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The influence of grain shape 
and size on the relationship 
between porosity and permeability 
in sandstone: a digital approach
Ryan L. Payton1*, Domenico Chiarella1 & Andrew Kingdon2

An accurate and reliable description of the porosity–permeability relationship in geological materials is 
valuable in understanding subsurface fluid movement. This is important for reservoir characterisation, 
energy exploitation, geological carbon storage (GCS) and groundwater contamination and 
remediation. Whilst the relationship between pore characteristics and porosity and permeability 
are well examined, further investigation into the influence of grain characteristics on porosity and 
permeability would be beneficial due to the inherent relationship between grains and pores. This 
work aims to determine whether incorporation of grain characteristics into a porosity–permeability 
model is effective in constraining this relationship. Two fully digital approaches to individual 3D grain 
analysis based upon watershed segmentation are compared to determine the most effective, yet 
simple, workflow applicable to core plugs of significantly compacted grains. The identification of an 
effective segmentation workflow will facilitate future work on similarly complex materials, removing 
the need for traditional time-consuming and manual techniques. We use the most effective approach 
of measuring grain shape (sphericity) and size (Feret diameter) alongside an established fully digital 
workflow to measure porosity and permeability to investigate the impact of grain characteristics on 
porosity and permeability. We show that grain sphericity and porosity exhibit a positive relationship 
whereas no such relationship exists with grain size. Measurements of grain sphericity are applied to 
calculate a Kozeny–Carman (K–C) type porosity–permeability fit which was found to be unsatisfactory, 
compared to a simpler fit excluding any grain parameters. This is possibly due to the lower sphericity 
of the studied grains, deviating significantly from the K–C assumption that grains are entirely 
spherical. The simpler fit is most suitable for the studied materials, showing that inclusion of grain 
characteristics is not effective for better defining the porosity–permeability relationship in a K–C 
paradigm for these samples. This highlights the need for a model capable of considering a range of 
grain sphericities to further constrain the porosity–permeability relationship.

The relationship between porosity and permeability is very significant for reservoir characterisation studies applied to 
geological carbon storage, energy resource exploitation, and aquifer contamination and remediation. Constraining the 
relationship between these two important reservoir parameters is beneficial for understanding the process of porous 
flow in the subsurface. A greater understanding of subsurface fluid movement allows for better-informed decisions 
to be made regarding these areas of research. The large range of applicability that a well-constrained porosity–perme-
ability relationship has highlights the value in working to accurately describe it. Investigation of this relationship with 
regards to the influence of a material’s grains has traditionally been performed using very laborious and time-consuming 
techniques which are also destructive in nature. Materials must be crushed and sieved through many incrementally 
finer sieves to determine a size distribution. Specific size measurements may be performed using callipers, requiring 
far more time than using an automated digital approach capable of measuring many parameters at the same time. The 
inclusion of an investigation into a digital, easily repeatable, time effective and accurate technique for constraining the 
porosity–permeability relationship using grain characteristics in this work is therefore of great value. Overall, the iden-
tification of a reliable, accurate and repeatable relationship between porosity and permeability using micro com-
puted tomography (μCT) imaging could have far-reaching benefits to many fields of research and industrial activity.
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Modelling a porosity–permeability relationship. The Kozeny–Carman (K–C) relationship, proposed by 
 Kozeny1 and later modified by  Carman2, is a simple yet broadly effective and widely  used3–7 technique of relating poros-
ity to permeability.  Bear8 suggested a modification to the K–C equation which allows grain diameter to be employed 
as a component which influences the permeability. Additionally, Hommel et al.7 and Rasaei and  Firoozpour9 show that 
versions of the K–C equation may be used with and without grain sphericity and grain size terms. Whilst a K–C-based 
approach is successful in many instances, its accuracy may be questioned when applied to materials which possess 
a significant proportion of grains which deviate substantially from being entirely spherical. The limitation of a K–C 
approach is that grains are considered spherical and packed in a regular arrangement; allowing pores to be considered 
as capillary bundles. The inherent relationship between the pore structure and the grains which create the pore space 
indicates that a detailed investigation of grain characteristics is of utmost importance in understanding the porosity–
permeability relationship.

This work aims to investigate whether the inclusion of grain sphericity and 3D Feret diameter (referred to herein 
as grain size) in a K–C paradigm facilitates a better-quality fit to the relationship between porosity and permeability. A 
modified K–C approach is compared to a simpler fit using porosity measurements alone, excluding any influence of 
grain shape or size. To do so, the individual relationships between porosity and permeability and grain sphericity and 
size are investigated and considered in light of the concept of grain anisotropy, as introduced by  Nabawy10.

Digital approaches to making 3D grain measurements. Whilst grain size and shape measurement has 
traditionally been done manually using callipers and sieve  analysis11–14, this work uses digital image analysis (DIA) to 
segment individual grains in 3D using reconstructed X-ray micro computed tomographic (μCT) image stacks of each 
sample. μCT imaging has been used in a wide variety of fields related to geoscience since its rise in popularity as a non-
destructive and high resolution image acquisition  technique15–19. When paired with DIA, large amounts of quantitative 
and visually useful data may be obtained. Unlike when using optical imaging, X-ray imaging is dependent primarily on 
phase density therefore, grain boundaries are difficult to identify, particularly in a tightly packed sandstone.

This work discusses and investigates grain segmentation using two relatively simple marker-based watershed work-
flows. Watershed algorithms, established by Beucher and  Meyer20, split a phase up into individual components by 
treating the image as a topographic surface, identifying topographic lows and assigning a seed point marker to each. 
Flooding from each marker allows digital watersheds to be identified and used to define the boundaries between indi-
vidual  features21. The challenge arises from making correct identifications of marker points so as not to have multiple 
grains sharing one marker (undersegmentation) or the opposite where multiple markers are assigned to a single grain 
(oversegmentation). Techniques such as the bring  up22,23 and bring  down21,24 methods have been developed to try and 
tackle this issue but can often be computationally demanding and may still produce inaccuracies.

Segmentation of the solid phase alone allows identification of individual grains which can then be measured digi-
tally in 3D. Segmentation is arguably the most important and usually most difficult process in  DIA25 given that poor 
segmentation will directly result in poor and likely misleading results. It is notoriously difficult to segment features 
within a given phase which are touching, consequently many techniques have been developed to tackle this challenge, 
often providing unique solutions to a given sample set or type of sample (shelly, angular, rounded, etc.)22,23,25,26 as there 
is no one size fits all  solution25.

It is often the selection of seed points and the size of markers within watershed segmentation which determines how 
effective the result is. Other techniques have been developed which attempt to move away from this reliance such as 
the stochastic watershed using a probability density  function27. Other approaches include modifying the distance map 
on which watershed algorithms rely to influence the size of seed points relative to the features which they  represent28. 
More recently the use of machine learning approaches during  segmentation29,30 or in post  processing26 have also been 
investigated. These approaches are often complex in nature or their implementation and may involve many steps or 
machine learning model training. In this work we aim to investigate the use of relatively simple approaches to 3D grain 
segmentation and measurement using a traditional watershed algorithm, improving the outcome using variations in 
image pre-processing.

We focus on two similar grain segmentation workflows presented by Fei et al.31 and Thomson et al.32. The Fei et al.31 
approach is proven to be successful in segmenting individual 3D grains in μCT images of loosely packed grains of varying 
angularity which have been extracted as loose sand from geological materials. This means that the resulting μCT images 
have relatively few contact points between grains. This results in greater accuracy in the segmentation of individual 
grains. Meanwhile, the Thomson et al.32 approach is applied to μCT images of consolidated sandstone core plugs but 
encounters issues with under and oversegmentation of individual grains. This issue arises from the highly compacted 
nature of the sandstone core material, relative to loose sand grains, which results in many more closely packed grain 
boundaries to be distinguished from one another.

These two workflows differ in their image filtering prior to segmentation. Thomson et al.32 use a non-local means 
(NLM) filter to remove any noise and improve the image quality prior to segmentation. NLM filtering is a popular and 
effective image filter and is often used as the initial step for cleaning up μCT images prior to  segmentation33,34. Similarly, 
Fei et al.31 use a NLM filter but also apply a median filter afterwards. The median filter is effective in smoothing blemishes 
within images and emphasising feature boundaries. We believe that the addition of a median filter has the potential to 
alleviate the severity of over and undersegmentation experienced by Thomson et al.32.

The goal of this work therefore is to determine an effective yet simple individual grain watershed segmenta-
tion workflow which is capable of operating on compacted grains within core material. This is done by assessing 
whether the Fei et al.31 approach is as effective when applied to compacted rock volumes as it is when applied to 
loose sand grains. This is determined by comparison with the similar Thomson et al.32 approach, used as an acceptable 
baseline technique for facilitating measurements of individual sandstone grains from core material.

These two segmentation workflows are assessed and the most effective is used to analyse a collection of 22 sandstone 
samples from three different geological formations (i.e., Wilmslow Sandstone Formation, Sellafield, UK; Brae Formation 
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Sandstone, Miller Field, North Sea, UK; Minard Formation Sandstone, Porcupine Basin, North Atlantic Ocean). Finally, 
the grain measurements are used alongside digital measurements of porosity and permeability to investigate the quality 
of a K–C-based fit to the porosity–permeability relationship using grain sphericity and size inputs.

Methods
A variety of sandstone samples have been selected from several different reservoir units which host significant levels 
of porosity. Samples from the Wilmslow Sandstone Formation (Sellafield, UK)17, Brae Formation Sandstone (North 
Sea, UK)18 and the Minard Formation of the Porcupine Basin (North Atlantic Ocean) were acquired and imaged at the 
London Natural History Museum Imaging and Analysis Centre. A summary of the materials used in this work can be 
found in the Supplementary Information (Table S1). Samples which exhibited no connected porosity and therefore no 
permeability were excluded for the purpose of this study.

The material pertaining to the Porcupine Basin was collected and prepared using the same technique outlined by 
Thomson et al.18 and Payton et al.17. From each sample a mini plug measuring 5 mm in diameter and 10 mm in length 
was cut and imaged using X-ray micro computed tomography (μCT), detailed by Payton et al.17. For further information 
about the voxel size and subsampled volume of each sample the reader is referred to the Supplementary Information 
(Table S2).

Image processing. The acquired μCT image stacks of each sample underwent pre-processing using the commer-
cial software package PerGeos (v1.7.0). From each image stack a sub-volume was extracted to remove external voxels 
and any image slices which contained significant beam hardening artefacts. In order to aid the segmentation process 
a non-local means filter was employed which enhances the contrast between greyscale phases and removes speckled 
noise throughout the  images33,34.

Porosity and permeability. The method detailed by Payton et al.17 was followed to measure porosity and per-
meability—a brief outline is described here. The well-known automatic binary segmentation algorithm designed by 
 Otsu35 was used to separate and label the solid grain phase and pore space. In some cases, it was necessary to constrain 
the greyscale range over which the algorithm was allowed to operate on where exceedingly bright phases were present 
which meant darker grains and darker pore space were not automatically separated.

The volume fraction of the segmented pore space can be measured which equates to the total sample porosity. The 
‘axis connectivity’ tool was applied along each axis in turn to determine the proportion of porosity which is entirely 
connected between all faces of the sample. This value was taken to represent the connected porosity.

Finally, the ‘absolute permeability simulation’ tool was used to run a finite volume numerical simulation, solving 
the Stokes flow equations:

where u is velocity, P is pressure, µ is fluid viscosity equal to 1× 10−3 Pa s for water. An error tolerance of 10−6 for the 
convergence of the  L2 norm of the residuals was implemented as recommended by Thomson et al.36 whilst the boundary 
conditions used are discussed in detail by Thomson et al.19. The solution is a velocity field which allows for a perme-
ability value to be determined through application of Darcy’s Law. Further details on this technique can be found in 
Thomson et al.18 and Payton et al.17.

Pore geometry. Pore network models (PNMs) were employed to characterise the individual pores which make up 
the pore structure. PNMs are simplified representations of complex pore geometries using balls to represent pores and 
sticks to represent throats. PNMs were created of the connected porosity following the methodology detailed by Payton 
et al.17 and references therein. Each PNM may be interrogated to provide information about each pore including radius 
and coordination number, and each throat including radius and length.

Individual grain segmentation. Segmentation of individual features in μCT images has traditionally been per-
formed using the marker-based watershed approach detailed by Beucher and  Meyer20. This technique has been widely 
used in a variety of  fields37–41 to identify and split individual features in digital images. The general steps in using a 
watershed algorithm are shown in Fig. 1 (for a more detailed description of how a watershed algorithm operates the 
reader is referred to Kong and  Fonseca22 and Sun et al.21). Whilst Fig. 1 shows the process in 2D, the outcomes presented 
using this technique in this work are three dimensional, as shown in Fig. S1. The workflow of watershed segmentation 
of grains described by Fei et al.31 was chosen as it is proven to show effective individual grain segmentation, analysed 
and evaluated in the Discussion.

The method described by Fei et al.31 uses the software package  Fiji42 to carry out cropping and filtering. A non-
local means filter is used in combination with a median filter prior to using the MorphoLibJ plug-in for  Fiji43 which 
encompasses generation of a distance map and identification of seed points and markers for watershed flooding as 
described in Fig. 1.

Grain measurements. Once the watershed algorithm has run, the individual grains are labelled and the 
pore space subtracted before the Feret diameter and sphericity of each grain is measured using the 3D ImageJ 
Suite plug-in44. When extracting 3D grains from μCT images, which are voxelised, the edges exhibit a saw-tooth 
pattern (Fig. 2). This can lead to overestimation of surface area and consequently underestimation of sphericity, 
as detailed by Fei et al.31. Therefore, it is acknowledged that measurements of sphericity are conservative but as 

(1)∇u = 0

(2)−∇P + µ∇2
u = 0
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the saw-tooth pattern effect is present for all grains measured, the results are still directly comparable between 
each other.

Whilst smoothing algorithms can be applied to reduce this effect, determining appropriate parameters for 
such algorithms becomes heavily subjective and can cause undesirable deformation of the individual grains such 
as volume loss. Moreover, using the same degree of smoothing on a very small and a very large grain will have 
different impacts on the resulting shape. Consequently, the use of any smoothing tools prior to measurements 
being made was omitted.

The automated nature of the MorphoLibJ and 3D Suite plug-ins enables this analysis to be carried out simply 
as well as rapidly with low computational cost. Sphericity is measured between 0 and 1 where 1 represents a 
perfect sphere, shown schematically in Fig. 3f. Feret diameter was used as the representative grain size for all 
statistical analyses in this work. Some of the grain size analyses performed use phi ( φ ) units, calculated from 
grain size values in millimetres according to:

where D is the grain diameter. The graphic mean grain size ( MZ ) was calculated after  Folk45, according to the 
following formula:

where φ84 represents the φ value at the 84th percentile. The ‘inclusive graphic standard deviation’ introduced by 
 Folk45 was calculated to determine the sorting ( φ1 ) of the samples using the following formula:

(3)φ = −log2D

(4)MZ =
(φ16+ φ50+ φ84)

3
,

(5)φ1 =
φ84− φ16

4
+

φ95− φ5

6.6
.

Figure 1.  Schematic diagram showing the typical steps in grain identification using a watershed technique on 
CT images. Figure created using Fiji 2.1.042 and PerGeos 1.7.0: https:// www. therm ofish er. com/ uk/ en/ home/ elect 
ron- micro scopy/ produ cts/ softw are- em- 3d- vis/ perge os- softw are. html.

Figure 2.  Isolated collection of grains (white) and single grain (orange) shown in 3D from sample SF696. 
The saw-tooth or staircase pattern is highlighted which arises from the voxelised images. This can lead to 
overestimation of surface area and impact the subsequent sphericity measurements. Figure created using Fiji 
2.1.042.

https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/pergeos-software.html
https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/pergeos-software.html
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Figure 3.  Relationship between mean grain size, mean grain sphericity and total porosity, permeability and 
mean connected pore diameter. Grain sphericity is measured on a scale between 0 and 1 where 1 is entirely 
spherical, a schematic diagram is shown to represent the range of sphericities according to  Krumbein46 plotted 
in (f). A generally positive relationship with porosity and permeability can be observed in the case of mean 
grain sphericity in (b) and (d), but no such relationship is present with mean grain size in (a) and (c). A region 
of outliers is identified by a dashed line in (d) with the same data points also apparent in (b) to a lesser extent. 
A simple linear fit is calculated between grain sphericity (φs) and porosity (φ), defined by the black line and 
accompanying equation in (b). It is apparent that there is a generally positive relationship between sphericity 
and connected pore diameter aside from a small group of four outliers (e).
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Classification of the samples according to sorting was performed following the accompanying scheme defined 
by  Folk45 where a smaller φ1 value is representative of better sorting.

Results
The following results were acquired using the methodology described by Fei et al.31 which was determined to 
be the most effective approach for these samples. An evaluation and comparison of the Fei et al.31 and Thomson 
et al.32 methods are given in the Discussion, justifying our choice of segmentation approach.

Application of the proposed methodology. Each study sample was analysed in terms of grain charac-
teristics with the results reported in Table 1. The accompanying porosity and permeability results are reported 
in Table 2, measured in this article and by Thomson et al.18 and Payton et al.17. Figure 3 shows the relationships 
among mean grain size, mean grain sphericity, porosity, and permeability. No clear relationship between grain 
size and sample porosity or permeability is observed (Fig. 3a,c). Despite this, a much clearer positive correlation 
between the grain sphericity and porosity and permeability can be seen (Fig. 3b,d). This suggests that the shape 
of the grains has a direct influence on the pore structure whereas the size of the grains does not. Figure 3d high-
lights a collection of seven possible outliers showing the same relationship but offset from the dominant trend 
between mean grain sphericity and permeability. The same collection of data points is highlighted in Fig. 3b, 
plotting mean grain sphericity against total porosity, where they are not obviously misaligned with the rest of the 
data points. This indicates that these apparent outliers, in the case of permeability, result from a characteristic of 
the sample which is independent of porosity but not permeability.

As the intergranular porosity is fundamentally governed by the grains themselves, the relationship between 
the pore structure and grain sphericity was investigated. Figure 3e shows a generally positive relationship between 
grain sphericity and the connected pore diameter, except for four apparent outliers across all three sample suites. 
Of these four outliers, two belong to the group of seven identified in Fig. 3d and two do not. However, the cause 
for the occurrence of these four outliers is unclear and it seems that there is no correlation between these four 
outliers and other measured factors such as sorting and grain size.

Impact of grain characteristics on the porosity–permeability relationship. The results show that 
the sphericity of the grains in a sample has an impact on the porosity and permeability. Therefore, it is reasonable 
to assume that the porosity–permeability relationship could be better constrained through incorporating the 
grain sphericity into the fit equation. Three variations of the Kozeny–Carman equation were employed in order 
to fully investigate the influence of grain characteristics on the porosity–permeability relationship. In order to 
investigate the impact of both grain sphericity and size, a modified Kozeny–Carman equation was employed, 
discussed by Hommel et al.7,

Table 1.  Grain-based measurements made for each sample. a Payton et al.17. b Thomson et al.18.

Sample Sorting (φ) Mean grain size (μm) Mean grain sphericity

PB01 0.63 242 0.45

PB02 0.61 298 0.43

PB03 0.44 112 0.47

PB05 0.45 297 0.47

PB06 0.55 198 0.46

PB07 0.45 92 0.44

PB08 0.42 168 0.48

PB10 0.49 120 0.45

PB11 0.78 223 0.40

PB12 0.56 117 0.37

SF696a 0.61 203 0.49

SF697a 0.54 205 0.46

SF698a 0.64 204 0.52

SF699a 0.50 257 0.53

SF700a 0.51 230 0.46

SF701a 0.51 179 0.50

SF702a 0.52 247 0.45

BFS1b 0.61 135 0.44

BFS2b 0.75 262 0.43

BFS4b 0.69 158 0.44

BFS5b 0.53 421 0.43

BFS8b 0.44 108 0.46



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7531  | https://doi.org/10.1038/s41598-022-11365-8

www.nature.com/scientificreports/

which incorporates the grain sphericity, φs and size, Dp alongside porosity, φ to calculate a porosity–perme-
ability fit. To investigate the effect of grain size on the relationship the following equation discussed by Rasaei 
and  Firoozpur9 was used,

Finally, to investigate the effect of grain sphericity on the porosity–permeability relationship the following 
equation was employed where K0 is a constant,

In the case of each fit, the exponents n and r , applicable to porosity and grain sphericity respectively (Fig. 4), 
were either constrained according to the values given in the respective literature or allowed to vary. Comparison 
between the fit lines produced using these three equations allows for the influence of each grain parameter to be 
determined. This approach was used to determine the best fit with the lowest root mean square error (RMSE).

The best of the four fits based on the RMSE (Fig. 4) is the case where grain size is excluded and the exponents 
are constrained as given in the literature. The poorest quality fit is produced when the grain sphericity term is 
omitted and the porosity exponent is constrained. These observations align with the observations made in Fig. 3. 
Omission of grain size, which is shown to have no relationship with permeability or porosity, produces the best 
fit. Meanwhile exclusion of the sphericity term, which has a positive relationship with porosity and permeability, 
produces the poorest fit.

The other fit lines displayed in Fig. 4 exhibit similar RMSE values to the poorest fit. In the case of the orange 
and blue fit lines this attests to the inclusion of a grain size term, causing detrimental effects on the fit qualities. 
Meanwhile, the also poor RMSE of the unconstrained fit, which excludes grain size, attests to the value in con-
straining the exponents according to the literature.

It is apparent that even the best fit achieved, shown by the solid purple line in Fig. 4 does not fit all data 
points effectively, especially below a total porosity of ca. 15%. Consequently, an additional, simpler fit is shown 
which does not consider any grain characteristics in Fig. 5 (green line) alongside the best fit identified in Fig. 4. 
The results show that the simpler fit which considers porosity and permeability alone is slightly more effective, 
exhibiting a lower RMSE of 1.39 as opposed to 1.47 in the case of the fit incorporating grain sphericity.

(6)K =
φr
sφ

nD2
p

180(1− φ)2
,

(7)K =
φnD2

p

180(1− φ)2
.

(8)K = K0
φr
sφ

n

180(1− φ)2
.

Table 2.  Porosity and permeability measurements made for each sample. a Payton et al.17. b Thomson et al.18.

Sample Total porosity (%) Connected porosity (%) Permeability (mD)

PB01 20.4 20.3 1070

PB02 10.5 9.8 147

PB03 12.2 10.2 99

PB05 11.2 4.9 37

PB06 6.7 5.2 21

PB07 9.6 8.9 46

PB08 13.6 13.3 123

PB10 12.9 9.7 237

PB11 14.1 13.6 36

PB12 9 6.9 18

SF696a 20.7 20.4 1760

SF697a 20.7 20.3 620

SF698a 22.9 22.7 3190

SF699a 26.4 26.3 6040

SF700a 17.0 16.6 360

SF701a 24.3 24.1 1420

SF702a 9.77 8.89 40

BFS1b 7.2 5.8 91

BFS2b 7.1 5.7 86

BFS4b 9.6 9.1 104

BFS5b 7.8 5.1 6.7

BFS8b 15.2 14.8 795
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Discussion
Whilst the two compared approaches chosen to segment individual  grains31 are relatively straightforward, it is 
acknowledged that there are a number of other algorithms which aim to improve the accuracy of the traditional 
watershed algorithm. In particular, oversegmentation is an issue, particularly when segmenting features of a 
wide range of sizes and shapes where multiple markers are placed within one  feature21–23. Modified watershed 
approaches have been developed using the bring down  method24 and the bring up  method22,23 to accurately label 
features and their boundaries. Other techniques based on machine learning and modification of the distance 
map have also been developed but are consequently more complex and often require model  training26,28–30. Due 
to the high accuracy of results reported by Fei et al.31 alongside the quality of segmentation observed in Fig. 6, 
the ease of implementation and minimal computational cost the traditional watershed technique was chosen 
with a non-local means and median filter in line with the methodology described by the authors.

The technique used here is very similar to that applied by Thomson et al.32. Thomson et al.32 implement a 
traditional watershed algorithm but only use a non-local means filter without a median filter. The non-local 
means filter performs the bulk of the denoising in the images very effectively, but this type of filter is not optimal 
for retaining or improving feature boundaries. In contrast, the median filter is very effective for this purpose, 
enhancing the clarity of feature boundaries whilst smoothing any remaining noise in the images. The similarities 

Figure 4.  Range of calculated fit configurations to the porosity–permeability relationship which incorporate 
grain characteristics using Kozeny–Carman based relationships. The table to the right describes the difference 
between each fit line and reports the values of the exponents whilst the respective equations are displayed in the 
plot legend.

Figure 5.  Calculated fits to the porosity–permeability relationship displayed on log–log axes. A simple fit is 
shown (green) alongside the most effective fit incorporating grain sphericity (purple) shown in Fig. 4. The root 
mean square error (RMSE) values are reported for each fit, showing that the better fit is the simpler one in green, 
excluding any grain characteristics.
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and differences in the results of watershed segmentation using the two approaches are shown in Fig. 6. We refer 
the reader to the Supplementary Information (Fig. S1) to see a 3D representation of the grain segmentation 
carried out in this study.

The results show that the approach used by Thomson et al.32 results in some oversegmentation of grains when 
comparing the watershed result to the greyscale CT image. In contrast the approach used in this study does not 
show severe oversegmentation of the same grains, owing to the boundary enhancement provided by the median 
filter. Furthermore, by using the 3D Suite plug-in for Fiji, grains which are touching the boundaries of the study 
volume can be excluded from measurement to ensure only grains which are complete and truly representative 
are included. This was not included in the method used by Thomson et al.32 and therefore partial grains may 
have significantly influenced the mean grain measurements made.

Finally, Thomson et al.32 acknowledge in their work that the separated grains in their work displayed an unex-
pected group of grains with Feret diameters of < 63 μm, smaller than the classification of sand grains following 
the scheme proposed by  Wentworth47. Employing the additional median filter largely removed the occurrence 
of these small, unexpected grains. Therefore, this suggests that the combination of a median filter with a non-
local means filter is effective in reducing over segmentation and identification of small, unexpected features.

Application of this segmentation technique revealed the lack of relationship between mean grain size and 
both porosity and permeability (Fig. 3a,c). This strongly suggests that grain size within this suite of samples is 
not influential on the porosity–permeability relationship of the respective pore structures.  Nabawy10 presents 
a similar conclusion when examining the influence of grain size on porosity and permeability in a series of 

Figure 6.  Comparison of two different filtering techniques’ effects on the watershed algorithm in a single 
slice of sample PB10. Four different locations have been highlighted for comparison on an image which has 
undergone non-local means (NLM) filtering only. Annotated squares show the result of watershed grain 
segmentation following only  NLM32 and NLM with a median  filter31. Each grain can be identified by a different 
colour however, due to the number of grains, colours have been reused and instead the black grain boundaries 
split different grains of the same colour. In each annotation an example of over-segmentation is observed in the 
case of using NLM filtering only when compared to what might be expected from the CT image. The outer scale 
bar applies to all annotations. Figure created using Fiji 2.1.042 and PerGeos 1.7.0: https:// www. therm ofish er. com/ 
uk/ en/ home/ elect ron- micro scopy/ produ cts/ softw are- em- 3d- vis/ perge os- softw are. html.

https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/pergeos-software.html
https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/pergeos-software.html
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idealised grain packs as well as in high porosity sandstone samples. All but two of the samples are classified as 
very well-, well- or moderately-sorted45. Therefore, it is suggested that future work should focus on the relation-
ship between grain size and porosity and permeability in a variety of sandstones of different grain maturity, 
shape, sorting and facies to identify any factors which may influence whether grain size presents a relationship 
with porosity or permeability.

In contrast, evidence that mean grain sphericity has a direct positive impact on both porosity and perme-
ability is shown in Fig. 3b,d.  Nabawy10 identifies a similar relationship with the elongation (grain length/grain 
diameter) of grains within their sample suite where less elongate grains contribute to greater porosity and per-
meabilities.  Nabawy10 uses elongation as a measure of grain anisotropy where a more elongate grain indicates a 
greater degree of anisotropy. The same approach can be applied to grain sphericity, where a less spherical grain 
indicates a greater degree of anisotropy. Following this paradigm, the results presented here agree with those of 
 Nabawy10, a greater degree of anisotropy of the grains results in a reduction in both porosity and permeability.

Despite the clarity of the relationships between sphericity and porosity and permeability in Fig. 3, it is impor-
tant to consider the range of sphericities exhibited by the study samples. All samples exhibit sphericities between 
0.35 and 0.55. It is possible that the relationship demonstrated here shows variation outside of this sphericity 
window. Therefore, we suggest that future work should focus on examining this relationship over a wider range 
of sphericities using additional study samples.

A simple linear fit was calculated for the relationship between mean grain sphericity and total porosity which 
is given by φ = 1.22φs − 0.42 .  Nabawy10 proposes a relationship between elongation, E and porosity using their 
sample suite where φ = 45.73E−1 + 9.19 . This provides two parameters by which a porosity estimation may be 
made based upon two different measures of grain anisotropy. Whilst  Nabawy10 achieves an elongation fit exhib-
iting a correlation coefficient of 0.92, the sphericity fit presented here has a correlation coefficient of 0.72. This 
work considers three separate sample suites from different sedimentary facies, whilst  Nabawy10 focusses on a 
single sample suite, which makes the relationship between anisotropy and porosity less clear. Consequently, it is 
suggested that different depositional environments may have a more significant effect upon the characteristics 
which influence the relationship between grain anisotropy and porosity, as opposed to there being one consist-
ent relationship being applicable across a wide variety of sandstones. Further research is required to quantify 
the scale of this influence.

The control which the anisotropy of grains has on the geometry of the pores themselves is also investigated, 
finding that there is generally a positive relationship between grain sphericity and pore diameter (Fig. 3e), aside 
from the four described outliers. The results agree with the relationship identified between porosity and grain 
anisotropy, measured through  elongation10. This indicates that these two measures of grain anisotropy exhibit 
similar controls on porosity which reflects directly in the geometry of the pore structures.

A suggested limitation of the relationship reported by  Nabawy10 is that it may depend on grain elongation 
occurring systematically along one axis which is common throughout the sampled well-sorted material. Such 
imbrication of grains according to their elongation axes is likely to result due to the flow of depositional currents 
and load pressure. Where such an alignment is not clearly present, for example under depositional conditions 
where turbulent flow dominates, these results imply that the detrimental impact on permeability would be far 
more pronounced than any influence on the relationship with porosity. This conclusion requires further testing 
using samples from varied depositional environments prone to varying degrees of imbrication to establish if 
this is a key influencing factor.

A group of seven possible outliers is observed when examining the relationship between grain sphericity and 
permeability (Fig. 3d) which fall below the dominant trend. The fact that this group of outliers are not apparent 
when comparing sphericity with porosity (Fig. 3b) strongly suggests that their rogue placement is due to a fac-
tor which inhibits fluid flow but does not change the absolute porosity measurement. This may point towards a 
lack of preferential orientation with regards to grain anisotropy within these particular samples, relative to the 
majority of the study samples.

Further investigation of the seven outliers found that there was no apparent common characteristic amongst 
them which could differentiate them from the remaining samples. It was investigated whether there was a rela-
tionship between these outliers and their sample depth. The thickness of the overburden may have influenced 
grain alignment and consequently permeability in each study sample as a result of compaction. However, we 
found there to be no relationship between sample depth and porosity or permeability across all study samples. It 
has been noted that grain packing textures have significant control on porosity reduction during  compaction48 
which would then have an influence on permeability. It is possible that the outlier samples possess unique packing 
textures compared to the remaining samples which could explain their deviation from the majority of the study 
samples. We recommend further investigation into the influence of grain packing textures on permeability in 
these materials and others. Sorting, porosity and permeability were also investigated with regards to the outliers 
but no relationship was found which might explain their occurrence. None of these characteristics helped to 
explain the presence of the seven outliers. Furthermore, a qualitative assessment of the μCT images found noth-
ing of significance which might allow for the differentiation of this sample group such as presence of cement or 
other precipitates which were not present in the main group of samples.

It might be expected that a lack of grain orientation would manifest throughout a given geological unit, lead-
ing to surprise that the outlier group contains at least one sample from each of the three studied formations. It is 
suggested that the resulting texture may be controlled by a different depositional process. Alternatively, the scale 
of the sample upon which measurements were made could be considered not suitably representative for the scale 
of the processes which cause variation in grain imbrication and alignment with regards to anisotropy. Therefore, 
it is recommended that future work should focus on identifying a suitable representative elementary volume over 
which measures of grain anisotropy, such as elongation and sphericity, can be representatively measured. We also 
suggest that future investigations could use samples taken in different orientations of the same facies to further 
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investigate effective representation of grain orientation. Equally, identification and implementation of a tech-
nique to measure and quantify alignment or imbrication of grains in 3D at the pore scale would be beneficial in 
providing greater context for relationships between porosity and permeability with measures of grain anisotropy.

Despite the positive relationship identified between mean grain sphericity and porosity and permeability 
(Fig. 3b,d), it has been found that the influence of grain characteristics is not beneficial to constraining the 
porosity–permeability relationship in these sample suites (Fig. 5). The lower RMSE of the simple fit, which 
omits any parameters based upon grain characteristics, suggests that grain characteristics are not more effective 
in constraining the porosity–permeability relationship than porosity alone. It is very apparent from Fig. 4 that 
including grain size is heavily detrimental to the quality of fit, in agreement with Fig. 3. However, even when grain 
size is omitted and sphericity is included the fit is still poorer than the simple fit, despite the positive relationship 
observed between sphericity and porosity and permeability (Fig. 3).

Whilst consideration of grain characteristics is shown to be detrimental in the range of study samples analysed 
here, further investigation of a wider range of materials would allow it to be determined whether this is repre-
sentative of all sedimentary materials. The poorer quality of fit determined using grain characteristics may be a 
result of using a Kozeny–Carman fit equation which makes the assumption that grains are spherical producing 
a simple pore  structure49.  Bear8 describes how this assumption arises from the transformation of the specific 
surface area  term2 to a characteristic grain size term.

Inclusion of grain size in the paradigm of a Kozeny-Carman relationship defines the diameter of the grain 
which is assumed to be spherical. However, definition of the grain size is given as the greatest distance from one 
side of the grain to another or the calliper distance, which is applicable to non-spherical grains. Therefore, as 
the sphericity of a given grain reduces, it moves further from the Kozeny–Carman assumption which results in 
a poorer fit to samples with a lower mean grain sphericity. It is observed that a lower sphericity results in a lower 
porosity and permeability (Fig. 3) therefore, it is expected that the Kozeny-Carman fit would be poorer at lower 
porosities and permeabilities.

It is shown to be the case that lower sphericity or greater grain anisotropy results in a poorer agreement with 
a Kozeny–Carman based fit incorporating grain parameters (Figs. 4 and 5). It can be observed that below ca. 
15% total porosity a greater proportion of data points in Fig. 6 lie below the purple fit line whereas the remain-
ing data points lie closer to the fit line above ca. 15% porosity. Torskaya et al.50 investigate the effect of grain 
shape on permeability and find that when using realistic grain shapes from μCT images that the K–C equation 
underestimates permeability by between 30 and 70%. When using simplified and spherical grain shapes Torskaya 
et al.50 find that the K–C equation fit was far more successful, supporting the conclusion that the K–C spherical 
grain assumption is causing the poorer quality fit. The K–C approach used here, therefore, is not suitable for use 
with materials where grains are significantly non-spherical.

As a result of this identified limitation, it is suggested that future work should look to develop an alterna-
tive model which accounts for variation in grain sphericity within and between different sandstone samples. 
In this study it has been clearly shown that grain sphericity exhibits a strong relationship with both porosity 
and permeability over the range of sphericities measured in these samples (Fig. 3), highlighting the possible 
value in incorporating this grain characteristic in a porosity–permeability model. A model which is still able to 
incorporate each influencing factor as individual terms (as in Eq. 6) would be favourable to provide flexibility 
and the ability for experimentation. Such a model could be tested against the simple and K–C models presented 
in Fig. 5 based upon RMSE.

Whilst many modified versions of the Kozeny–Carman equation have been proposed and  used7,51,52, the 
fundamental assumption of spherical grains and pores arranged as bundles of capillaries remains. Alternatives 
to a K–C approach at the same scale have been used to describe permeability such as the Fair-Hatch, Brinkman 
and Panda and Lake models, described and summarised by Le Gallo et al.51 and MacQuarrie and  Mayer52. Whilst 
some of these approaches use grain size terms, they do not include terms which allow for direct inclusion of 
grain shape or anisotropy.

A further consideration which would be highly beneficial to any future model would be to account for the 
percolation threshold, a key phenomenon which makes effectively characterising the porosity–permeability 
relationship difficult over a range of porosities. Thomson et al.18 and Payton et al.17 show the percolation thresh-
old for full connectivity to be at ca. 8–15% total porosity, whilst Mavko and  Nur3 and Rahrah et al.49 show the 
value of incorporating the percolation threshold into a K–C style fit. Consideration of the percolation threshold 
alongside variable grain sphericity would surely be an effective approach to best describe the porosity–perme-
ability relationship.

Conclusions
In this work a comparison has been made of two similar grain segmentation techniques, using marker-based 
watershed algorithms, for reliable and accurate grain boundary identification across the sample suites. It has been 
found that using a median filter in addition to a non-local means (NLM) filter prior to segmentation results in 
superior grain separation as opposed to using a NLM filter alone. This was concluded to be due to the ability of 
the median filter to preserve and enhance the grain edges during denoising, reducing oversegmentation. The low 
computational cost, simplicity and high speed at which this technique can be applied, compared to more complex 
machine learning-based approaches, makes this a suitable option for segmentation of sandstone materials such 
as those investigated here.

Digital image analysis techniques have been used on μCT images of three different suites of sandstone samples 
to investigate the impact of grain characteristics on the porosity–permeability relationship. In this collection 
of samples, the porosity–permeability relationship is not better constrained when including grain shape or size 
parameters in a Kozeny-Carman type fit equation when compared to a simple fit using porosity measurements 
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alone. This is the case despite identification of a strong positive relationship between grain sphericity and both 
porosity and permeability over the studied range. No such relationship with grain size was identified. Therefore, 
it was proposed that the porosity–permeability relationship is best described by K = 105.54φ3.7.

It was determined that the need to assume that grains are entirely spherical when working in a Kozeny–Car-
man paradigm is severely limiting to identifying an effective porosity–permeability relationship. Future work 
should focus on incorporating a grain sphericity term in a model which effectively handles non-spherical and 
non-uniform grains. Of added benefit would be consideration of the percolation threshold in producing a model 
capable of constraining the porosity–permeability relationship over a range of porosities in sandstones.

Finally, consideration of grain sphericity as a measure of 3D grain shape anisotropy revealed a relationship 
of decreasing anisotropy resulting in greater porosity and permeability, in agreement with 2D measures of grain 
anisotropy. Total porosity was found to vary with grain sphericity according to φ = 1.22φs − 0.42 , offering an 
additional indirect method of predicting porosity. A group of outliers are identified, vertically displaced below 
the main trend of the sphericity-permeability data. It is suggested that this may be due to a relative lack of grain 
orientation with regards to sphericity in these samples, inhibiting the permeability only as the same occurrence 
is not observed so strongly in the case of porosity.

Data availability
The μCT images used in this article are available from a variety of sources. Images of the Wilmslow Sandstone 
Fm. for samples with a SF prefix are available from Payton et al.17, stored in the BGS National Geoscience Data 
Centre (NGDC). Images of the Brae Fm. Sandstone for samples with BFS prefix are not publicly available and 
must be requested from Thomson et al.18. Images of the Minard Formation Sandstone from the Porcupine Basin 
for samples with a PB prefix are available from the Royal Holloway, University of London Figshare Repository, 
https:// doi. org/ 10. 17637/ rh. 16955 068.

Code availability
The code used to perform analysis and plot the output of the DIA measurements is available alongside the DIA 
measurement outputs in the Royal Holloway, University of London Figshare repository, https:// doi. org/ 10. 17637/ 
rh. 16940 569.
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