACL reconstruction Arch Orthon Trauma Surg 119: 258-262
48	090	and field foconstruction. Then of thep finantia barg fifth 200 202
49 50	591	56. Pua Y H, Bryant A L, Steele J R, Newton R U, Wrigley T V (2008) Isokinetic
51	592	dynamometry in anterior cruciate ligament injury and reconstruction. Ann
52	593	Acad Med Singapore 37: 330-340
53	070	Tiend Tien Shigupore 571 550 570
54	594	57. Samuelsson K. Andersson D. Karlsson J (2009) Treatment of anterior cruciate
55 56	595	ligament injuries with special reference to graft type and surgical technique: an
50 57	596	assessment of randomized controlled trials. Arthroscopy 25: 1139-1174
58	570	assessment of randomized controlled thats. Artifioscopy 25. 1159-1174
59		
60		
61		
62		
63 61		28
04		

58. Shelbourne K D, Foulk D A (1995) Timing of surgery in acute anterior cruciate ligament tears on the return of quadriceps muscle strength after reconstruction using an autogenous patellar tendon graft. Am J Sports Med 23: 686-689 59. Shelbourne K D, Gray T (1997) Anterior cruciate ligament reconstruction with б autogenous patellar tendon graft followed by accelerated rehabilitation. A two-to nine-year followup. Am J Sports Med 25: 786-795 60. Smith B A, Livesay G A, Woo S L (1993) Biology and biomechanics of the anterior cruciate ligament. Clin Sports Med 12: 637-670. 61. Snyder-Mackler L, Fitzgerald G K, Bartolozzi A R, III, Ciccotti M G (1997) The relationship between passive joint laxity and functional outcome after anterior cruciate ligament injury. Am J Sports Med 25: 191-195 62. Sojka P, Sjolander P, Johansson H, Djupsjobacka M (1991) Influence from stretch-sensitive receptors in the collateral ligaments of the knee joint on the gamma-muscle-spindle systems of flexor and extensor muscles. Neurosci Res 11: 55-62 63. Stijak L, Radonjic V, Nikolic V, Blagojevic Z, Aksic M, Filipovic B (2009) Correlation between the morphometric parameters of the anterior cruciate ligament and the intercondylar width: gender and age differences. Knee Surg Sports Traumatol Arthrosc 17: 812-817 64. Torry M R, Decker M J, Viola R W, O'Connor D D, Steadman J R (2000) Intra-articular knee joint effusion induces quadriceps avoidance gait patterns. Clin Biomech (Bristol, Avon) 15: 147-159 65. Tow B P, Chang P C, Mitra A K, Tay B K, Wong M C (2005) Comparing 2-year outcomes of anterior cruciate ligament reconstruction using either patella-tendon or semitendinosus-tendon autografts: a non-randomised prospective study. J Orthop Surg (Hong Kong) 13: 139-146 66. Tsepis E, Giakas G, Vagenas G, Georgoulis A (2004) Frequency content asymmetry of the isokinetic curve between ACL deficient and healthy knee. J Biomech 37: 857-864 67. Van d, V, Gill T J, DeFrate L E, Papannagari R, Li G (2008) The effect of anterior cruciate ligament deficiency and reconstruction on the patellofemoral joint. Am J Sports Med 36: 1150-1159 68. Webster K E, Wittwer J E, O'Brien J, Feller J A (2005) Gait patterns after anterior cruciate ligament reconstruction are related to graft type. Am J Sports Med 33: 247-254 69. West R V, Harner C D (2005) Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 13: 197-207

1 2 3	636 637	(2001) Patellar tendon vs. doubled semitendinosus and gracilis tendon for anterior cruciate ligament reconstruction. Int Orthop 25: 308-311
4 5 6 7	638 639 640	71. Yunes M, Richmond J C, Engels E A, Pinczewski L A (2001) Patellar versus hamstring tendons in anterior cruciate ligament reconstruction: A meta-analysis. Arthroscopy 17: 248-257
9 10 11 12 13	641 642 643 644	72. Zatterstrom R, Friden T, Lindstrand A, Moritz U (1994) The effect of physiotherapy on standing balance in chronic anterior cruciate ligament insufficiency. Am J Sports Med 22: 531-536
14 15 16 17 18 19	645 646	
20 21 22 23 24		
25 26 27 28 29 30		
31 32 33 34 35		
36 37 38 39 40		
41 42 43 44 45 46		
47 48 49 50 51		
52 53 54 55 56		
57 58 59 50 51 52		
53 54 55		30

70. Witvrouw E, Bellemans J, Verdonk R, Cambier D, Coorevits P, Almqvist F (2001) Patellar tendon vs. doubled semitendinosus and gracilis tendon for

635

Favours HST Favours BPTB

