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Summary. Following Bekenstein’s work on recoiling black holes, we calcu-
late the gravitational wave linear momentum flux from a binary system of
two point masses in Keplerian orbit. The quasi-Newtonian approach is
adopted and the resulting motion of the centre of mass is calcuiated. As such
a system decays via gravitational wave energy losses, the size of the orbit
decreases until the components merge or become tidally disrupted. There-
after, the centre of mass moves with the linear momentum necessary to
balance that carried off by the gravitational waves. In the case of a binary
black hole system, the velocity of the centre of mass could be of astro-
physical significance, although numerical studies would be necessary to check
this claim,

1 Introduction

In classical electrodynamics it is possible for a material system to recoil due to electromagnetic
wave emission. The cause is interference between the electric dipole and electric quadrupole
or magnetic dipole radiation fields. The analogous case in general relativity was considered
by Peres (1962). He found that gravitational radiation can also give rise to the recoil of the
emitting system, and that the effect is due to interference between the mass quadrupole
and mass octupole or flow quadrupole radiation fields. Bekenstein (1973) obtained a similar
result by perturbing the field equations and going beyond the usual quadrupole order. He
applied his analysis to the astrophysically important case of a star collapsing to a black hole
end state and was able to place an upper limit of 300km s~ on the recoil velocity that such
a collapse could cause. Moncrief (1979), using the perturbation techniques of Cunningham,
Moncrief & Price (1978), found that an Oppenheimer—Snyder model of a collapsing star
would give rise to a typical recoil velocity of 25kms™" for small non-spherical pertur-
bations. He also indicated that the velocities close to the Bekenstein limit could be attained
for rapidly rotating collapse models.

The obvious extension of this work is to consider binary star systems. Peters & Mathews
(1963) calculated the energy and angular momentum loss rates for a binary system of two
point masses. They showed that gravitational wave emission circularizes the orbit and also
that the orbit decays with a consequent change in the period. This effect has been observed
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in the binary pulsar PSR 1913 +16 and may be used to verify general relativity (Taylor
1982). Here we extend their Newtonian calculation to calculate the linear momentum flux
from a binary system of two point masses in Keplerian orbit. Bekenstein’s formalism is used.
It is found that for typical stars the flux is very small and is only significant when the separa-
tion of the binary becomes comparable to the Schwarzschild radius of the system. Hence we
would only expect a noticeable effect for a close compact object binary system. Since the
calculation is performed in the Newtonian regime, it is obviously an unwarranted extra-
polation to say what will happen in this context. However, our analysis at least gives an
order of magnitude result. Extrapolating our results to close compact object binary systems
indicates that the speed of the centre of mass can become of the order of tens of km s™ for
a neutron star binary system, and hundreds of km s™ for a binary black hole system. Hope-
fully these results will stimulate numerical studies similar to those of Smarr’s on colliding
black holes.

In Section 2 Bekenstein’s formula is introduced and the momentum flux due to gravi-
tational wave emission calculated in three cases: a circular binary orbit, an elliptical orbit
and direct radial infall. In Section 3 the motion of the centre of mass is calculated and our
calculations further extended to include parabolic and hyperbolic encounters. In the case of
a circular relative orbit it is found that the centre of mass moves in a circle, with the motion
becoming faster as the components of the binary get closer. In Section 4 we discuss the
validity of our analysis and estimate the post-Newtonian corrections to our results. In
Section 5 we apply these results to various types of binary systems and conclude that it is
only black hole binary systems that will give rise to astrophysically significant recoil velo-
cities. It should of course be borne in mind that the Newtonian analysis only allows us to
speculate at this point.

2 The linear momentum flux

In all that follows Greek indices lie in the range 0 to 3 and Latin indices in the range 1 to 3.
Finstein’s summation convention will be assumed. Bekenstein assumed the matter to be
described by a symmetric stress-energy tensor T, 5. He perturbed the field equations about
a flat Minkowski background n,g but went further than the usual quadrupole order to
include octupole and angular momentum terms. He used the Landau—Lifschitz pseudo-
tensor to evaluate the energy flux d2E/dtdS2 (6, ¢) into solid angle dS2 in the (6, ¢) direction
and then found the momentum flux by integration over a two-sphere at infinite, S, centred
on the coordinate origin

zi—f CE ¢)”ida 2.1)
s, drdQ ¢ '

where n' is a unit radial vector on S.. For the case of quadrupole radiation the above
integral is zero; hence the need to go to higher order radiation fields. The final momentum
flux he derived was

I' =G (945 ¢! [22 Q%* B/¥ 12 0% B/ik 120/t BIkF]. (2.2)

The quantities Q7 and BY¥ are related to the matter distribution as follows:

93 . 3

Q7 = ¥ T°c?@Bx'x! —r*§7yadv (2.3)
3 oYk 3

Bk =71 ( i 2A”k) 2.4)
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where
. 0* .5
0k = — |72 |5xix/—= p280) xkgy (2.5)
4
ot 3
y 03 o .2 g
A”"=a—3 Jc‘l (MOk’x’+M°’”x’—§M"k’x18”) v (2.6)
t

and M*PY = T*BxY _ T%7 xf (the auxiliary angular momentum tensor). Q% is what is some-
times denoted as 97, the third time derivative of the matter’s quadrupole moment. Similarly
0¥ is the fourth time derivative of the matter’s octupole moment, and A7* represents the
angular momentum contributions.

We adopt a coordinate system with origin at the centre of mass of the binary, and with
the x-axis aligned with the radius vector when the two components of the binary are at
periastron. Then, if the separation of the components is d when the angle between the radius
vector and the x-axis is 8, we have by standard Newtonian orbit theory
d a(1-e?) i = [G(my +my)a(1—e?)]V? 2.7)

1+ecosf d? .
where e is the eccentricity of the relative orbit, @ its semi-major axis and m,, m, are the
masses of the components. Since the motion of the matter is known we can adopt a quasi-
Newtonian approach and use the motion to evaluate the quantities required by Bekenstein’s
formula. Considering the bodies as point masses, 7 is given by

2
T*F =Y m,8,ulu’ (2.8)

n=1

where 8,, =8 [x —x,, (¢)] and uy is the nth particle’s four-velocity. In the Newtonian regime,
where u'/c < 1, we have

2
T%° =~ Y mp8,c?

n=1

. 2 )
T% = Y myb,cxt, (29)

n=1

. 2 . I3
TV ~ Y m,6,%,x]
n=1
where the dot denotes d/dt. )
The point mass assumption greatly simplifies the integrals. For example, Q¥ becomes
L0 2 o y
Q”=a—3 Y m, (3x} xj, —d28&") - (2.10)
t n=1

where d; = dm, (m, + m,)™! and d, = dm, (m, + m,)*. Similarly we find

. % 2 .S g
O = —2 ¥ mn (Sxyx) — dn8)x} (2.11)
n=1
. 33 2 o ,_k..k2 ok s 2 tiel 1k
Al]k:&; Z m,,(2x,’,x,’1)&,’§ ——X;ZX{,X" —x:,x,’,xn—gdfﬁ”xn +"3'8anxnxn)' (2'12)
n=1

The procedure now is to substitute for the known Newtonian values of x,’; in the above
expressions and calculate the Q”’s and B¥*’, and hence the linear momentum flux %,
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0.015 +

0.020—-1

Figure 1. This shows the form of the function f(m,/m,). The maximum and minimum of the function
are attained at m,/m, = 0.38 and 2.6 respectively.

We are therefore neglecting the effect of the waves on the orbit. In the case of a circular
relative orbit, the symmetry of the problem greatly simplifies the calculation; the other two
cases are algebraically tedious.

For a circular relative orbit symmetry considerations imply that the magnitude of the
momentum flux vector is constant (if the orbit is assumed not to decay by gravitational
wave energy losses) and that the angle it makes with the radius vector is fixed. It is there-
fore only necessary to evaluate 1 for the case 8 =0 in order to know its value for all 8. For
a circular orbit we also have the simplifying feature that 6 = constant = ., with

Qe = [G(my +my)] V22732, (2.13)

Assuming that 6 =0 at time ¢ =0, we have 0(¢) = Q.z. From the equations (2.10), (2.11)
and (2.12) we see that the fourth and lower order time derivatives of the x) are required
at 0 =t =0. Assuming that at £ = 0 the particles lie on the x-axis with the particle of mass
m, at positive x, we have

ﬁx’ = (=1)P/? (1) [+ (-DP](-D)"*1ad,QP (2.14)
d® n =0 2 ) ns<c

& x3 =(-1)P-D/2 (1) [1+ (1P (-1 d, Q8 (2.15)
dr? ! 8=0 2 ne

where we have assumed that the orbit is not changing due to gravitational wave emission.
Performing the differentiations in the Q¥ expression and substituting for the differentiated
terms, we find

0" (g=0 =0 g=0 = —12Q%(m,d? + m,d?) (2.16)

and all other Q¥|4-¢ are zero. Since only two components of Q¥ are non-zero the range of
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BY¥s required is lirhited and we can write Bekenstein’s expression as
I'=G(945¢%)™ Q"2 [20B?!! —12(B"? + B*22 + B233)]
1*=G(945¢%)71 Q"2 [20B'2 —12(B"! + p?* + B133)] (2.17)
I*=0

where all quantities are evaluated at § = 0. The necessary B7%’s can be evaluated in the same
manner as the @”’s and the following results are obtained

B=220%¢71A

BM2= 1804 c7'A (2.18)
B¥'=—23Q4c7'A

where A =m,d} —m,d3 and all other B7% required in (2.17) are zero. Substituting for

0'? and the BY** in (2.17) we find

464
I?lg=g = IE)—S GQlc Ao

I'g=0 =1%lg=0 =0

(2.19)

where 0 =m;d} +m;d3. We conclude that the momentum flux for a circular orbit is at right

angles to the radius vector and in the plane of the orbit. We can therefore deduce that for
arbitrary 6

100) =1%|g=¢(—sin6, cos 8, 0). {(2.20)
Substituting for §, d, and d, in this expression we find that

e M N S )

2
x(—sin 4, cos 8, 0). (2.21)

We can see from this expression that the linear momentum flux is zerg for equal mass
components and that it is largest when a, the separation of the components is as small as
possible, i.e. of the order of the Schwarzschild radius of the system. Henceforth we set

R, =2G(m;+m,)c™?
flmyfmy) =1 +my/mi)2 (1 +my[my) 3 (1 —my[m,).

Generalizing to an elliptical orbit is more difficult because we no longer have the simplifi-
cations imposed by circular symmetry. We have used an algebraic computer language
(cAMAL) to perform the differentiation of the x/’s and to evaluate the Q¥’s and B¥*’s.
These are listed in the appendix. Here we simply state the final result

1'(0)=—T(6) sinf [58 +175 e cosf +e?(12 +160 cos26) +e>(20 cos 6 + 90 cos®§)]
1(6) =+T'(6) [58 cosf +e(175 cos?0 —9) +e? (160 cos>4 —2 cosh)

(2.22)

+e%(2 +3 cos?0 + 45 cos*0)] (2.23)
*®=0
where

8G 407,71 2y-1/2
F(6)=Tbg(l +ecosd) Qic™ oAl —e*) 2, (2.24)
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Setting e =0 in the above expressions we recover the expression for the case of a circular
relative orbit as would be expected. Substituting for ., 0 and A we find

_ 1 4 a(l —62) —11/2 ﬁ} .
re)= 2002 G (Ts) f( m2) (1+ecosf)*. . (2.25)

Finally we consider the case of two point masses falling radially towards one another.

If the point masses m;, m, are at positions r,, r, respectively, we have the Newtonian
equations of motion

my\ 2

f=—Gm, (1 +——) r | BP=—81, [ry |73 (2.26)
m,

and
my\ 2

f2=_Gm1 (1"”—‘) r2|r2|_3=—ﬁ21‘2|r2l_3. (227)

1
Solving the ¥, equation leads to the solution

[ry]=a(1+cosn) (2.28)
t=8,(n+sinn)

where a, is specified by the initial separation, a, of m, and m, and the equation of motion

requires that §; be given by .c.vf= Gmy(1+my[m,)™282. Similarly we can solve for r, and
hence evaluate the Q7°s and BY*s. This gives '

1 mya? m, o3
Q22=Q33=_5Q11=_2 Sinn( ! 161 + 2 232) (2.29)

3 3
8.r 8,13

all other 0''’s bein zero. As in the circular case this restricts the B/*’s re uired. We find
g q

ll o« Qll [2Blll + 11(3221 +B331)]

1’=]3=90

with

B2 =gt o _ 1 B = _l 6 —cosn ] (m262. . mlﬂl) ) (2.30)
2 ¢ [(1+cosn)® 52 82

Assuming that the particles have initial separation a we can calculate o, B;, §; and hence
arrive at the momentum flux

8 -11/2 ml)

== 6 (5 f(;;zl H(n) (1,0,0) 231)
where

H(n) =sinn (6 —cosn) (1 +cosn)s. (2.32)

3 Motion of the centre of mass

The well-known ‘quadrupole formula’, originally derived for linearized gravity, has been
found to be valid for nearly Newtonian gravitationally bound systems (Breuer & Rudolph
1981) even when the internal gravity of the components is strong (Kates 1980). Although it
has not been proven, we believe that Bekenstein’s formula, derived for linearized gravity, will
also be applicable under these circumstances. Under this assumption we can write

d

P =1 3.1
dt PN ( )
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where I is the momentum flux we have calculated and Ppy is the third-post-Newtonian three-
momentum of the system with respect to a frame, Fy, in which the centre of mass is initially
at rest. In the Newtonian limit this can be replaced by the Newtonian three-momentum Py.
This equation is not strictly true in the sense that Ppy is evaluated with respect to F
whereas the frame with respect to which 1 is calculated is moving with the velocity of the
centre of mass. However, as will be seen, the velocity of the centre of mass is not relativistic
and so to a first approximation (3.1) holds. The errors introduced by these assumptions will
be further discussed in Section 4. If R is the position vector of the centre of mass with
respect to Fy, then (3.1) becomes

[(my +my)R]™ = —1(2). (3.2)

For the circular case we have

L 29 L (e (my .
(m;+my)R=— 210\/20 G (Es) f(—r-n:) (—sin .2, cos 2.2, 0) (3.3)
which can be integrated to give
, -4 ]

R=—¢ {% (1—;1_5) f (%)] (cos Q.t,sin 2.2, 0) 3.4
and
R=a [M (—a—)—m f (—WE)] (— sin Qt, cos ¢, 0). (3.5

105 \Ry m,

The centre of mass therefore moves with speed

(i (&) )

in a circle of radius

Cos) () /)

Since gravitational radiation energy losses tend to circularize the orbit (Peters & Mathews
1963; Peters 1964), the circular orbit will in fact be of relevance in many astrophysical
contexts. Highly eccentric orbits might, however, arise through capture processes or the
fission of rotating collapsing stars since, if the components are sufficiently close, there may
not be sufficient time for the orbits to circularize.

For the elliptical case, the velocity of the centre of mass can be shown to be given by

A 1 a(l—ez)] 4 my
R@O)=—c|— |—— — )} [a(8),8(6),0]. 3.6
ol [ ) wrs oo
Here
5. a;(cosg)/*1
a(f) = Z _Ji_)__
j=o  (F+1)
with the a;’s given by
o =2(29 +6€?) a3 =10e3(54 +e?)
a; = e(291 + 34e?) @ = 250€* (3.7)
ay = 8e*(71 +4e?) as=45¢6°
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and
0.1 N U
B(B) =Nof + A sinh + 2, 5+4—1S1n20 + 25 [sm0~§sm 0]
3 1 1 5 5 1
+A4 [’* 6 +—sin 20 + - sin46] + N5 |—sinf +— sin 36 +-—sin 56]
8 4 32 8 48 80
560 15 3 1
A¢ | — + —sin20 +— sin 46 + — sin 60]
16 64 64 192

with the A;’s given by

No=e(2e?—-9) Aa=3e3(180 +e?)
N1 =2(e*—10e% +29) As=250¢e* (3.8)
N, =e(2e*—10e% +291) Ae=45e°.

N3 =4e%(142 +?)

Setting e =0 in the above equations, we recover the circular orbit result. The interesting
difference between the elliptical and the circular case is the additional non-periodic terms
in B(#) which are linear in 6. The implication is that the centre of mass will undergo periodic
motion with a superposed drift in the negative y direction. The reason for this drift is that,
in our coordinate system, the x-axis is an axis of symmetry while, for m, # m,, the y-axis is
not. Roughly speaking, the momentum flux vector lies at right angles to the radius vector.
Over the half orbit —m/2 <0 < +7/2 the net linear momentum lost from the system will
therefore be in the positive y direction. For the half orbit +7/2 <8 < 37/2 the net linear
momentum lost from the system will be in the opposite direction but of a different magni-
tude because the path followed is different in shape to that followed between — /2 and
+m/2. Hence there is a net linear momentum flux in the y direction. On the other hand,
applying the same argument to the orbit decomposed as 0 < § < 7 and 7 < 6 < 27 shows that
there will be equal but opposite momentum losses along the x-axis in each half of the orbit.
In the case e =0, where symmetry about the y-axis is restored, there is no net loss of
momentum over one orbit since Ag= Ay = A4 =Ag=0.

As we will later show, the periodic motion of the centre of mass is a very small effect in
the Newtonian regime. However, the drift effect, being a cumulative effect, could conceiv-
ably become large even in the Newtonian regime (where a/R¢ > 1). We therefore consider the
cumulative effects of the drift velocity in more detail. After each orbit the drift velocity in
the negative y direction increases by an amount proportional to [8(27)—g(0)], the actual
value being given by vg where

1 m a(l—e®)1™% (273 399 259
Vg =c¢ {— f(——l) [——*—( )] e (~ +— 2+ — e“) 211} . 3.9
2107 \m, R, 2 2 16

Since we are assuming that the orbit does not undergo precession, in principle the drift
velocity in the negative y direction could become relativistic, the velocity after NV orbits
being given by the relativistic addition formula

v = ¢ Lm0 vl + gl )
(1+[(1— vafe)l(1 +vafe)]V }

However, in practice the perihelion advance of the orbit due to general relativistic effects
will prevent the final drift velocity becoming relativistic. If the perihelion advances by an

(3.10)
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angle § for each orbit then after N orbits the drift velocity will be given by
N
VN = Y vg (sinnd, —cos né,0) . (3.11)
n=0

s0 long as the drift velocity is non-relativistic. Performing the summation we find

2

Considered as a function of &V this is maximized for
tan N6 = —tan §
and

1 8
VN =T U4 [cot 5 (1 —cosN8) +sin N5, —(1 +cos N8 +sin N§ cot §/2), 0] . 3.12)

N§ € [n/2, n] (modulo 27) (3.13)
when
Vd

IV | =
sin(§/2)

and
N=(m[8)—1.

Since we are working in the Newtonian regime where § <1, the maximum modulus of the
drift velocity is, to a good approximation, 2 v4/8. Since & has the value

_6nG(my +m,)

3.14
(1—-€*) ac? (3.14)
the maximum modulus of the drift velocity is given by
27 (m 273 399 259
[viAX | =¢ ‘—fv(——l) e [_ + " 2+ 2 e4] (31r)_463} . (3.15)
105 \m, 2 2 16

This dominates the periodic motion of the centre of mass by a factor 1/6. Assuming the
largest possible values of e and f(m,/m,), | v | < 14.483km s™" and therefore the cumu-
lative effects in the Newtonian regime, where & < 1, are small. For example, in the case of
the binary pulsar PSR 1913 +16 this corresponds to a velocity of 1.6x 10™2km s™*. The
time-scale of variation of the cumulative effects of the drift is (¢/R,) times the orbital time-
scale. When we are no longer in the Newtonian regime and (a/R;) is of order unity, the
precession rate becomes comparable to the orbital angular velocity and our simple elliptical
orbit calculation is no longer valid.

The elliptical orbit results easily generalize to include parabolic and hyperbolic
encounters. If the distance of closest approach in either case is b, then the following
transformations should be made to equations (3.6) to (3.8): parabolic case, e= 1,
a(1— e*)~ 2b; hyperbolic case, e>1, a(l — e?) > b(1 +e). In each case the net change in
velocity of the centre of mass as a result of the encounter has been evaluated:

b\~ * f
A v, =3532 (E) (_f—) 0,-1,0) kms™ (3.16)
S max
b(1+ -4 259 —1
Avy = —25.5[ ( e)]’ ( ff ) {O, e (273 +399¢? +? e4) cos™! (——)
s max e
(62—1)1/2
+ [—24—] (5943¢* +10514¢2 + 448), 0: km s (3.17)
e

35
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Figure 2. This shows the gravitational wave energy flux due to a test particle of mass u moving in a
circular orbit of radius  about a Schwarzschild black hole. Units in which ¢ = G =1 are used. The thin
continuous lines show Detweiler’s (1978) exact results for the various multipole contributions to the flux.

The dotted line shows the total flux he evaluated. The thicker line shows the quasi-Newtonian prediction
which is to be compared with the /= 2 (quadrupole) line.

in the parabolic and hyperbolic cases respectively. For large e equation (3.17) becomes

b\, f 259 259 4
Avy = —25.5 (—) ( ) (0,— me +280 — — w,O) km s (3.18)
R Jmax 16 4

S

which is interesting because it indicates that large centre of mass velocities are possible
in this case,

Finally there is the case of direct radial infall. If we assume that initially the masses are at
rest, a distance a apart, and that the velocity of the centre of mass is then zero, then

R(n) = ¢ [—1% (}—2)%(%)} [-Z (1+cosn)_4——§ (l+cosn)'3——il?32} (1,0,0) (3.19)

where 7 is related to the time by equation (2.28).
In each of the cases discussed above the factors f(my/m,) and (a/Rg)™* are of critical

importance. For example, for a circular relative orbit, the speed of the centre of mass
motion is given by

v=c (12—095) f(-:—:)l (Ris)_“' (3.20)

The form of f(m,/m,) is shown in Fig. 2. It has the following properties: (i) f(m,/m,) =
~f(my/my), (ii) it is extremized by my/m,=2.6 or 1/2.6 when it takes the values
—0.01789 and +0.01789 respectively. For equal mass components, (i) shows that the centre

of mass is stationary. Otherwise we can write the speed of the centre of mass in the circular
case as:

4

v=1480( ! )(i) kms™, 3.21)

fmax S

4 Validity of our approximations

The main source of error in our analysis is the neglect of post-Newtonian corrections to
Newtonian quantities. For example, the dominant correction to 7°° is of relative magnitude
v’/c? (Chandrasekhar 1969), this being the first-post-Newtonian correction. In the case of a
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Newtonian binary system this is of order (a/R)”'. Higher order corrections also exist. For
example the 2%-post-Newtonian correction corresponds to the orbital evolution due to
radiation reaction, and is of relative magnitude (¢/Rs)™>’%. Another possible source of error
is the application of Bekenstein’s formula when the components of the binary are close. An
exact analysis would result in an infinite series of products of various multipole moments of
the source. We have in effect used a truncated form of the series. This will be a reasonable
approximation in the Newtonian regime because the terms we have used will be the domi-
nant ones. However, when @ and R are comparable, so that the components of the binary
move with large velocities, the remaining terms in the series may become significant.

We can only be guided by the use of the quadrupole formula under the same circum-
stances; Peters & Mathews (1963), using the same approximations as we have made, derived
an expression for the average rate of energy loss of a binary system. They used the standard
quadrupole formula and this gave

dE 32 G*mymy)*(my+m 73 37
_>=__ (myms)* (my +m,) [1+—ez+—-e4].
dt 5 (ac)*(1 —e?)"?

i (4.1)

If, for example, we now consider the case of a small test test particle of mass u moving in a
circular orbit around a more massive body of mass M, then this equation implies

_df> _ 326y (4.2)

dt 5  (ac)’

which can be written as

l fif> (_]K)2 _ 32 ("_"2)_5 (Ci) . (43)
dt M 5 \GM G

Detweiler (1978) used Newman—Penrose formalism to evaluate the energy flux for the case
of a small test particle moving in a circular orbit around a Kerr black hole. This analysis is
exact. In Fig. 2 we compare our quasi-Newtonian result with Detweiler’s exact results. It is
interesting to note the similarities. For the case of a test particle in orbit around a
Schwarzschild black hole, the Newtonian result slightly underestimates the energy flux when
the particle is near the hole. This could be taken to indicate that the Q" calculated in our
approximation are underestimates and that we have consequently underestimated the recoil
velocity.

The similarity between these results is encouraging, even though it is only a comparison in
the test particle limit when the linear momentum flux is vanishingly small. The flux only
becomes appreciable when m, and m, are comparable, in which case one might think that
the test particle approach is no longer valid. However, it is interesting to note that Smarr’s
fully non-linear computer simulations of black hole collisions give strikingly similar results to
small perturbation analyses when the test particle mass is allowed to become comparable to
the mass of the hole. (See for example the articles by Smarr & Detweiler in Smarr 1978.)
Work is in progress (Detweiler & Fitchett, in preparation) to compare an exact test particle
momentum flux calculation with the quasi-Newtonian results presented here. Until this is
complete, the results of our analysis can only be considered as indicative.

5 Astrophysical implications

Since gravitational wave energy losses cause the orbit of a binary to decay, equation (3.21)
implies that the speed of the centre of mass will systematically increase, and so we must
consider how small g can become. A strong lower bound on a is {R; + R;), the sum of the
radii of the components of the binary. For a main sequence or main sequence-compact
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object binary, (R, +R,) is typically 105R, and so (a/Rs)™* is bounded above by 107%.
For example, in the case of YY Eri where the components have masses of 0.76 M, and
0.50 M, and the orbital period is 0.321 day (Misner, Thorne & Wheeler 1973), the speed
of the centre of mass is approximately 107**cms™'. Main sequence or main sequence-
compact object binaries therefore produce a negligible centre of mass velocity.

In order to produce a more significant centre of mass velocity we must consider compact
object binary systems in which a/Rg can decrease until one of the objects undergoes tidal
disruption or, in the case of a binary black hole system, until the orbit becomes relativistic-
ally unstable and the objects coalesce. The centre of mass will then move with the velocity
it had prior to the disruption or coalescence. Candidates for such a scenario and the recoil
velocities associated with them are now discussed.

Clark & Eardley (1976) considered the evolution of close neutron star binaries. The orbit
evolves by gravitational radiation until the less massive neutron star reaches its Roche radius
whereupon it may undergo immediate tidal disruption or slow mass stripping. The stripping
process always ends in tidal disruption of the less massive object. Clark & Eardley plot a
-graph of the minimum separation of the components (i.e. the separation at which tidal
disruption occurs) against their mass. Taking the case of m,/m;= 2.6, which is the optical
case for fixed a, their graph suggests the value of 40km as the minimum separation. For
example, this occurs for m, =1.04 M, and m; = 0.40M,. For this system Ry is 4.3 km and
s0, by equation (3.21), the speed of the centre of mass is approximately 200m s™*. Different
values of m,/m, can lead to smaller values of « and hence possibly greater centre of mass
speeds, but it seems that the upper bound will be of the order of a few km s™. The latest
values for the orbital parameters of the binary pulsar PSR 1913 +16 (Taylor 1982) imply
a maximum centre of mass drift speed at present of the order of 1072km ™, which is
unfortunately too small to be detectable.

Another candidate for our scenario is a neutron star—black hole binary system. This has
been studied in great detail by Lattimer & Schramm (1974, 1976). In their models the
neutron star eventually undergoes tidal disruption. The point at which this occurs is very
sensitive to the mean neutron star density and to the mass of the black hole. It is therefore
difficult to decide on an accurate figure, but it seems that for most configurations, tidal
disruption occurs at a > 4R,. This implies a centre of mass speed of approximately
6 km s™* prior to disruption.

A cleaner and potentially more interesting system is a black hole—black hole binary
system. In this case we do not need to worry about tidal disruption effects. The evolution
of the orbit can continue until the last stable orbit is reached. For a test particle in orbit
around a black hole, the dynamics of the orbit are well understood and the last circular
stable orbits are known to lie between a = GM/c? (for a prograde orbit around a maximally
rotating Kerr hole) and 9GM/c? (for a retrograde orbit around a maximally rotating Kerr
hole). The last stable circular orbit for a Schwarzschild hole is at @ = 6 GM/c?. However, since
these are test particle results, it is by no means clear that the same values apply to the case of
a binary black hole system where the components are of similar mass. Clark & Eardley
(1976) gave an approximate calculation to suggest that the closest stable circular orbit for
two non-rotating black holes is (6 G/c?) max(m,, m,). They also found that, for the case of
a Kerr black hole with another black hole corotating synchronously, this limit could be
reduced to (5G/c?) max(m;, m,). However, since we have justified our weak field approxi-
mation on the basis of Detweiler’s work in the context of a Schwarzschild black hole, it is
more reasonable to assume that:

6G
Amin = p max (mq, my). (5.1)
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Then, for example, in the case of a 2.6 M, and 1M, black hole binary system we have
@min = 15.6 GM,/c* and therefore |v|~ 67 km s™'. We can only consider this to be an order
of magnitude result because of the approximations made. The result is very sensitive to the
value of a at which the system becomes unstable. It is possible that, in an exact numerical
simulation, the figure of 1480km s™ (equation 3.21) could be of order the recoil velocity.
In view of the size of this figure numerical calculations are of obvious importance.

Black hole binary systems may exist, either in the centres of galactic nuclei (Begelman,
Blandford & Rees 1980), possibly formed as a result of galaxy mergers, or in the disc itself.
The endpoint of evolution of such a system will be the spiralling coalescence of the black .
holes. It is possible that the combined effect of the recoil discussed here, and that associated
with the formation of the new hole, could eject the newly formed hole from the galaxy. The
binary recoil effect could also have implications for the case of a single rotating object which
undergoes fission, the recoil effects associated with the fragments possibly resulting in
ejection,

It is to be hoped that numerical simulations or test particle calculations, extrapolated
beyond their usual domain of validity, will clarify the points on which we have only been
able to speculate.
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Appendix

The values of Q¥ and B7* evaluated by the computer are:
N=03(1-e*)"20{(1+ecosh)?*[24 cosOsinh +2esinf +18e cos?f sin 0]

02=0"=Q3(1-e*)™?0(1 +ecos0)?[12—24 cos?6 + 6e cosf —18e cos>A]

0%=—-Q3(1—-e?)®?%0(1 +ecosf)*[24 cosOsinf +4esinf +18e cos?O sin ]

0¥=Q3(1—-e*)"?0(1+ecosf)?(2esind).
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All other Q¥ are zero.
B =0Q2¢(1—-e?)"%A(1 +ecos0)?[81 cos®d +120e cos*d — 59 cos § — 6e —T8e cos?§
—4e2cosf] ,
B12=Qd(1-e?)"®A(1 +ecosB)* [81 cos2fsind +2e?sin b +120e cos>6 sin

—23sinf +45e2c0s*0 sinf — 24e cos 6 sin § — 9e? cos?d sin 6]

B =pM =Qd(1—e?)"®A(l +ecosh)? [81 cos?0sind +120e cos®O sin6
+45e% cos*@sind —18sinf —12e cosf sinf]
B2 =BM2=Qd(1—e*) ®A(l +e cos0)?[63 cosd + 6e + T8¢ cos?d +27e* cos>6
—81 cos30—120e cos*0 —45€°0]
B =Qd(1—e°A(1 +ecosh)?[58 cosh +12e + 66e cos?0 + 8e?cosf + 18e? cos>0
— 81 cos®0 —120e cos*8 —45e?cos®0)
B?2=Q%(1—e?)"®A(l +ecosf)?[22sin@ — 81 cos?0 sinf + 12e cos§ sinf — 4e? sin O
—120e cos30 sin§ —45e%cos*§ sin 9]
B3 =0%(1—-e?)"°A(1 +ecosh)?[cos@ +12e cos?0 +9e?cos30 — 6e —4e% cosh]

B3 =Qi(1—e?) " %A(1 +ecosf)? [sinf +12e cosOsinf +2e?sinf + 9e?cos?0 sin §].

All other BY7*’s are zero. Here o and A are defined as o=a’m (1l +m/m,)™" and
A=a*(my—my) (1 +m;/my)" (1 + my/m,)™t. This is the same as the earlier definition of
o and A where we set dy = am,(m, + m;) ™! and d, = am (m, + m,)™ .
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